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Despite the significant progress in cancer treatment, new anticancer therapeutics drugs
with new structures and/or mechanisms are still in urgent need to tackle many key
challenges. Drug repurposing is a feasible strategy in discovering new drugs among the
approved drugs by defining new indications. Recently, ropivacaine, a local anesthetic that
has been applied in clinical practice for several decades, has been found to possess
inhibitory activity and sensitizing effects when combined with conventional
chemotherapeutics toward cancer cells. While its full applications and the exact targets
remain to be revealed, it has been indicated that its anticancer potency was mediated by
multiple mechanisms, such as modulating sodium channel, inducing mitochondria-
associated apoptosis, cell cycle arrest, inhibiting autophagy, and/or regulating other key
players in cancer cells, which can be termed as multi-targets/functions that require more
in-depth studies. In this review, we attempted to summarize the research past decade of
using ropivacaine in suppressing cancer growth and sensitizing anticancer drugs both in-
vitro and in-vivo, and tried to interpret the underlying action modes. The information
gained in these findings may inspire multidisciplinary efforts to develop/discover more
novel anticancer agents via drug repurposing.
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INTRODUCTION

Cancer has become a global health burden in both developing and developed countries. Despite the
significant progress of chemotherapies and immunotherapies, unexpected low response rate,
unfavorable adverse effects, multidrug resistance (MDR) and cancer recurrence are among the
major challenges that undermine effective cancer treatment as summarized in Figure 1 (1–4). New
drugs with novel structures and/ormechanisms and novel therapeutic strategies remain unmet clinical
needs to tackle these issues. The discovery and development of one new drug, especially de novo drug
discovery, may approximately take at least ten years and one billion dollars, rendering it a highly
challenging and risky task due to the fact of high attrition rates (5–7). Potential strategies that may
serve as shortcuts in drug discovery are 1) old drugs repurposing, 2) co-crystallization between lead
compound and its target protein, which may fasten the identification and optimization of drug
candidates, 3) artificial intelligence (AI) and machine learning, and 4) others such as high throughput
screening (HTS) in natural products or other commercial available compound libraries (8–12).
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Recently, old drug repurposing has been proved to be a feasible
strategy to develop new drugs from those approved drugs by
defining new indications (13–18). More importantly, these
approved drugs have already been evaluated in humans to
possess favorable profiles of pharmacokinetic, pharmacodynamic
profiles and safety, as well as controllable/acceptable adverse/toxic
effects, which is a procedure of time-consuming (19). Drug
repurposing may indeed shorten the overall time in developing
and launching a new drug, and may substantially relief the
financial burden as compared to de novo drug development (16,
17, 20, 21).

Retrospective clinical studies have suggested that the application
of local anesthetics can improve the treatment outcomes of certain
cancer patients in pain control and, more strikingly, in suppressing
cancer growth (22, 23). In the past decade, researchers have studies
intensively in discovering new agents with anticancer activities
among local anesthetics, finding that several anesthetics possess
broad-spectrum anticancer potencies (24), such as lidocaine (25–
27), procaine (28–30), ropivacaine (31–35) and its stereoisomers
bupivacaine (36, 37) and levobupivacaine (38, 39). Following our
previous review of lidocaine in cancer treatment (11), in the current
review, we aimed to summarize the anticancer studies of
ropivacaine, another amide-linked local anesthetic (same as
lidocaine) that has been widely used in perioperative period as a
long acting local anesthetic (40, 41). Structurally, ropivacaine is the
S-enantiomer of bupivacaine, while it has a weaker cardiotoxicity
and other toxic effects than bupivacaine when used as an anesthetic
(42, 43). Ropivacaine, when repurposed as anticancer agent that is
administered by single or combination, inhibits cancer cells growth,
proliferation, invasion and migration through multiple
mechanisms, showing great potential in cancer treatment.
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ROPIVACAINE DEMONSTRATES
ANTICANCER EFFICACIES

Growing evidence has suggested that at certain concentrations/
doses, ropivacaine can work as an anticancer agent by
monotherapy or combination. In this section, we summarized
these studies categorized by the functions such as inhibiting
proliferation or invasion, etc. Compared to lidocaine that has
been evaluated in various cancer types in-vitro and in-vivo (11),
relatively fewer studies were conducted using ropivacaine in
cancer treatment. By far, it’s still not clear about the direct
interactions of local anesthetics on cancer cells. Further
applications can be significantly expanded after deciphering
the exact mechanism and the target of ropivacaine.
ROPIVACAINE INHIBITS CANCER
CELLS PROLIFERATION

Via Regulating Ras and RhoA
Signaling Pathway
There are studies that indicated the anticancer effects of
ropivacaine are independent of its role in regulating sodium
channel (44). RhoA and Ras are two important members of Ras
superfamily that regulates many aspects of cancer cell biology
including cell division, proliferation and migration, whose
inhibitors hold promising activity against cancer (45, 46).
Zheng et al. (44) found that ropivacaine (0.25, 0. 5, 1 and 2
mM) inhibited the proliferation and migration of human
melanoma A375 and A431 cells in a concentration-dependent
manner via inducing apoptosis (44). More importantly, it
(0.5 mM) could also serve as chemosensitizer as it markedly
enhanced the potencies of vemurafenib and dacarbazine, two
widely used drugs in melanoma treatment, suggesting a broader
screening of its potential in drug resistant cancers. Interestingly,
its isomer bupivacaine didn’t show such sensitizing effect as
ropivacaine. These effects were independent of sodium channel
but were mediated by the inhibition of RhoA and Ras, which can
be reversed by pre-treatment with the activator of Ras and Rho,
calpeptin (44). The Western blot analysis also showed that
ropivacaine treatment (1 and 2 mM) not only caused the
down-regulation but also inhibited the activities of several
downstream signaling of Ras and RhoA, such as MAPK/ERK
Kinase (MEK) and myosin phosphatase target subunit 1
(MYPT1) MLC, further verifying its mechanism (44).

Via Regulating Integrin Alpha-2 (ITGa2)
and ITGb1
ITGa2 is a key protein that closely participates in cell adhesion.
Serving as a therapeutic target, ITGA2 is found to be
overexpressed in certain cancer cell lines and tumor tissues,
which may cause the promotion of cancer aggression (47, 48).
Ropivacaine (2.5-40 mM) inhibited the proliferation of gastric
cancer AGS and BGC-823 cells as shown in a study by Qin et al.
(49). Mechanistic study indicated that ropivacaine inhibited the
expression of ITGA2 in a concentration-dependent manner,
FIGURE 1 | The effective cancer treatment can be undermined by many
key challenges.
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resulting in significant apoptosis as supported by the down-
regulated anti-apoptotic B-cell lymphoma 2 (Bcl-2), and up-
regulated pro-apoptotic Bcl-2-associated X protein (Bax),
cleaved caspase 3/9. Importantly, these effects could be reversed
by the overexpression of ITGa2, indicating that ropivacaine’s
anticancer effects were mediated by inhibiting ITGa2 (49). In
this study, ropivacaine was also found to suppress the invasion and
metastasis of human papillary thyroid cancer (PTC) TPC-1 cells,
suggesting it a multifunctional agent (49).

Another recent study by Wang and Li (50) showed that
ropivacaine (200, 400, 800 mM) induced apoptosis and inhibited
the proliferation and migration of colon cancer HCT116 and
SW620 cells by targeting another subunit of integrin, ITGb1 (50).

Via Regulating Wnt/b-Catenin
Cancer stem cells (CSCs) are a subpopulation of cancer cells that
have self-renewing and highly proliferative properties, which can
often cause cancer recurrence and drug resistance (51–53). Wnt/
b-catenin pathway plays critical role in regulating the pluripotency
and renewal of CSCs. In addition,Wnt/b-catenin is found to be dys-
regulated in cancer patients, indicating its potential therapeutic
implication (54, 55). At clinical relevant concentrations, ropivacaine
exhibits inhibitory effects towards CSCs. A study conducted by Li
et al. (28) showed that ropivacaine (10, 50 and 100 mM) inhibited
leukemia stem cell (LSC) stronger than normal hematopoietic stem
cell (HSC), although ropivacaine was found to be less potent than
lidocaine or bupivacaine (56). At the same concentrations,
ropivacaine significantly repressed the colony numbers as well as
the serial replating of LSC, likely via inhibiting Wnt/b-catenin as
confirmed by Western blot analysis, suggesting its potential
capabilities in inhibiting CSCs and warranting further studies (56).

Via Regulating Autophagy Through
Vascular Endothelial Growth Factor
(VEGF)-A and Signal Transducer and
Activator of Transcription 3 (STAT3)
Autophagy is a biological procedure that prompts cancer cells to
respond nutrition changes by degrading and then recycling the
intracellular biomacromolecules, serving as a promising
therapeutic target in cancer (57–59). Combinational therapy of
ropivacaine has also been attempted to inhibit pain relief and
tumor growth simultaneously. Zhang et al. (20) developed a
formulation of liposomes composed with ropivacaine (named as
Rop-DPRL), and these liposomes, when combined with nutrition
deprivation which may lead to activated autophagy, can suppress
the tumor growth of melanoma B16 cells xenograft model and
relieve the cancer pain (60). Further study indicated that these
effects were mediated by reducing the expression of VEGF-A,
and inhibiting the phosphorylation of STAT3 (60).

Via Apoptosis-Associated Pathways
and Cell Cycle Arrest
Most of cancer cells die due to apoptosis induced by different
therapeutic strategies. Apoptosis, the programmed cell death, can
be categorized into external and internal apoptosis which are
Frontiers in Oncology | www.frontiersin.org 3
initiated via distinct pathways. Both of them can serve as
therapeutic targets that can be attacked by small-molecule
drugs or macromolecule drugs via intervening the key
components, e.g., either activating the pro-apoptotic proteins
or suppressing the anti-apoptotic ones (61, 62).

One of the hallmarks of cancer cells is the uncontrollable cell
division and proliferation. Key enzymes such as cyclin-
dependent kinases (CDKs) and members of cyclins are
dynamically stimulated to regulate the active cell cycle, rending
them to be attracting and druggable targets (63, 64). Growing
evidence has showed that ropivacaine can kill cancer cells via
inducing apoptosis or cell cycle arrest.

Castelli et al. (65) evaluated the cytotoxicity of ropivacaine on
drug-resistant human triple-negative breast cancer MDA-MB-231
cells, and melanoma A375 cells (65). Ropivacaine (5-1000 µM)
was found to concentration-dependently inhibit the proliferation
of both cell lines, and suppressed the migration as confirmed by
the transwell assay. Ropivacaine induced significant apoptosis by
up-regulating the cleaved caspase 3 and 9, and it also caused cell
arrest via inhibiting the expression of cyclins B2, D1 and E. These
effects suggested that ropivacaine suppressed cancer cells
proliferation via cell cycle arrest and activating apoptosis
pathway (65).

Another study showed that ropivacaine possessed similar
activity in human non-small cell lung cancer (NSCLC) A549
and H520 cells (66). Ropivacaine (2-12 mM) inhibited the cell
viability, suppressed the invasion and migration at 4.06 and 2.62
mM (ED50 values) via inducing G0/G1 phase arrest and
apoptosis by down-regulating anti-apoptotic but up-regulating
pro-apoptotic proteins, provoking DNA damage and reactive
oxygen species (ROS) production through activating mitogen-
activated protein kinase (MAPK) pathways (66). It’s worth
noting that this study using much higher concentration of
ropivacaine that that of in Castelli et al.’s study (65), which is a
common issue using local anesthetic as anticancer agent, further
pharmacokinetic studies are needed.

Li et al. (28) reported that at plasma concentrations (10, 35 µM,
much lower than 1 mM) for 72 h, ropivacaine failed to decrease
cell viability and migration of breast cancer MDA-MB-231 and
MCF7 cells, while at higher concentrations (more than 1 mM), it
significantly inhibited cell viability and showed cytotoxicity
without affecting the viability of a non-cancerous breast cell line,
MCF10A, suggesting its selective profile (67). At 10-fold plasma
concentrations, ropivacaine suppressed the migration of MDA-
MB-231 by inducing cell arrest at the S phase (64).

Another similar result was found that ropivacaine at 1 mM
decreased the viability and proliferation of hepatocellular carcinoma
(HCC) HuH7 cells while spared the well-differentiated HepaRG
cells (68). The levels of mRNA of several key cell-cycle regulators,
including cyclin A2, B1/2, and CDK1, as well as the marker of
proliferation Ki-67 (MKI67) were significantly suppressed,
indicating a cell arrest-mediated mechanism (68).

Mitochondria are pivotal organelles in cancer cells for their
roles in ATP production (mitochondrial respiration) and
endogenous apoptosis pathway initiating and regulating,
rendering them to be attractive therapeutic targets (67, 69, 70).
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xu et al. Ropivacaine in Cancers
Several studies have indicated that ropivacaine could exert its
anticancer effects through inducing mitochondria-mediated
apoptosis and/or impacting the respiration pathway (71, 72).
In HCC Bel7402 and HLE cells, in the concentration- and time-
dependent manners, ropivacaine markedly suppressed the cells
proliferation and migration via damaging mitochondria by
inducing endogenous apoptosis event as confirmed by the up-
regulated caspase 3/9, apoptotic protease activating factor-1
(Apaf-1) and released cytochrome C from mitochondria and
down-regulated anti-apoptotic Bcl-2 (73). Another study
conducted by Yang et al. (32) showed that at clinically relevant
concentrations, ropivacaine was able to suppress the
angiogenesis of human lung tumor-associated endothelial cells
(HLT-EC) via disturbing the complex II located in the
mitochondrial respiration chain. The damaged mitochondrial
respiration caused by ropivacaine further leads to ATP depletion,
overproduced ROS and finally lethal damages to cells (74).

Another study by Gong et al. (33) showed that ropivacaine
(0.5 and 1 mM) inhibited the activities of complex I and II in
mitochondrial respiration chain in breast cancer MDA-MB-468
and SkBr cells, leading to the repressed growth, survival and
colony formation through inducing oxidative stress (75). Further
study indicated that ropivacaine could work as a chemo-
sensitizing agent since it (0.5 mM) can enhance the sensitivity
of 5-fluorouracil (5-FU) via inhibiting the phosphorylation of
Akt, mammalian target of rapamycin (mTOR) and ErbB3
receptor-binding protein 1 (EBP1) (75).

Ropivacaine also exerts inhibitory effects towards mesenchymal
stem cells (MSCs) which possess self-renewing property that may
contribute in wounds healing and tumor growth (71, 72, 76). At 100
mM, ropivacaine induced proliferation inhibition, cell arrest at the
G0/1-S phase, resulting in less colony formation and delayed wound
healing via impacting mitochondrial respiration and reducing ATP
production (77).

Via Regulating Extracellular Signal-
Regulated Kinases 1/2 (ERK1/2)
ERK1/2 signal pathway is one of the central players in regulating
cell biology, such as proliferation, differentiation, autophagy,
stress response apoptosis and survival (78). Several selective
ERK1/2 inhibitors are undergoing clinical trials, showing their
great potentials in certain cancers treatment (79). Yang et al. (80)
found that ropivacaine (1 mM) significantly inhibited the
proliferation and migration of gastric cancer AGS and HG-27
cells via down-regulating phosphorylated ERK1/2 (80). Further
studies are necessary to elucidate the details of impacted signal
pathway and associated cancer cell biology, e.g., the interaction
of ERK1/2 down-regulation with autophagy (81), apoptosis (82),
and cell cycle (83), etc.

Via Micro RNAs/Long Non-Coding
RNAs (lncRNAs) and Associated
Signaling Pathways
Micro RNAs have drawn profound attentions for their roles in
regulating cancer progression and migration, serving as therapeutic
target (84). Zhang et al. (20) found that ropivacaine could up-
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regulate miR-520a-3p that can further suppressed the expression of
WEE1 and phosphorylated PI3K, leading to concentration- and
time-dependent inhibition of the proliferation of gastric cancer AGS
and BGC-823 cells, suppression of the migration and invasion (85).
More importantly, in the AGS cells xenograft mouse model,
ropivacaine (20, 40, and 60 mM/kg) significantly reduced tumor
growth, accompanied with up-regulated miR-520a-3p and
decreased WEE1 and phosphorylated PI3K (85).

In breast cancer MDA-MB-231 and MCF-7 cells, ropivacaine
(1 mM) induced apoptosis, leading to the time-dependent
inhibition of the proliferation, and the reduction of the colony
formation, as well as decreased cell invasion and migration (86).
Ropivacaine was confirmed to up-regulate miR-27b-3p and its
target gene YAP to exert its anticancer effects. Ropivacine (40
mM/Kg) inhibited the tumor growth of MDA-MB-231 cells
xenograft model, which can be reversed by co-treatment of
miR-27b-3p inhibitor (86).

Recently, lncRNAs have shown great potentials as key players
in gene regulation and cancer progression. MEG2 lncRNA
regulates epigenetic modifications through interacting with
chromatin-modifying complexes, acting as a tumor suppressor
that is down-regulated in various types of cancer (87). As a
central player in cell biology and a therapeutic target, STAT3
is a transcription factor that regulates cell differentiation,
proliferation and apoptosis, resulting in promoting cancer
progression (88). Chen et al. (89) reported that ropivacaine
(0.25, 0.5 and 1 mM) possessed inhibitory effects to cervical
cancer SiHa, Caski cells via suppressing the expression of cyclin
D1 and survivin, an anti-apoptotic protein (90, 91), by abrogating
the phosphorylation and transcriptional activation of STAT3
whose overexpression could reverse the cytotoxicity of
ropivacaine (89). These effects were mediated by up-regulating
MEG2 and down-regulating microRNA96, suggesting ropivacaine
as a potential therapeutic agent for cervical cancer (89).
ROPIVACAINE INHIBITS CANCER CELLS
INVASION AND MIGRATION

As discussed above, ropivacaine at certain concentrations/doses
could not only suppress the proliferation, but also the invasion
and migration via similar multiple mechanisms. While there are
also studies indicated that ropivacaine can only inhibit the
invasion and migration, but not be able to kill cancer cells,
probably due to the applied different concentrations, e.g.,
lower concentrations.

Via Regulating Sodium Channels
Proteins in regulating sodium channel such as NaV1.5 voltage-
gated Na+ channel (VGSC), can also prompt the tumorigenesis
including the proliferation and metastasis of cancers (92, 93).
Certain types of metastatic cancer cells, including breast and
colon cancer cells, express high level of NaV1.5 VGSC, which
may lead to poor prognosis of patients (93–96). Consequently,
the block of NaV1.5 VGSC leads to the cease of cancer cell
invasion (93, 97). As a local anesthesia, ropivacaine works by
February 2022 | Volume 12 | Article 836882
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inhibiting sodium channel that mediates the pain signal
transduction (98). Accordingly, ropivacaine can also well exert
its anticancer effects via the same mechanism of action through
the inhibition of NaV1.5 VGSC. A study conducted by Baptista-
Hon et al. (97) found that, ropivacaine blocked the NaV1.5
VGSC of both neonatal and adult splice variants in colon cancer
SW620 cells, with IC50 values of 2.5 and 3.9 mM, respectively.
Consequently, ropivacaine inhibited the invasion of SW620 cells
(IC50 of 3.8 mM), suggesting its potential application in
controlling colon cancer invasion (97).

In 2015, a systematic review by Koltai et al. was published,
aiming in searching regulators of VGSCs (NaV1.1 to Nav1.9) and
the potentials of their regulators in suppressing invasion and
metastasis of cancers (99). In this review, they reported that a
couple of local anesthetics, such as ropivacaine and lidocaine, as
well as many other drugs, may serve as anticancer agents in
suppressing metastasis and invasion of cancer cells (99). However,
their further applications in clinic remain to be unveiled (99). This
review also suggests a wider screening of this type of approved
drugs for their potential in cancer treatment.

Via Attenuating the Axis of Rac1/c-Jun
N-Terminal Kinase (JNK)/Paxillin/Focal
Adhesion Kinase (FAK)
A study in Zheng’s group (2018) showed that at lower
concentrations (less than 200 mM), ropivacaine didn’t impact
cancer cell growth and survival but suppress the cell migration
(100). As shown in this research, at the clinically relevant
concentration (50, 100 and 200 mM), ropivacaine inhibited the
migration of esophageal cancer OE33, ESO26 and FLO-1 cells
via decreasing the activities of GTPases of RhoA, Rac1 and Ras,
and inhibiting the prenylation, which were independent of
sodium channel. This work demonstrated that the potent anti-
migratory effect of ropivacaine in esophageal cancer was
mediated by attenuating the axis of Rac1/JNK/paxillin/FAK
and prenylation-dependent migratory signaling pathways (100).

Via Regulating Matrix Metalloproteinase 9
(MMP9)/Akt/FAK
MMP9 is a key protein that plays key role in cancer cells invasion,
which serves as a prognostic biomarker in certain cancer patients,
implying its potential role as a therapeutic target (101–103). In NCI-
H838 lung adenocarcinoma cells, ropivacaine (1 nM-100 mM)
significantly reduced TNFa-induced activation/phosphorylation of
Akt, FAK, caveolin-1 as well as MMP9 via attenuating tyrosine
protein kinase Src-dependent inflammatory pathway. Ropivacaine
(1 mM) completely inhibited the invasion of NCI-H838 cells,
suggesting its potential in suppressing the metastasis (104).

Similar results were also confirmed by Piegeler et al. (2012) that
ropivacaine, through its anti-inflammatory effects, suppressed the
Src and vascular intercellular adhesion molecule-1 (VCAM-1),
two important key players in tumor growth and metastasis (104,
105). Ropivacaine (100 mM for 20 min) decreased the Src activity
by 62% through decreasing Src-activation and intercellular
adhesion molecule-1 phosphorylation (106).
Frontiers in Oncology | www.frontiersin.org 5
Via Nuclear Factor Kappa-Light-
Chain-Enhancer of Activated B
Cells (NF-kB) Pathway
NF-kB pathway regulates cancer cell proliferation, survival, and
angiogenesis, playing pivotal role in cell biogenic activities and
serving as an attracting target in cancer treatment (105). Su et al.
(107) found that ropivacaine (10 mM), when combined with
tumor necrosis factor a (TNFa), caused the inhibition of
adhesion of three cancer cell lines, human hepatoma HepG2
cells, human colon cancer HT-29 cells and human leukemic
monocyte THP-1 cells. These effects were mediated by down-
regulating the expression of CD62E, a key protein in regulating
adhesion (106, 108). Further mechanistic study showed that
ropivacaine significantly suppressed the expression of several key
components of NF-kB pathway, including the phosphorylation of
p65, IkBa and IKKa/b, indicating that ropivacaine decreased the
adhesion of cancer cells via modulating CD62E expression by
inhibiting the NF-kB pathway (107).

Via DNA Demethylation
DNA methylation is a procedure through which bases are
modified by methyl group, which is found to be highly active
in many cancers (109). The inhibitors of DNA methylation can
produce anticancer potencies and several of these inhibitors have
been approved by FDA (110). Ropivacaine showed epigenetic
regulatory effects viamodulating DNAmethylation. As shown in
Lirk et al.’s study (111), ropivacaine at clinically relevant
concentrations (3 and 30 µM) didn’t directly kill but decrease
the DNA methylation in breast cancer BT-20 cells which lead to
lower tumorigenesis properties (111).
CLINICAL STUDIES

A recent retrospective cohort study of 215 pancreatic cancer
patients by Chen et al. (112) showed that 0.375%-0.5% of
intraoperative epidural ropivacaine significantly improve the
overall survival (112). Several clinical trials have already been
conducted by applying ropivacaine as an adjuvant therapy in
shortening the recovery time and other beneficial effects in
surgical cancer patients. A clinical study revealed recently (2020)
that in liver cancer patients, ropivacaine, when combined with
dezocine, could significantly shorten the recovery timeof anesthesia
and inhibit pain factors secretion, with markedly less adverse
reaction, and this combination therapy could reduce stress
response, promote patients’ postoperative recovery after cancer
surgery (113). Another study (NCT02256228) showed that via the
anti-inflammatory and analgesic effects, intraperitoneal
ropivacaine in ovarian cancer patients could prompt the
postoperative recovery and shorten the time for chemotherapy,
whichmay lead to better overall recovery (114). Similar results were
alsoobserved inbreast cancerpatientswhounderwent surgery.This
study (NCT02691195) showed that in the treatment group, 25ml of
0.5% ropivacaine could improve the quality of recovery as
confirmed by analyzing the 40-item questionnaire, leading to
higher patient satisfaction (115). Wang et al. (31) reported that
February 2022 | Volume 12 | Article 836882
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ropivacaine treatment might improve the postoperative cognitive
dysfunction in patients following thoracotomy for esophageal
cancer by down-regulating inflammatory cytokines such as IL-6
and TNFa (116).

Recently (2020), a study conducted in New Zealand to explore
the long term of application of intraperitoneal ropivacaine in
colonic cancer patients has been reported. This study had
enrolled 60 patients of both benign and malignant colon cancer
(stages I-III), and was analyzed by evaluating the overall survival,
disease-free survival and recurrence. However, the revealed results
showed that the treatment group by ropivacaine didn’t exhibit
better overall survival or reduced mortality than the placebo group
treated by0.9% saline solution.And evenworse, higher incidence of
cancer-specific mortality was found in the ropivacaine-treated
group, indicating no beneficial effects by applying intraperitoneal
ropivacaine in patients with colonic malignancy (117). While
further studies are clearly needed to explore the indications, e.g.,
earlier stages of cancers, and certain combinational therapy
with ropivacaine.
DISCUSSION AND
FUTURE PERSPECTIVES

The above studies indicate that local anesthetic ropivacaine may
benefit cancer patients by two ways, 1) inhibit the proliferation or
suppresses the migration of cancer cells as we summarized in
Table 1 and Figure 2, and 2) shortens the recovery times and
improve the quality of life.

The studies performed in-vitro and in-vivo have proved that
ropivacaine represses the cancer cells invasion and migration at
lower concentrations (usually less than 200 mM) (100), while it
suppresses cancer growth or kills cancer cells via various acting
Frontiers in Oncology | www.frontiersin.org 6
modes at higher concentrations/doses (mostly more than 1 mM)
(118). However, the concentrations/doses vary when it comes to
different cancer cells, requiring further in-depth studies for a
clear therapeutic window in certain cancer type. In addition,
ropivacaine appears to be an enhancer of the sensitivity of certain
chemotherapy, suggesting its potential in the treatment of certain
resistant cancers (44, 75). The information above may 1) suggest
an appealing strategy in screening and identifying certain
combinational therapy with ropivacaine, and 2) evoke a broad
screening among local anesthetics and related drugs for cancer
treatment. However, we cannot overstate the therapeutic
implication until more results especially in-vivo and clinical
studies are revealed.

In addition to its role in killing cancer cells, ropivacaine also
improves the quality of life of cancer patients who have undergone
surgical treatment. Many retrospective studies conducted among
cancer patients upon treatment of local anesthetics including
lidocaine and ropivacaine demonstrate a favorable trend of
decrease in tumor metastasis and recurrence. While the clinical
trials focusing on the anticancer effects of ropivacaine have yielded
limited successes, there are still several ongoing trials for cancer-
related diseases (see at http://6tt.co/tjEU on ClinicalTrials.gov), its
potentials in cancer treatment remain to be fully revealed.

One interesting finding is the difference of anticancer efficacies
of the analogs or isomers of ropivacaine. Ropivacaine and
bupivacaine are optical isomers, while they possess different
potentials and targets, e.g., GTPases (42), though they also exhibit
similar effects in regulating certain targets such as hypoxia-
inducible factor 2a (HIF-2a) signaling (115). More efforts are
needed to decipher the underlying mechanisms, such as the
binding targets, the network through which ropivacaine regulates
certain signals transduction in cancers, etc. The application of
ropivacaine in cancer treatment is still in its infant stage, more
TABLE 1 | Summary of ropivacaine in cancer treatment.

Targets/Mechanisms Efficacies Refs

Ras superfamily Sensitizing vemurafenib and dacarbazine (44)
ITGa2 and ITGb1 Inhibiting the proliferation of AGS, and BGC-823 cells

Inhibiting proliferation and migration of HCT116 and SW620 cells
(49, 50)

CSCs/Wnt/b-catenin Inhibiting the proliferation of LSC (56)
Autophagy/VEGF-A/STAT3 Inhibiting B16 cells xenograft tumor growth (60)
Apoptosis-associated pathways Inhibiting the proliferation and migration of MDA-MB-231 and A375 cells

Inhibiting the invasion and migration of A549 and H520 cells
Inhibiting the proliferation and migration of Bel7402 and HLE cells
Inhibiting the capillary formation and growth of HLT-EC
Inhibiting the proliferation of MDA-MB-468 and SkBr cells and sensitizing 5-FU

(65, 66, 73–75)

Cell arrest Inhibiting the proliferation and migration of MDA-MB-231 and MCF7 cells
Inhibiting the proliferation of HuH7 cells

(67, 68)

ERK1/2 Inhibiting the proliferation and migration of AGS and HG-27 cells (80)
miR-520a-3p Inhibiting the proliferation of gastric cancer AGS and BGC-823 cells (84)
miR-27b-3p Inhibiting MDA-MB-231 cells in-vitro and in-vivo (85)
miR96/MEG2/pSTAT3 Inhibiting the proliferation of SiHa, Caski cells (89)
Sodium channel Inhibiting the invasion of SW620 cells (97, 99)
Rac1/JNK/paxillin/FAK Inhibiting the migration of OE33, ESO26 and FLO-1 cells (95)
NF-kB Inhibiting the adhesion of HUEVC (107)
MMP-9/Akt/FAK Inhibiting the invasion of NCI-H838 cells (104)
DNA demethylating Suppressing tumorigenesis properties (111)
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effects are clearly needed to define its indications and
administration strategies (either single use or combination).
Meanwhile, there are still many questions to be answered, such as
the exact targets, and the acting concentrations/doses, more efforts
(such as more in-vivo models, combinations, and certain rescue
experiments) are needed to fill the blanks to obtain a full view
(Figure 2). As per the reported studies, ropivacaine appears to be a
multi-target ormulti-functional compound.Under clinical relevant
(achievable) concentrations/doses, it exerts anti-metastatic, anti-
CSCs via regulating sodium channel, anti-inflammatory function
and signaling pathways that regulate these two and other associated
pathways, leading to the inhibition of signaling transduction which
may contribute in the metastasis and maintenance of CSCs (94).
Under multiple-fold of clinical-achievable concentrations/doses,
ropivacaine is able to kill cancer cells by suppressing key players
(proteins or signal pathways) in prompting cancer cells growth,
proliferation and migration, including those key proteins in
regulating cell cycle, apoptosis, mRNA, epigenetics, autophagy,
etc. (64, 116).

It’s noteworthy that ropivacaine appears to exert its anticancer
effects via the regulation of ITGa2 and/or members of Ras
superfamily, because in the original studies, two pivotal
experiments, such as the overexpression of ITGa2 (49) or the co-
Frontiers in Oncology | www.frontiersin.org 7
treatment of calpeptin, an activator of Ras and Rho (44), although
other pathways can’t be excluded. Another interesting thing is
among all affected pathways, several of them are membrane-
associated proteins, such as NaV1.5 VGSC, as well as ITG
members, indicating that ropivacaine might preferably attack
membrane proteins which require further investigations. Again,
future studies of the direct interaction between associated proteins
and ropivacaine are warranted, which may help finally explain and
identify its exact targets/mechanisms.
CONCLUSIONS

Ropivacaine exerts anticancer and chemotherapeutic re-
sensitizing effects, showing potentials in benefiting certain
cancer patients. Further studies are warranted to explore the
mechanisms, combinations and indications.
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