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Background: Programmed death 1 (PD-1) and the ligand of PD-1 (PD-L1) are central
targets for immune-checkpoint therapy (ICT) blocking immune evasion-related pathways
elicited by tumor cells. A number of PD-1 inhibitors have been developed, but the efficacy
of these inhibitors varies considerably and is typically below 50%. The efficacy of ICT has
been shown to be dependent on the gut microbiota, and experiments using mouse
models have even demonstrated that modulation of the gut microbiota may improve
efficacy of ICT.

Methods: We followed a Han Chinese cohort of 85 advanced non-small cell lung cancer
(NSCLC) patients, who received anti-PD-1 antibodies. Tumor biopsies were collected
before treatment initiation for whole exon sequencing and variant detection. Fecal
samples collected biweekly during the period of anti-PD-1 antibody administration were
used for metagenomic sequencing. We established gut microbiome abundance profiles
for identification of significant associations between specific microbial taxa, potential
functionality, and treatment responses. A prediction model based on random forest was
trained using selected markers discriminating between the different response groups.

Results: NSCLC patients treated with antibiotics exhibited the shortest survival time. Low
level of tumor-mutation burden and high expression level of HLA-E significantly reduced
progression-free survival. We identified metagenomic species and functional pathways
that differed in abundance in relation to responses to ICT. Data on differential enrichment
of taxa and predicted microbial functions in NSCLC patients responding or non-
responding to ICT allowed the establishment of random forest algorithm-adopted
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models robustly predicting the probability of whether or not a given patient would benefit
from ICT.

Conclusions: Overall, our results identified links between gut microbial composition and
immunotherapy efficacy in Chinese NSCLC patients indicating the potential for such
analyses to predict outcome prior to ICT.
Keywords: immune checkpoint therapy, anti-PD-1, lung cancer, gut microbiome, biomarker
INTRODUCTION

Immune checkpoint therapy (ICT) represents an option for
blocking immune evasion-related pathways elicited by tumor
cells (1). Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4)
(2), programmed death 1 (PD-1), and the ligand of PD-1 (PD-
L1) (3) are the three most studied targets for ICT. Even though
ICT has proven successful in the treatment of several types of
cancers, the percentage of positive responses varies considerably
and is typically in the range of 10% to 47% in different groups of
patients (3–5). Previous studies have shown that high tumor
mutational burden (TMB) as well as the human leukocyte
antigen (HLA) type are correlated with ICT response rate (4,
5). Moreover, convincing evidence has been presented showing
that the composition and functional properties of the gut
microbiota may influence the efficacy of ICT in Caucasian
patients, suggesting that analysis of the gut microbiota in
combination with other biomarkers might allow for
identification of responders versus non-responders prior to
initiation of ICT (6–8), thereby enabling a more personalized
treatment of patients. However, the individual contributions of
such biomarkers have not yet been compared in a single
study setting.

In this study, we used shotgun metagenomics sequencing to
analyze the baseline composition and changes in the gut
microbiota in longitudinally collected fecal samples from
advanced non-small cell lung cancer (NSCLC) patients during
anti-PD-1 therapy to initially define the most robust gut
microbial-based response predictors. We then compared the
identified microbial-based biomarkers with models involving
other patient-specific markers such as TMB and blood
lymphocyte counts. Based on the dynamic metagenomic
profiling of the gut microbiota during anti-PD-1 treatment, we
identified several bacterial species and selected functions to be
valuable predictors of the response to anti-PD-1 therapy in
Chinese NSCLC patients. Finally, we examined to what extent
our findings in the Chinese patients could be replicated in a
French cohort. Overall, our study suggests that gut microbiome
biomarkers may serve as independent predictors of ICT
responsiveness also in Chinese NSCLC patients.
1; PD-L1, the ligand of PD-1; ICT,
small cell lung cancer; HLA-E, human
antigen, alpha chain E; TMB, tumor

urvival; RECIST, Response Evaluation
dex; DNB, DNA nanoball; KO, KEGG
, lipopolysaccharide; RNA, ribosomal
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RESULTS

Diverse Host Factors Influence the
Responsiveness to Anti-PD-1 Therapy
After 3 months of treatment of the 85 eligible patients, 13 (15%)
were assessed as patients with partial response (PR), 24 (28%) as
patients with stable disease (SD), 43 (51%) as patients with
progressive disease (PD), and 5 patients (6%) as patients who
succumbed to fast death (FD). Of all patients, 31 (36%) had
progression-free survival (PFS) beyond 3 months and were
regarded as ICT responders (Rs), and the remaining 54
patients (64%) were characterized as non-responders (NRs).
The clinical characteristics of the patients are provided in
Table S1.

Similar to the findings by Routy et al. (6), the PFS among
patients treated with antibiotics (ATB) within 2 months after the
first treatment (n = 12) was significantly lower than for those not
treated with ATB (Figure 1C). Patients with the highest TMB
values (TMB >5.6, n = 24) demonstrated longer PFS than those
with lower TMB (Figure 1D).

We further found a strong interaction between TMB and
HLA-E types. HLA-E has been reported to play a specialized role
in cell recognition by natural killer cells (NK cells). When CD94/
NKG2A or CD94/NKG2B is engaged, it induces an inhibitory
effect on the cytotoxic activity of the NK cell to prevent lysis of
target cells. Thus, HLA-E on the cell surface might block
immunotherapy through inhibition of NK cell activity (9). In
our data, patients with a high expression level of HLA-E (HLA-B
rs1050458 Met/Thr or Met/Met) combined with low TMB (n =
6) exhibited the shortest PFS (Figure 1D). However, when
overall survival was recorded during follow-up, no significant
differences were observed in relation to ATB treatment, TMB,
and HLA-E type, suggesting that these factors only influence PFS
during a relatively short period of time in these advanced NSCLC
patients (Figure S1).

We next examined the influence of the gut microbiota
composition on the categorical response types (PD, SD, PR). For
allmicrobiota-based analyses, we excluded the 12 patients receiving
ATB treatment during ICT (Table S1). Among the eligible 73
patients, we collected fecal samples longitudinally at biweekly
intervals, resulting in a total of 285 samples that underwent
shotgun metagenomics sequencing (Figure S2). We first mapped
the high-quality reads to the integrated gene catalog [IGC (10)] to
examine gene diversity differences among the three patient
categories (Figures 1E–H). The alpha diversity showed distinct
temporal changes within each category (Figures 1E, F).
During the first 2 weeks, the diversity in the gut microbiota of the
April 2022 | Volume 12 | Article 837525
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PD andPR groups decreased, then increased during the following 2
weeks. After this period, the alpha diversity in the PD group
decreased continuously, while the alpha diversity of the PR group
increased to relatively higher values (Figure 1F). The SD group
maintained a relatively stable alpha diversity during the period of
ICT. The diversity differences between the three groups became
significant after 2 months of ICT (Figure 1E). The beta diversity
(Bray–Curtisdissimilarity)alsorevealedconsistenttemporal trends.
Within the firstmonth, the beta diversity in the PD group tended to
increaseduringthefirst2weeks, thendecreasedandfinally increased
during the following 2 months. Compared with the PD group, the
beta diversity of the PR group increased slightly in the first month,
thendecreasedduringthenext2months.ThebetadiversityoftheSD
group remained stable during the ICT treatment (Figures 1G, H).
Frontiers in Oncology | www.frontiersin.org 3
Combined, the two diversity measures revealed unique trends
in the three response groups: the PD and PR groups exhibited a
rapid reaction contributing to a fluctuation in the microbial
diversity within the first month after treatment. After that, the
gut microbiota structure in the PR group remained more similar
within the group, and the diversity persisted to be higher than in
the other two groups, while the gut microbiota of the PD group
individuals became more different and distinct, and less diverse.
The gut microbiota of the SD group remained the same
throughout the treatment. Except for BMI, we did not observe
other collected clinical characteristics to affect the beta diversity
measure (Table S4).

We next examined if the gut microbiota differed between the
NSCLC patients and age- and sex-matched non-NSCLC controls
A B

C E

D G

F

H

FIGURE 1 | Factors influencing the anti-PD-1 responsiveness in Chinese NSCLC patients. (A) Sample collection pipeline, including anthropometrics (age, sex, and BMI),
tumor mutations based on somatic tumor and normal tissue, blood, and fecal samples. (B) Collection timeline. After 3 months of routinely/regularly administration and
response evaluation (see Methods), patients were grouped based on partial response (PR), stable disease (SD), or progressive disease (PD), according to the criteria in
RECIST 1.1. Fecal samples were collected at the end of each treatment period. Feces from the first week after initiation of treatment (W1) was collected within 3 days
after the first treatment. (C) Comparison of progression-free survival of patients with or without antibiotics before and after treatment. (D) Comparison of progression-free
survival of patients with TMB above or below 5.6 (red or blue lines) in patients with a high level of HLA-E type (HLA-B rs1050458 Met/Thr or Met/Met, solid lines) or low
level (HLA-B rs1050458 Thr/Thr, dashed lines) of HLA-E type. (E) Changes in alpha diversity in the gut microbiota over time in each response group, displayed as a box
plot where MIN and MAX corresponds to 9.59 and 12.7, respectively. Significance level (Kruskal–Wallis): **** for p < 0.0001, *** for p < 0.001, ** for p < 0.01, * for p <
0.05 and ns for non-significant. (F) Changes in alpha diversity in the gut microbiota over time in each response group, displayed with smooth-fit lines. The p-values of the
longitudinal group comparison (splinectomeR) were 0.503 for PD vs. SD, 0.031 for PD vs. PR, and 0.005 for SD vs.PR. (G) Changes in beta diversity (Bray–Curtis
dissimilarity) in the gut microbiota over time in each response group, displayed as a box plot where MIN and MAX correspond to 0.54 and 0.99, respectively. Significance
level (Kruskal–Wallis): **** for p < 0.0001, *** for p < 0.001, ** for p < 0.01, * for p < 0.05 and ns for non-significant. (H) Changes in beta diversity in the gut microbiota
over time in each response group, displayed with smooth-fit lines. The p-values of the longitudinal group comparison (splinectomeR) were 0.114 for PD vs. SD, 0.239 for
PD vs. PR and 0.042 for SD vs.PR.
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(11) (Figure S3A). For this, we used shotgun metagenomics
sequencing and the IGC to identify metagenomic species (12)
and then used the DMM model (13) to cluster the samples into
gut enterotypes at the bacterial genus level. This resulted in
identification of three dominating enterotypes in which type 1
(E1) was mainly driven by Bacteroides, type 2 (E2) by a
combination of Faecalibacterium , Eubacterium , and
Clostridium, and type 3 (E3) by Prevotella (Figure S3B). We
identified a similar distribution into enterotypes between
patients and non-NSCLC controls with nearly half of them
belonging to E1, and compared with the non-NSCLC cohort,
the principal contributors to each enterotype were more similar
in NSCLC patients (Figure S3C). Of note, we did not observe
any association between any of the enterotypes and
treatment responses.

A Subset of Gut Bacterial Species Are
Enriched in Patients With a Partial
Response to Anti-PD-1 Therapy
We next determined to what extent certain bacterial species
correlated with the response to anti-PD-1 antibody therapy.
After examining BMI-adjusted ANOVA tests for each
metagenomic species (MGSs) (12), 45 out of 1,507 MGSs
differed significantly in abundance among the three response
groups (Figure 2A and Table S5). Most of these MGSs were
annotated to Clostridia (n = 34). The second class was
Bacteroidia (n = 7), followed by Erysipelotrichia (n = 3) and
Coriobacteriia (n = 2). Clostridia was also the predominant class
enriched in the PR group (23 out of 32 MGSs). Many of the
MGSs were unclassified species that were barely detectable in the
SD and the PD group. An individual longitudinal visualization of
MGS relative abundance also revealed that these MGSs were not
consistently found at all time points (Figure S4). In addition,
Bacteroidia was also enriched in the PR group including the
highly abundant species, Bacteroides massiliensis (igc0097) and
Alistipes obesi (igc0342), generally observed in all response
groups and present at each time point. Alistipes obesi, a newly
found member of the Alistipes genus, is a gram-negative, motile
bacterium with resistance to various drugs (14) which exhibited
distinct differences in abundance between the three response
groups—with high enrichment in the PR group at baseline,
maintaining high levels during treatment, but relatively lower
abundance in the SD and PD groups (Figures 2A and S4). The 4
members of Prevotellaceae (igc0573, igc0865, igc0817, and
igc0496) were relatively low in abundance and barely observed
in the SD and PD groups. Only one member of Bacteroidia,
Bacteroides fragilis (igc0079), was abundant in the PD group
at baseline.

Three out of four MGSs enriched in the SD group were
assigned to the Enterocloster genus, with two of them belonging
to Enterocloster clostridioformis and one to Enterocloster bolteae.
Both species are gram-positive, anaerobic opportunistic
pathogens associated with various drug-susceptibility patterns
(15, 16). All species enriched in the SD group were highly
abundant and individually stably represented at each time
point (Figures 2A and S4).
Frontiers in Oncology | www.frontiersin.org 4
The Tukey’s HDS test showed that most of these MGSs
distinguishing the three response groups differed in abundance
between the PR and SD groups (Figure 2B). This finding is
consistent with the diversity analysis and indicates that the PR
and SD should not be treated as a single response group, since
potential valuable signals might disappear.

Distinct Gut Bacterial Functionalities Are
Enriched in Partial Responders
We examined if any gut microbial functions were differentially
enriched in the PR group as compared to the two other groups.
For this, we used a reporter-score pipeline (17) to identify
significant differences in the enrichment or depletion of
microbiota-related pathways based on KO profiles. The scores
obtained at each time point after treatment were further
compared to those obtained at baseline. In general, the
similarity in scores between the response groups, compared
two by two, was relatively stable throughout the ICT treatment
from time points M0 to M4, with the biggest dissimilarity
observed comparing PR and PD at time point M0 vs. W1
(Figure 3A and Table S6). This indicates that the contribution
from specific functional pathways within the gut microbiota may
shift rapidly in the PR group as compared to PD.

Thus, compared to the PD group, one pathway belonging to
cellular processes was enriched in the PR group at W1 and M1
and in the SD group at M1 and M2 (map02040; Figure 3B). This
pathway is related to flagella assembly and bacterial chemotaxis,
showing an increased score already within the first week of ICT
initiation in the PR group (Figures S5, S6).

Another pathway that rapidly shifted within the first week of
ICT initiation in both the PR and SD groups relative to the PD
group is related to membrane transport involved in
environmental information processing. One of them
encompasses the bacterial secretion system (map03070,
Figures S5–S7), which is related to bacterial interaction with
the host immune system, and another is related to ABC
transporters (map02010, Figures S5, S6). However, these
changes vanished within the first month in the PR group and
after 2 to 3 months in the SD group with a reciprocal increase in
the PD group after 2 months of ICT (Figure 3B).

Genetic information-related pathways (map03430, 00970,
03440, 03030, 03020, 03050, and 03010) were consistently
enriched over time in the PR group, but deficient in the SD
group (Figure 3B), and the SD group showed to be more
divergent from the PR group than the PD group for
these functions.

Comparing the PR versus the PD group, we observed that a
large fraction of genes involved in the lipopolysaccharide (LPS)
pathway (map00540) was enriched in the PD group at baseline,
and at week 1, week 2, and month 4 following initiation of ICT
(Figure S8A). However, we also observed that at the same time
points LpxM tended to be relatively enriched in the PR group.
LpxM encodes the enzyme adding the sixth acyl chain to the lipid
A molecule of LPS and is reported as the essential enzyme for
production of the hexa-acylated LPS molecule that can activate
human TLR4 (18), while the expression of the other enzymes in
April 2022 | Volume 12 | Article 837525
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the LPS pathway could produce a penta-acylated LPS molecule,
which is a poor activator of human TLR4 (19, 20), suggesting
different potential for activation of TLR4 in the PR and
PD groups.

The remaining bacterial functions that exhibited significantly
different enrichment between the response groups were related
to metabolism. The reporter scores from this group were
relatively modest and were generally reduced in the PR group
(Figure 3B), except for pyrimidine metabolism (map00240) and
N-glycan biosynthesis (map00510), which remained consistently
enriched in the PR group.

Combined, the metagenomics and functional enrichment
results indicated that a number of gut bacteria changed during
Frontiers in Oncology | www.frontiersin.org 5
the course of ICT and that this might underlie the identified
functional response differences between the three treatment
response groups.

Gut Microbiota Taxonomy and Function as
Predictors of ICT Efficacy
We next aimed to use the identified microbiome-based MGS and
KOmarkers at baseline as candidate biomarkers to build a model
predicting the likelihood that patients would benefit from ICT
prior to administration. Since PRs, SDs, and PDs might be
related to different microbial markers, we selected a strategy
based on a two-tiered random forest model, where first PD and
PR were separated in model A followed by a separation of SD
A

B

FIGURE 2 | MGSs differentiating anti-PD-1 response groups. (A) MGSs that differed significantly in abundance between the three response groups as assessed by
ANOVA. The heatmap is colored based on the median value (log10) of relative abundances in each response group. “+” defines the group with the highest
abundance of a MGS, and “-” defines the group with the lowest abundance of the given MGS. The bottom three MGSs are marked as “NA” with too low occurrence
to define an enrichment group. (B) Pairwise comparison of relative abundances of MGSs exhibiting differential enrichment in the response groups. The p value was
computed by Tukey’s HSD test.
April 2022 | Volume 12 | Article 837525
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from PD/PR in model B (Figure 4A; details described in
Methods). The training set was able to distinguish samples
from each of the response groups very well (AUC = 1 for all,
Figure 4B and Table S7). To avoid overfitting and to validate the
performance, all the remaining samples were included as a
testing set. For each test sample, we calculated the predicted
Frontiers in Oncology | www.frontiersin.org 6
probability being correctly assigned into PD, SD, or PR. This
resulted in an area under the curve (AUC) larger than 0.9 for
each of the three response groups (Figure 4C), implying that the
baseline gut microbiota, when including both taxonomy and
function, provides a fairly good predictor of whether or not an
advanced NSCLC patient would benefit from ICT.
A B

FIGURE 3 | Differential enrichment of gut microbial pathways in the anti-PD-1 response groups. Reporter scores of KEGG-derived pathways based on
metagenomics data were computed and compared pairwise between the response groups. (A) The functional reporter score obtained from samples collected at
different time points after treatment and compared with that of samples collected before treatment (M0). The Spearman correlation indicates the consistency in
enriched pathways between samples collected before and after treatment. (B) Heatmap of reporter scores for the indicated enriched pathways, grouped based on
the designated level 1 pathway level categories. For each combination, a positive value (red) means that this pathway was enriched in the response group with
improved response (that is, PR excels over SD and PD; and SD over PD). A negative value (blue) indicates that the pathway was enriched in the other group. The
threshold of significance was set at 1.96 (equal to a p value = 0.05) and 2.59 (equal to a p value = 0.01).
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Performance of Prediction Models
Including Genetic Markers
We further attempted to improve the prediction performance by
including additional host data comprising genetics data including
TMB, EGFR, and ALK mutations (Table S2) of relevance for
ICT. We found that the combined microbiome MGS profile and
whole exon sequencing (WES) data model resulted in a generally
better performance, as SD and PR predictions achieved an AUC
of 0.94 for SD and an AUC of 0.96 for PR by inclusion of WES
data. On the other hand, we found that the microbiome-based
model (MGS and KO) performed best in predicting the PD
outcome, as the AUC decreased from 0.81 to 0.77 by inclusion of
the other data sets (Figure 4D).
Comparison Between Metagenomic
Profiles in Chinese and French
NSCLC Cohorts
To estimate the generalization of our findings, we compared the
previously published French cohort (6) to the Chinese cohort.
Frontiers in Oncology | www.frontiersin.org 7
For this comparison, we selected the NSCLC cases from the
French cohort, as we found the metagenomics profile in patients
with different tumor types to be significantly different based on a
PERMANOVA test (data not shown). Quality controls and
statistical tests were conducted on the French cohort using the
same bioinformatics pipelines as were used for the Chinese
cohort. Outcomes independently calculated for each cohort
were then compared.

When comparing the MGS profiles in the three response
groups PD, SD, and PR using ANOVA with post-hoc Tukey’s
HSD test, we found a surprisingly low correlation between the p-
values for each pair-wise group comparison in the two
cohorts (Figure 5A).

Functional-level comparisons showed a higher correlation,
and we found several of the previously mentioned microbial
pathways in the Chinese cohort to also characterize the French
cohort, such as the bacterial secretion system (map03070), ABC
transporters (map02010), and LPS biosynthesis (map00540)
(Figure 5B). We also identified the same enrichment for
bacteria containing LpxM in the French PR group (Figure S9).
A

B C D

FIGURE 4 | A combined random forest classifier for predicting anti-PD-1 response outcome based on gut microbiota, tumor, and immune data. (A) A two-tiered
random forest process with cross-validation for model training was implemented. The method includes two random forest models: The first was trained to distinguish
PR and PD. The second was designed to distinguish SD from all the rest. The predicted probability score was weighted by the two models as defined. (B) The
classification of the response groups in the training set. All three response groups achieved an AUC above 98.8%. Confidence intervals (CIs) of 95% are shown in
parentheses. Shadowed areas were computed by a SE of 95% CI. (C) The classification of the response groups in the test set. All three response groups achieved
an AUC above 91%. Confidence interval (CIs) of 95% are shown in parentheses. Shadowed areas were computed by a SE of 95% CI. (D) Adding tumor mutation
information (including TMB, EGFR, and ALK mutation type) into the prediction model did not improve the performance. The AUC of the predicting ability for the three
response groups in the testing set is shown in the radar plot.
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We next examined if the discrepancies between the two
cohorts at the bacterial species level might rely on the presence
of different strains and, thus, identification of different MGSs
in the two cohorts. Since A. muciniphila was previously
reported to be enriched in the response group of the French
cohort (6), we addressed this question specifically for A.
muciniphila. When grouping the cohorts into Rs and NRs
based on PFS at the third month (PFS 3mo) and comparing
the occurrence of MGSs assigned to A. muciniphila, we found
that the occurrence of each MGS was similar in the two
cohorts. However, A. muciniphila seemed more enriched in
Rs in the French cohort, especially for MGS.igc0776 (Figure
S10A). Further statistical analysis comparing Rs and NRs
showed that the significantly enriched A. muciniphila MGSs
in the two cohorts were different. The A. muciniphila
significantly enriched in Rs of the French cohort belongs to
MGS.igc0118, while in the Chinese cohort MGS.igc0776 was
enriched in Rs (Figure S10B). This indicates that the
differences between cohorts in relation to the response-
critical A. muciniphila might be due to colonization by
different strains.
DISCUSSION

In this study, we performed a comprehensive characterization
of temporal metagenomic-based and clinical biomarkers in
Chinese patients with advanced NSCLC and their response to
ICT. We noticed that the relative abundance of specific species
exhibited robust trends in the different response groups
Frontiers in Oncology | www.frontiersin.org 8
indicating the resilience of these species during treatment,
also reflected in robust trends of selected functional pathways
(Figures S4, S11). In keeping with previous studies, we found
that TMB as well as specific HLA types influenced the response
to ICT in this Chinese cohort. It is now recognized that the gut
microbiota impacts on the effect of drug treatment by
modulating both drug metabolism and toxicity (21, 22), and
recent pioneering work has revealed possible causal
relationships between the gut microbiota and the outcome of
ICT for NSCLC, metastatic melanoma, and renal cell
carcinoma (7, 23, 24) However, in these studies enrichment
of different bacteria was identified to characterize Rs versus
NRs. It has been speculated to which extent differences in
relation to marker species in these studies were related to
confounding factors such as sampling, DNA extraction, DNA
sequencing, different analytical pipelines, or if these differences
reflected distinct cohorts or cancer types (25).

The recently published reanalysis of so far published data
concluded that the differences were not due to different analysis
pipelines but failed to recapitulate a number of the findings
concerning marker species in the different studies (25). However,
an enrichment of A. muciniphila seemed to characterize Rs in the
three analyzed studies and another study involving a Chinese
HCC cohort (26). Another Chinese NSCLC study also reported
an enrichment of A. muciniphila, but since this study employed
16S rRNA amplicon sequencing, it is not clear which species or
strains might be involved (27).

Therefore, we examined if the discrepancies between the
Chinese and French cohorts at the bacterial species level might
rely on the presence of different strains, and thus, identification
A B

FIGURE 5 | Comparison between gut microbiota predictors in Chinese and Caucasian NSCLC cohorts. Metagenomic sequencing data from a publicly accessible
French NSCLC cohort (6) were processed for generation of MGSs and functional pathway analysis (n = 40, individuals using ATB were excluded). (A) QQ plot of the
similarity between MGSs in the three response groups (pairwise comparisons) in Chinese (x-axis) and French (y-axis) patients. p-values were calculated by ANOVA.
(B) The reporter scores obtained from functional pathway analysis as in Figure 3 were compared pairwise in the response groups in the Chinese (x-axis) and French
(y-axis) patients. Significant positions (> ± 1.96) were defined by the dashed squares. Pathways that are significantly enriched in one response group are named and
colored according to the enriched response group as indicated in the figure.
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of different MGSs in the two cohorts. Since A. muciniphila was
previously reported to be enriched in the response group of the
French cohort (6), we addressed this question specifically for A.
muciniphila. We found that the occurrence of each MGS was
similar in the two cohorts. However, A. muciniphila seemed
more enriched in Rs in the French cohort, especially for
MGS.igc0776 (Figure S11A). It is noteworthy that we observed
an enrichment of A. muciniphila in Rs in the Chinese cohort,
despite the otherwise pronounced differences observed in the
composition of the gut microbiota in Caucasian and Chinese
individuals (10). This finding mirrors the finding that despite
considerable differences in the composition of the gut microbiota
in European and Chinese individuals, enrichment of a number of
bacterial species characterized individuals with colorectal cancers
in both ethnic groups (28).

Comparisons at the functional level also demonstrated that
changes in the relative abundance of genes involved in several
microbial pathways in the Chinese cohort were recapitulated in
the French cohort, including bacterial secretion system
(map03070), ABC transporters (map02010), and LPS
biosynthesis (map00540), where we also observed an
enrichment of bacteria harboring LpxM in the PR groups in
both the Chinese and French cohorts. A finding suggesting that
capacity for production of the hexa-acylated form of LPS may
improve ICT outcome, perhaps via activation of TLR4, the
innate immune receptor for LPS.

Importantly, in spite of the limited sample size, and the fact
that three different anti-PD-1 antibodies were used for treatment
of the NSCLC patients, we were able to build models based on
MGS and KOmarkers at baseline predicting the probability that a
given patient would benefit from ICT with an AUC larger than 0.8
for each of the three response groups, hence pointing to the value
of including both microbial taxonomy and function at baseline for
prediction of the ICT response outcome in advanced NSCLC
patients prior to initiation of the treatment. However, to generalize
this model, more samples are required for both training and
validation. In addition, the possible impact of the use of different
anti-PD-1 antibodies should be investigated in future studies, and
more information on prior treatment and possible dietary
preferences and intake would be desirable. The lack of lifestyle
information in the real-life clinical setting of the present study is a
limitation, but still, we envisage that the strategy of the
computational-based training process described here will be of
value for the generation of more robust prediction models in
the future.

In conclusion, our results delineate specific links between gut
microbial composition and immunotherapy efficacy in Chinese
NSCLC patients. The consistency between compositional and
functional properties of the gut microbiota between the French
and Chinese cohorts in predicting the outcome of ICT supports
the notion that such analyses may be developed into a powerful
tool predicting outcome prior to initiation of ICT, and the
published mouse studies even suggest that supplementation
with specific bacteria may improve treatment (6–8). Evidently,
much larger cohorts of different ethnicity are needed, but results
so far are promising.
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Patient Characteristics and Clinical
Trial Design
NSCLC patients were treated with anti-PD-1 monotherapy agents
at Sun Yat-sen University Cancer Center between December 2015
(the first date on which a patient with NSCLC was treated) and
August 2017 (the last date to initiate therapy). All patients were
treated as part of a clinical trial program (registered with
ClinicalTrials.gov, NCT02593786 and NCT02613507 for
the nivolumab monotherapy trial, NCT02721589 for the
camrelizumab monotherapy trial, and NCT02835690 for the
pembrolizumab combination trial; more details in Table S1).
Eligible patients for this study were selected based on the
following criteria: (i) >18 years old; (ii) Eastern Cooperative
Oncology Group performance status: 0 or 1; (iii) with
histologically or cytologically confirmed NSCLC that were
clinically advanced or recurrent; (iv) failure after first-line
platinum-based doublets chemotherapy; (v) measurable disease
per Response Evaluation Criteria in Solid Tumors version 1.1; and
(vi) life expectancy of ≥3 months. Patients with the following
criteria were excluded: (i) with prior malignancy (except for non-
melanoma or certain in situ cancers, or complete remission ≥2
years); (ii) patients had active or a history of autoimmune disease;
(iii) were in medical conditions requiring the use of
immunosuppressive medications including steroids; and (iv)
active central nervous system metastases (except previously
treated, stable brain metastases without progression ≤4 weeks or
steroid therapy ≤14 days before initiating study treatment).
Computed tomography (CT) or magnetic resonance imaging
(MRI) scans were reviewed by the clinical investigators.
Progression-free survival (PFS) was defined as the time from the
beginning of treatment to the date of progressive disease (PD).
Patients who did not progress were evaluated at the date of their
last scan. The objective response rate was defined as the percentage
of patients with complete response (CR) or partial response (PR).

Patients terminated any other therapies 2 weeks before receiving
PD-1 mAb (pembrolizumab, camrelizumab, also known as SHR-
1210 or nivolumab, also known as Opdivo). Patients received
standard doses of nivolumab (240 mg) or camrelizumab (200
mg) once every second week, or pembrolizumab (200 mg) once
every third week. In this study, 85 patients were eligible recruited; 12
were excluded in microbiota-based analyses as they received
antibiotic treatments during administration.

Responses to treatment were assessed by the site investigator
using RECIST 1.1 with CT or MRI scans obtained at baseline and
every 8 weeks for Nivolumab and Camrelizumab, every 6 weeks
for Pembrolizumab during treatment. A landscape of this study
design is shown in Figures 1A, B. The overall treatment schemes
and response types are provided in Table S1.

Blood Collection and Lymphocyte
Phenotype Analyses
Fasting blood was collected at baseline and every time before
receiving PD-1 mAb. Heparin plasma samples were collected for
lymphocyte analysis. Anti-CD45-PerCP-Cy™5.5 was used to
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gate lymphocytes, anti-CD3-FITC for the identification of T
lymphocytes, anti-CD4-PE-Cy™7 for detecting T-helper/
inducer lymphocytes, CD8-APC-Cy7 for the identification of
suppressor/cytotoxic T lymphocytes, CD19-APC to identify B
lymphocytes, and CD16-PE and CD56-PE for the identification
of natural killer (NK) lymphocytes by using the BD Multitest™

6-color TBNK reagent (Catalog No 644611; BD Biosciences, San
Jose, CA, USA). The cells were analyzed by a FACSCalibur flow
cytometer using BD FACSDiva clinical software (BD
Biosciences) as indicated by the manufacturer. The results
corresponding to each lymphocyte type are presented as
percentages in human peripheral blood (Table S2).

Whole Exon Sequencing for Tumor Tissue
Tumor biopsies were collected before treatment initiation.
Genomic DNA from tumor biopsies was extracted using the
DNeasy Tissue Kit (Qiagen, Germantown, MD, USA). Genomic
DNA from peripheral blood was extracted using DNeasy blood
and tissue kits (Qiagen, USA) as normal control. The extracted
genomic DNA was fragmented into ~250 bp by using an M220
Focused-ultrasonicator (Covaris, Brighton, UK). DNA libraries
were prepared using the HyperPrep Kit (KAPA Biosystems Inc.,
Wilmington, MA, USA), followed by exome capture using the
Agilent V6 Kit (Agilent Technologies, Inc., Santa Clara, CA,
USA). Finally, the whole exome DNA libraries were sequenced
using the Illumina HiSeq 4000 platform with paired 150-bp
reads. Sequencing data were generated to target the mean
coverage of ~200× for the tumor biopsies and ~60× for the
normal control.

WES data were processed to variant detection as previously
described (29). Briefly, paired-end sequencing data were aligned
to the reference human genome (build hg19) using the Burrows-
Wheeler Aligner (bwa-mem). MuTect was performed to pair
normal and tumor BAM files and identify somatic single-
nucleotide variants (SNVs) of tumor with default parameters.
Oncotator was applied for somatic SNV annotation. Four
exclusion filters were applied for somatic SNV calling: (i) less
than 5 alternative reads in tumor samples; (ii) less than 5%
variant allele frequency (VAF); (iii) less than 15 reads in total in
the tumor and control samples; and (iv) presence of the variant
in the 1000 Genomes project at a frequency >1%. Tumor
mutational burden (TMB) was defined as the number of
somatic, coding, base substitution, and indel mutations per
megabase of genome examined, according to the method of
Chalmers et al. (30). The TMB profile of each patient is provided
in Table S2.

Human Leukocyte Antigen Typing
HLA types were predicted from WES data by the previously
described HLA typing method (31). The HLA-I alleles were
classified into twelve supertypes based on similar peptide-
anchor-binding specificities (32, 33).

Gut Microbiome Metagenomic Analysis
Sample Collection
Fecal samples were collected at the hospital and frozen
immediately at -80°C. A total of 285 fecal samples were
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collected before initiation until the end of ICT. For each
patient, the qualified sample collected closest to the next
treatment was selected as the included sample. All samples
were shipped to the China National GeneBank (CNGB) for
sequencing according to the Sample Delivery Suggestions (No.
CNGB-DP-SOP16-002/A2).

DNA Library Preparation and Sequencing
DNA libraries were prepared by using 500 ng of input DNA.
DNA was ultrasonically fragmented by using a E220 Focused-
ultrasonicator (Covaris, UK), yielding 300–700-bp fragments.
Products were purified with an AxyPrep Mag PCR Clean-Up Kit
(Axygen Scientific, Inc., Union City, CA, USA) and eluted with
45 ml TE buffer. Afterward, 20 ng of purified DNA was processed
with end-repairing and A-tailing by using a 2:2:1 mixture of T4
DNA polymerase (ENZYMATICS™ P708-1500), T4
polynucleotide kinase (ENZYMATICS™ Y904-1500), and rTaq
DNA polymerase (TAKARA™ R500Z). Adaptors with specific
barcodes were ligated to the DNA fragment by T4 DNA ligase
(ENZYMATICS™ L603-HC-1500) at 23°C, followed by PCR
amplification. Finally, a single-strand circular DNA library was
generated using 55 ng of purified PCR products by denaturing at
95°C and circular ligation using T4 DNA ligase (ENZYMATICS™

L603-HC-1500) at 37°C. Equal amounts of 8 barcoded libraries
were pooled for the generation of DNA Nanoballs (DNB) and
loaded onto one lane for sequencing using the BGISEQ-
500 platform.

Sequencing was performed according to the BGISEQ-500
protocol (No. CNGB-DP-SOP10-002) employing the SE50
mode with a following base calling process to remove adaptors
automatically (34). Finally, 285 samples were successfully
sequenced and generated 84.53 ± 23.18 million reads per
sample (Table S3).

Raw reads were quality controlled, host reads removed, and
the bacterial reads aligned to the integrated gene catalogue (IGC)
9.9M reference to obtain a normalized gene abundance profile, as
described previously (10). The metagenomic species (MGS)
profile was generated based on a previously described
procedure (12). Annotation of MGSs was updated with extra
information by a random forest-basedmethod and curatedmanually.

Statistical Analysis
Statistical analyses were mainly performed in the program R
version 3.4.3 with the following packages: Spearman correlation
was performed by cor(); ANOVA and Tukey’s HSD tests were
performed by avo() and TukeyHSD() , respectively;
PERMANOVA was performed based on adonis() from the
vegan package (35); principal component analysis (PCA) was
performed by prcomp(); and Pathview was used for pathway
visualization (36). Alpha diversity was calculated as the Shannon
index (37), while Bray–Curtis dissimilarity (38) was used to
compute the beta diversity. SplinectomeR was used for the
longitudinal microbiome group comparison (39). The number
of enterotypes was determined using the DMM model (13). The
method used to calculate the reporter score has been described
previously (40). All missing data were left as NA and not
imputation method used.
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Prediction Model
Differences in TMB, MGS, and/or KO relative abundances
between response groups were used as candidate predictors.
Two random forest models (41) were combined to predict the
response outcome. The first model (model A) was trained to
provide a predicted probability of PR and PD. 8 PR and 8 PD
patients were randomly selected as the training set. The second
model (model B) was used to provide a predicted probability of
SD or not. 16 SDs combined with the model A training set (8 PRs
and 8 PDs sum as 16 non-SDs) were used for training. For each
model, 8-fold cross-validation processes were repeated 1,000
times. For each repetition, a random forest decision tree was
built by randomly picked features (MGS and/or KOs) from 7-
fold samples. The remaining one-fold was used to test the
performance of this decision tree. The performance was
determined for each feature used. When the cross-validation
process was terminated, the features that contributed the most
were selected as candidate biomarkers to generate a determined
model for training model A or model B. Finally, the probability
for each response group was obtained by multiplying the
probability from model A and that from model B. All
remaining patients who were not included for training (n
(PD) = 23; n(SD) = 5; n(PR) = 4) were used as the testing set
for validation. The area under the curve (AUC) of sensitivity over
specificity was used to estimate the performance of the prediction
outcomes. This method is illustrated in Figure 4A. Since TMB
and lymphocyte data were not fully aligned with the fecal
samples used for metagenomics, the multi-omics-based
prediction models were first trained based on these datasets
separately and finally combined to determine the multiple test
model prediction probabilities.
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Supplementary Figure 1 | Overall survival. (A). Overall survival of patients with or
without antibiotics before and after treatment. (B), Overall survival comparison in
patients with TMB above or below 5.6 (red or blue lines). (C). Overall survival
comparison in patients with a high level of HLA-E type (HLA-B rs1050458 Met/Thr
or Met/Met, solid lines) or low level (HLA-B rs1050458 Thr/Thr, dashed lines) of
HLA-E type.

Supplementary Figure 2 | Fecal sample collection scheme. Samples for the first
week were collected within 3 days after the first ICT treatment. For each patient, the
sample collected closest, but prior, to the next ICT treatment was selected as the
representative sample.

Supplementary Figure 3 | Comparison of the gut microbiota composition at the
enterotypes level between Chinese NSCLC patients and healthy controls. Samples
collected at baseline (M0) and the first month (M1) after ICT initiation were selected for
enterotype assessment. (A), A healthy age- and sex-matched Chinese cohort was
included for background comparison. (B), Enterotype numbers were calculated at the
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genus level using the DMMmodel11. The three dominating genera for each enterotype
are shown, in which type 1 (E1) was mainly driven by Bacteroides, type 2 (E2) by
Faecalibacterium, and type 3 (E3) by Prevotella. (C), PCA plot showing the distribution
of samples belonging to the three enterotypes.

Supplementary Figure 4 | Relative abundance of Individual MGSs at each time
point. MGSs that differed in abundance between response groups are visualized.
To reveal longitudinal trends, patients donating M3 samples are visualized.

Supplementary Figure 5 | Flagellar assembly and related pathways enriched in
the PR versus the PD group. Gut microbial pathways where the reporter-score
reached statistical significance are listed, displayed as the z-score calculated
between the PR and PD groups. A positive value means that the pathway was
enriched in the PR group, while negative values indicate an enrichment in the PD
group. Pathways were derived from KEGG.

Supplementary Figure 6 | Flagellar assembly, bacterial chemotaxis and bacterial
secretion system pathway enrichment in partial responders versus disease
progressors. Two KEGG pathways, flagellar assembly (A) and bacterial chemotaxis
(B), both playing a part in cellular motility, contributed with the highest average
reporter-score to the difference between PR and PD patients. Most of the enzymes
in the flagellar assembly pathway were enriched in the PR group. Bacterial
chemotaxis is also related to flagellar assembly and was similarly enriched in the PR
group (C). The z-score (color) is based on PR/PD.

Supplementary Figure 7 | Time dependent enrichment of KOs belonging to the
bacterial secretion system pathway in the PR group. The bacterial secretion system
is involved in membrane transport, especially in selected pathogens. Among six
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types of secretion proteins, type III, type II and type VI were enriched in the PR group
during week 1 (W1). Type II is able to secrete intracellular toxins, while type II and III
and type VI are both capable of secreting effector proteins into host cells. The z-
score (color) is based on PR/PD.

Supplementary Figure 8 | Enriched KOs in the LPS pathway in different
response groups. (A), Most enzymes in the LPS pathway were enriched in the PD
group, resulting in production of penta-acylated LPS, while LpxM was enriched in
the PR group, allowing for generation of hexa-acylated LPS by the LpxM-containing
bacteria. The pattern in a) existed at baseline, week 1, week 2 and after 4 months of
ICT. The z-score (color) is based on PR/PD. (B), Relative abundance (log10 scale) of
KOs annotated to LpxM and LpxL at each time point.

Supplementary Figure 9 | Enriched KOs in the LPS pathway in the different
response groups of a French NSCLC cohort. The reporter-score for each of the
LPS pathway enzymes were enriched in a NSCLC French cohort as well as in the
Chinese cohort.

Supplementary Figure 10 | Occurrence and abundances of Akkermansia
muciniphila in a French and Chinese NSCLC cohort. Akkermansia muciniphila
MGSs were identified in the two cohorts and compared. (A), Occurrence of three A.
muciniphila MGSs across Rs (green) and NRs (red). (B), Abundance of the three A.
muciniphila MGSs across Rs and NRs in Chinese and French NSCLC patients.

Supplementary Figure 11 | Relative abundance of individual pathways at each
time point. KOs that differed in relative abundance between the response groups
were averaged to reveal longitudinal trends. Only patients donating M3 samples
are visualized.
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