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Immune-based therapeutic strategies have drastically changed the landscape of
hematological disorders, as they have introduced the concept of boosting immune
responses against tumor cells. Anti-CD20 monoclonal antibodies have been the first
form of immunotherapy successfully applied in the treatment of CLL, in the context of
chemoimmunotherapy regimens. Since then, several immunotherapeutic approaches
have been studied in CLL settings, with the aim of exploiting or eliciting anti-tumor
immune responses against leukemia cells. Unfortunately, despite initial promising data,
results from pilot clinical studies have not shown optimal results in terms of disease control
- especially when immunotherapy was used individually - largely due to CLL-related
immune dysfunctions hampering the achievement of effective anti-tumor responses. The
growing understanding of the complex interactions between immune cells and the tumor
cells has paved the way for the development of new combined approaches that rely on the
synergism between novel agents and immunotherapy. In this review, we provide an
overview of the most successful and promising immunotherapeutic modalities in CLL,
including both antibody-based therapy (i.e. monoclonal antibodies, bispecific antibodies,
bi- or tri- specific killer engagers) and adoptive cellular therapy (i.e. CAR T cells and NK
cells). We also provide examples of successful new combination strategies and some
insights on future perspectives.
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1 INTRODUCTION

Chronic Lymphocytic leukemia (CLL) is the most common hematological disorder in the Western
world, with an incidence of 4.2/100 000/year that increases to more than 30/100 000/year at an age
of >80 years (1). Treatment options for CLL patients have enriched and developed over the time,
starting from the standard chemotherapy-based approaches containing alkylating agents (2) and
purine analogues (3). Despite its potent anti-tumor activity, traditional chemotherapy alone has not
shown any improvement in the overall survival (OS) of CLL patients (3). The addition of the anti-
CD20 monoclonal antibody (mAb) rituximab to chemotherapy has determined significant advances
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in terms of overall response (OR) and OS rates (4),
demonstrating for the first time the therapeutic efficacy of
strategies exploiting the immune system as a weapon to
eliminate tumor cells.

Herein, we will go through a summary of immune-based
approaches explored over the time for the treatment of CLL, also
discussing the most recent, successful and/or promising
advances made in the field of immunotherapy.
2 OVERVIEW OF IMMUNOTHERAPEUTIC
APPROACHES IN CLL

The concept of boosting immune responses against hematologic
tumors is more than 50 years old, when E. Donnall
Thomas performed the first allogeneic hematopoietic stem cell
transplantation (HSCT) in 1957 (5). The efficacy of HSCT is
mediated by the graft versus leukemia (GvL) effect driven by the
donor transferred T cells, which are able to recognize and
eliminate leukemia cells (6). In CLL, the GvL efficacy was
established by several evidences, as the lower risk of relapse
observed in patients who develop chronic graft versus host
disease (GvHD) (7), and the possibility to potentiate the GvL
effect through donor lymphocyte infusion (8). Nowadays, thanks
to the availability of several successful therapeutic options, HSCT
is reserved only to young and fit CLL patients with high-risk
disease features [e.g. del(17p) and/or TP53 mutations] and
showing progression or resistance to both chemotherapy- and
novel agents-based prior treatment regimens (9). Given the
evidence of an immune-mediated effect of HSCT, several
efforts have been made to develop new strategies that exploit
or elicit anti-tumor immune responses against hematologic
disorders, as CLL. In Figure 1 we have provided a timeline of
the clinical and preclinical studies in CLL.

Tumor-specific active immunotherapy, which consists in the
administration of tumor-derived component/s or of whole
tumor cells in the form of an anti-tumor vaccine, with the aim
of actively boosting the host’s immunity against the tumor cells,
has been investigated in hematological malignancies, including
CLL. Despite encouraging preliminary results obtained (10, 11),
both tumor cell- and dendritic cell-based vaccine formulations
failed to produce reproducible clinical effects (10), possibly due
to the presence of meaningful alterations linked to tumor escape
mechanisms in the immune system of CLL patients.

Non-specific active immunotherapy, which is the
administration of agents with broad immunomodulatory
properties - such as cytokines and chemokines - with the aim
of overcoming tumor escape mechanisms and producing an
immune attack against malignant cells, had been explored in
hematologic malignancies (12). Immune checkpoint inhibitors
(ICI) can be considered as a more recent form of non-specific
active immunotherapy, due to their ability to elicit anti-tumor
responses by blocking inhibitory receptors on immune cells or
their ligands on cancer cells. In the context of hematological
disorders, ICI have brought significant benefits in multiple
settings, especially in Hodgkin lymphomas and diffuse large
Frontiers in Oncology | www.frontiersin.org 2
B-cell lymphomas (DLBCL) (13, 14). However, in CLL, even if
preclinical data had demonstrated an anti-tumor effect exerted
by antibodies targeting PD-L1 or PD1 and LAG3 (15, 16),
clinical trials have produced disappointing results (17, 18), and
today ICI are rarely considered an option for patients with CLL.

Similarly, immunomodulatory drugs (IMIDs) can also be
classified as a potential non-specific active immunotherapy.
IMIDs have shown to induce pleiotropic effects on the
immune system of CLL patients (19), such as down-regulation
of tumor cell–inhibitory molecules, recovery of the impaired
T-cell functions and normalization of the number of different T-
cell subsets in lenalidomide-treated patients (20, 21).
Avadomide, a next-generation IMID, was reported to trigger
anti-tumor T cell-mediated immune responses when combined
with checkpoint inhibitors in CLL preclinical models (22–24).
These findings suggest that, despite the low direct anti-tumor
activity, IMIDs might still represent a promising option for CLL
treatment when used in the context of combination regimens
exploiting their immune-mediated anti-tumor functions.

In the context of passive immunotherapy, which consists in the
administration of mAbs that selectively target antigens broadly
expressed on the surface of tumor cells, rituximab was the first
anti-CD20 mAb approved for clinical use - followed by the newer
ofatumumab, obinutuzumab and ublituximab. To date, studies are
searching for novel strategies aimed at more effectively directing
the anti-tumor power of effector cells, such as T cells or NK cells,
through the targeting of B-cell specific antigens. In this context,
innovative approaches currently under development are i) bi- and
tri-specific T- andNK-cell engagers, and chimeric antigen receptor
(CAR)-modified T and NK cells. In this review we will provide an
overview of these immunotherapeutic modalities in CLL, their
current role in patients management, and future perspectives.
3 SUCCESSFUL IMMUNOTHERAPY
OPTIONS IN CLL

Thanks to their successful results, antibody-based therapies and
adoptive cellular therapies currently represent the main field of
investigation in the context of immunotherapy in CLL.

Herein, we analyze in more detail the most promising
immunotherapeutic approaches currently under development
(Figure 2), including mAbs, bispecific antibodies (bsAbs), bi-
or tri- specific killer engagers (BiKEs and TriKEs), and CAR T
and CAR NK cells.

3.1 Antibody-Based Therapy
3.1.1 Monoclonal Antibodies: First Successful
Example of Passive Immunity
MAbs are the first immunotherapeutic weapon which gave
successful results in CLL. The anti-tumor effect of mAbs relies
on several mechanisms, including antibody-dependent cellular
cytotoxicity (ADCC), antibody-dependent cellular phagocytosis,
complement-dependent cytotoxicity or direct pro-apoptotic
effects (25). The selection of the best candidate antigens,
together with the technical advancements aimed at improving
February 2022 | Volume 12 | Article 837531
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mAbs formats, are two key steps required for the development of
successful mAb-based therapies.

CD20 is a molecule expressed on B cells’ surface, but not on
precursor B-cells or plasma cells, and it is the first target antigen
explored in the setting of CLL (26). The combination of the anti-
CD20 mAb rituximab with chemotherapeutic agents had
induced long-term remiss ions and highly relevant
improvement in OS in specific subgroups of CLL patients (27),
and to date, despite the advent of novel agents, the combination
FCR is still often considered the standard therapeutical method
for previously untreated, fit patients with a low-risk disease (4,
28). Aimed at improving the efficacy of rituximab, next
generation CD20-targeting mAbs have been developed.
Ofatumumab, obinutuzumab and ublituximab have shown
efficacy in phase 2 and/or phase 3 clinical trials when used in
combination with conventional chemotherapy (29–31), Bruton
tyrosine kinase (BTK) inhibitors (32–35), PI3K inhibitors (36,
37) or venetoclax (38). Despite their promising results in clinical
practice, the use of anti-CD20 mAbs might be limited by several
factors, including (i) the presence of high levels of circulating
soluble CD20 antigen, that may interfere with the binding of the
mAb to leukemic cells (39), (ii) the selection of antigen loss
variants in rituximab-treated patients (40), and (iii) the presence
of defective complement components, which affects mAb-
induced cytotoxicity (41).
Frontiers in Oncology | www.frontiersin.org 3
In order to broaden the number of mAb-targeted antigens,
new perspectives are being brought in the setting of the antibody-
based therapies in CLL.

When studying another commonly targeted antigen as CD19,
we are able to distinguish it from CD20 as CD19 is a pan-B surface
antigen expressed also on precursor B cells. Even if CD19 is
considered as a promising antigen to be targeted in the context of
CAR T-cell therapy, CD19-directed mAbs did not show competent
cytotoxic effects, possibly due to the rapid internalization of CD19
(42). Nevertheless, currently two different Fc-engineered anti-CD19
mAbs are under investigation in clinical studies. Inebilizumab is an
affinity-optimized anti-CD19mAb that showed promising results in
previously treated CLL patients in a phase 1 study (43). However,
phase 2 trials testing inebilizumab in combination with
chemotherapy did not find any significant differences compared
to rituximab plus chemotherapy regimens (25). A different anti-
CD19 mAb is tafasitamab, which has an engineered Fc region that
enhances CD16 binding affinity. A phase 2 trial evaluating the
combination of tafasitamab with lenalidomide is currently ongoing
(NCT02005289), and preliminary data of the phase 2 trial testing
tafasitamab combined with ibrutinib or venetoclax in CLL patients
refractory to BTK inhibitors reported promising results in terms of
ORR (44).

An alternative target currently under investigation is CD37, a
molecule that, similarly to CD20, is expressed on the surface of
FIGURE 1 | CLL treatment timeline. A timeline illustrates the development of immune-based therapeutic strategies for the treatment of patients with CLL. CLL,
Chronic Lymphocytic Leukemia; CAR, Chimeric Antigen Receptor; NHL, Non-Hodgkin Lymphoma; BiKE/TriKE, Bispecific/Trispecific Specific Killer Engagers; NK,
Natural Killer.
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mature B cells. Otlertuzumab is an anti-CD37 fusion protein
derived from the chimeric protein SMIP-016, and it is
characterized by the full binding activity of a mAb at a one-
third of the regular antibody size (45). Otlertuzumab appears to
be well tolerated in a phase 1 trial in both treatment-naïve and
pre-treated CLL patients (46); furthermore, otlertuzumab
combined with bendamustine showed a significant efficacy in a
phase 2 trial in patients with relapsed or refractory CLL (47). BI
836826 is another CD37-targeting mAb that has been Fc-
engineered in order to improve its cytotoxic effects. BI 836826
has proven to be particularly effective in CLL patients with del
(17p) and/or TP53 mutation in a phase 1 study, and more
recently a clinical trial testing its combination with ibrutinib in
relapsed or refractory CLL patients has been terminated (48).
Last, the Fc-engineered DuoHexaBody-CD37 is a biparatopic
(dual epitope-targeting) anti-CD37 mAb with the E430G
mutation that exerts enhanced cytotoxic functions (49).
DuoHexaBody-CD37 displayed potent anti-tumor activity
in vivo in both cell line- and patient-derived xenograft CLL
Frontiers in Oncology | www.frontiersin.org 4
models (49) and a first-in-human clinical trial is currently
ongoing (NCT04358458).

A particularly appealing target for immunotherapy of CLL is
the surface molecule CD200, which is not only broadly expressed
on leukemic cells (50), but it is also an immunoregulatory
receptor dampening immune responses and contributing to
maintaining self-tolerance. Results from a phase 1 study
demonstrated that treatment with samalizumab, a CD200-
directed mAb, was associated with a good safety profile and
reduction of tumor burden in the majority of patients with
advanced CLL (51).

A recent target being explored in patients with CLL is the
receptor tyrosine kinase-like orphan receptor 1 (ROR1), that is
selectively expressed only on cancer cells. The combination of
ibrutinib with cirmtuzumab, a ROR1-directed mAb, was
investigated in a phase 1/2 trial, showing a good tolerability
together with a significant efficacy (52, 53). Interestingly, the
anti-ROR1 antibody-drug conjugate zilovertamab vedotin (VLS-
101) has shown a strong activity in xenograft models of CLL
FIGURE 2 | Successful immunotherapeutic strategies implemented in CLL. Several immune-based therapeutic strategies are under development for CLL treatment.
Thanks to their successful results, antibody-based therapies and adoptive cellular therapies currently represent the main field of investigation in the context of CLL.
Monoclonal antibodies act by binding a specific antigen expressed on the surface of leukemia cells, thus generating cytotoxic responses. Bispecific T cell-engagers
are small antibody-based molecules that contain two antigen-binding domains capable of redirecting T cells against antigen-bearing cancer cells. Bi- and tri-specific
killer cell engagers consist of two or three antigen-recognition domains and are capable to simultaneously target a tumor cell antigen and a molecule expressed on
the surface of NK cells, with the aim of triggering immune cells against tumor cells. DART are designed in a criss-cross format in order to improve pharmacokinetic
profile and T-cell killing. CAR T and CAR NK cells are T lymphocytes and NK cells engineered to express a chimeric receptor, able to recognize a tumor surface
antigen; upon antigen recognition and activation of the costimulatory domains, a cytotoxic response is activated, leading to leukemia cells killing. CLL, chronic
Lymphocytic Leukemia; CAR, Chimeric Antigen Receptor; NK, Natural Killer.
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transformed into Richter syndrome (RS) (54), thus providing the
basis for the currently ongoing phase 1 clinical trial investigating
VLS-101 safety and efficacy in patients with hematologic
malignancies, including CLL (NCT03833180).

B cell–activating factor (BAFF) is an immunomodulatory
cytokine involved in the regulation of B-cell signal and
activation. Recently, it has been shown that BAFF can mediate
resistance of CLL cells to new targeted agents by sustaining
survival and anti-apoptotic signals of leukemic cells (55). The
anti-BAFF mAb belimumab, which is approved for treatment of
systemic lupus erythematosus, when combined with idelalisib,
ibrutinib and venetoclax for the treatment of patients with CLL,
has shown to increase the sensitivity of the malignant cells to all
three targeted agents (56). The importance of the BAFF/BAFF-
receptor (BAFF-R) axis has been shown also by studies
evaluating the efficacy of molecules targeting the BAFF-R.
BAFF-R might be an ideal candidate because it is expressed on
B cells, but not on their precursors (57). In preclinical studies,
ianalumab, an anti-BAFF-R mAb, showed superior activity
compared to CD20- and CD52-directed mAbs, and its
combination with ibrutinib produced prolonged survival
compared with either therapy alone in preclinical models (58).
Today, the regimen combining ianalumab with ibrutinib is under
evaluation in a phase 1 study (NCT03400176). Preliminary
results from this trial show an acceptable safety profile and a
good activity of the combination, and provide evidence of the
possibility of discontinuing ibrutinib by adding ianalumab, thus
leading to a fixed-duration ibrutinib-based regimen (59). Further
ongoing investigations will provide more information on the
combination of ibrutinib and ianalumab, also for the treatment
of previously untreated patients with CLL.

3.1.2 Bispecific Antibodies: A Bridge Between
Passive and Active Immunity
A new promising class of antibody-based therapy is bsAbs,
molecules that combine antibody directed therapies with
cellular mediated immunotherapy. A bsAb consists of two
variable regions, in which one binds effector cells and the other
a tumor associated antigen, resulting in a new immunological
synapse aimed at inducing tumor cell lysis. BsAbs include
bispecific T-cell engagers (BiTEs) and dual affinity retargeting
antibodies (DARTs), which present a more favorable
pharmacokinetic profile when compared to BiTEs.

It has been broadly described that the T-cell compartment of
CLL patients is affected by several immune defects, including an
impaired immunologic synapse formation, expression of
exhaustion markers as well as overexpression of inhibitory
immune checkpoints (60). Therefore, immunotherapies that
trigger an empowered T-cell-mediated response may represent
a valid strategy for the treatment of CLL.

The first bsAb tested in CLL was blinatumomab, a CD19/CD3
bsAb designed with the BiTE format. Preclinical studies revealed
that blinatumomab possesses a potent anti-tumor activity, being
able to effectively eliminate CLL cells in a mouse-xenograft model
(61) and in samples from both treatment-naïve and previously
treated CLL patients (62). From the clinical standpoint,
Frontiers in Oncology | www.frontiersin.org 5
blinatumomab demonstrated to be effective in a case of
refractory RS as a bridge to HSCT (63) and to be safe and well
tolerated in a phase 1 clinical trial enrolling patients with relapsed
or refractory B-cell non-Hodgkin lymphomas (NHL) (64). Specific
data on the tolerability and efficacy of blinatumomab in CLL
patients are currently not available, although two ongoing clinical
trials are evaluating the use of blinatumomab in combination with
lenalidomide (NCT02568553) or of blinatumomab expanded T
cells (NCT03823365) in patients with a broad spectrum of NHL,
including CLL.

Recently, another bsAb, the MGD011 CD3xCD19 DART (also
known as JNJ-64052781) displayed a good in vitro efficacy in
terms of CLL cells killing by engaging CLL-derived T cells to fight
the tumor (65). These preclinical results indicated that MGD011
was capable to partially restore immunological dysfunctions of T
cells from CLL patients, resulting in the induction of their
activation and proliferation markers. Additionally, MGD011
induced a non-apoptotic killing of leukemic cells, thus showing
efficacy also in eliminating CLL cells resistant to venetoclax (65).

Interestingly, the anti-leukemic activity of bsAbs has shown
to be effectively potentiated by BTK inhibitors. In particular, T
cells isolated from patients receiving ibrutinib for longer than 6
months and co-cultured with autologous CLL cells and anti-
ROR1 BiTE demonstrated an enhanced cytotoxicity compared to
T cells from non-ibrutinib treated patients (66). Similarly, recent
data have shown that both ibrutinib and acalabrutinib are able to
potentiate the activity of CD19/CD3 bsAb in CLL models (67).
These observations suggest that reversal of baseline dysfunctions
of autologous patient-derived T cells is required to gain a full
anti-tumor activity of BiTEs.

A novel promising approach consists in the administration of
a bispecific antibody targeting leukemic cells and Vg9Vd2 T-
cells, a conserved T-cell subset with potent intrinsic anti-tumor
properties. In the preclinical setting, a CD40 bispecific gd T-cell
engager has shown to induce a powerful Vg9Vd2 T cell-
dependent anti-leukemic response, also preventing CD40/
CD40L-induced pro-survival signaling (68). More recently, a
CD1d-specific Vg9Vd2-T cell engager based on single-domain
antibodies has been explored in preclinical CLL models, showing
its capability of determining cytokine production and
degranulation by Vg9Vd2-T cells from both CLL patients and
controls, and of inducing CD1d-dependent tumor lysis (69).
Consistently with previous studies (70), the addition of ATRA
increased CD1d expression and potentiated Vg9Vd2 T-cell
engager-induced cytotoxicity of CLL cells (69).

Taken together, these results show that bsAbs may potentially
represent a valid option for the treatment of CLL patients, and
particularly for the cohort of high-risk patients with a poor
prognosis and who have acquired resistance to previous therapies.

3.1.3 Bi- or Tri-Specific Killer Engagers: Directing
Innate Immunity Against CLL Cells
In CLL patients, NK cells are reported to be hypofunctional, with
impairments in target cells recognition, direct cellular cytotoxicity
and cytokine production (60). Indeed, improving NK-cell cytotoxic
functions represents a good immunotherapeutic option. Similar to
February 2022 | Volume 12 | Article 837531
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bsAbs, BiKEs and TriKEs can recruit NK cells to target
tumor antigens.

TriKEs targeting the NKG2D receptor ligand ULBP2
(ULBP2/aCD19/aCD19 and ULBP2/aCD19/aCD33 TriKEs)
have demonstrated a meaningful in vitro and in vivo anti-
tumor activity against CLL (71). Additionally, preclinical
studies revealed that a CD16/CD19 BiKE and a CD16/CD19/
CD22 TriKE are capable to trigger NK-cell activation through
direct CD16 signaling (72). Recently, a potentiated CD16/CD19
TriKE structure (161519 TriKE), able to provide NK-cell
expansion signal via an interleukin-15 moiety, was tested in
both healthy donors- and CLL patients-derived samples. 161519
TriKE induced a potent activation of NK cells from healthy
donors and a recovery of the cytotoxic functions of NK cells from
CLL patients, resulting in enhanced NK-cell expansion and CLL
target killing. Interestingly, 161519 TriKE also demonstrated to
induce a better killing of CLL cells in vitro when compared with
rituximab (73).

Taken together, these preliminary findings indicate that
triggering an endogenous NK-cell response is compelling and
support further investigations of BiKEs and TrIKEs as a
therapeutic option for CLL patients.

3.2 Adoptive Cellular Therapy
3.2.1 CAR T Cells: A Strategy to Combine mAb and
T-Cell Mediated Cytotoxic Effects Against Leukemia
Amongst adoptive cellular therapies, CAR T cell-based treatment
represents one of the most investigated fields of research, as
significant results have been reported in B-cell haematological
malignancies; more specifically, anti-CD19 CAR T cells are
currently approved for clinical use in patients affected either by
aggressive B-cell NHL, mantle-cell lymphoma or B-cell acute
lymphoblastic leukemia.

CAR T cells combine components and features of both T cells
and antibodies, thus remarkably enhancing T-cell anti-tumor
activity. According to the composition and level of development,
CARs constructs are divided in four generations (74). Currently,
only 2nd generation CAR constructs have been approved for
clinical use, and these constructs consist of i) an antigen binding
domain, which includes the single chain variable fragment (scFv)
derived from an immunoglobulin directed against a tumor
associated antigen, ii) an intracellular domain from the CD3 z-
chain and iii) a costimulatory domain, generally identified as the
intracellular signaling domains of a costimulatory molecule (i.e.
CD28 or 41BB). The presence of the costimulatory domain
allows the CAR-mediated full activation of T cells in the
absence of interactions with antigen-presenting cells (74). The
main advantage of CARs is their ability to recognize tumor
antigens in an HLA-independent manner, thus being able to
trigger immune responses even in an immune-evading tumor
microenvironment (75).

Despite the remarkable efficacy obtained in other B-cell
malignancies, CAR T-cell therapy use in CLL remains
controversial. Previous studies of anti-CD19 CAR T cells in CLL
showed an ORR between 50% and 70%, and only 20% to 30% of
complete remission (CR) rates (76, 77). Nevertheless, updated data
Frontiers in Oncology | www.frontiersin.org 6
of the Transcend CLL04 study displayed an ORR of 82% with 45%
of CR for CD19-targeting CAR T cells as single agent, resulting in a
high rate of undetectable minimal residual disease (uMRD) in
heavily pre-treated, high-risk CLL patients, including those
refractory to both BTK inhibitors and venetoclax (78). Regardless
of these encouraging results, CAR T-cell treatment is still a
challenge in CLL. For example, the onset of resistance to CD19-
directed CAR T cells due to CD19 antigen loss is not unusual,
representing one of the most common causes of relapse (79). In
order to optimize CAR T-cell products and to improve strategies to
overcome the possible onset of resistance to therapy, today a variety
of new constructs are being studied in numerous early-phase trials
in CLL setting, including CARs that target alternative antigens,
other than CD19 (e.g., CD20, CD22, ROR-1, Siglec-6), or that
simultaneously target more than one antigen (e.g., CD19 and
CD20, CD19 and CD22). In this context, a phase 1 trial
exploring dual targeted anti-CD19/CD20 CAR T cells in relapsed
or refractory B-NHL displayed limited toxicity and promising
ORR, thus encouraging further investigation (80). With the aim
of limiting B-cell aplasia and hypogammaglobulinemia that often
occur with anti-CD19 CAR T cell-therapy (81, 82), a new CAR that
selectively targets the immunoglobulin (Ig) light chain, which is
restrictively expressed by the neoplastic clone but not by the
normal B-cell compartment, is being explored. In this view,
preclinical studies exploring the use of CAR T cells directed
against Ig kappa or Ig lambda have been performed, reporting
good activity both in in vivo and in vitro CLL models (83), and a
clinical trial investigating anti-Ig kappa CAR T cells is currently
ongoing (NCT04223765).

The main limitation of a successful use of CAR T cells in CLL
is the occurrence of intrinsic dysfunctions of the T-cell
compartment, that can interfere with the expansion and
functionality of engineered T cells. In a study by Fraietta et al.,
it was demonstrated that CAR T cells from responder patients
upregulated memory-related genes, with the enhancement of
programs involved in cytokine production and in competent
immune responses; differently, CAR T cells from non-responder
patients were enriched in pathways involved in effector
differentiation, glycolysis, exhaustion, and apoptosis (84). One
possible strategy to overcome this limitation of CAR T-cell
therapy in CLL is the co-administration of new targeted
agents, able to partially restore the tumor microenvironment.
It has been reported that treatment with at least 5 cycles of
ibrutinib prior to CAR T-cell infusion can re-establish the
normal T‐cell function and contribute to a better ex vivo
expansion of CAR T cells with potentially enhanced in vivo
functionality (85). More recently, Fan et al. demonstrated that
the presence of ibrutinib during the manufacturing process
produces an increase in the viability and expansion of patients‐
derived CAR T cells, also restoring their underlying functional
impairment (86). Additionally, ibrutinib demonstrated to
improve the curative effects of CD19-directed CAR T cells in
Raji cell subcutaneous tumorigenic mice, possibly thanks to its
beneficial impact on the tumor microenvironment (87). In line
with preclinical data, results from a phase 1 clinical trial
confirmed the safety and feasibility of ibrutinib administered in
February 2022 | Volume 12 | Article 837531
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combination with anti-CD19 CAR T cells in pretreated CLL
patients (88). Interestingly, the administration of ibrutinib in
combination with CAR T cells also resulted in an improved
tolerability, as shown by the lower incidence of severe side effects,
such as cytokine release syndrome or neurological events (88,
89). Similarly to ibrutinib, the novel BTK inhibitor acalabrutinib
showed to improve the in vitro and in vivo anti-tumor functions
of CD19-directed CAR T cells (90).

A new future perspective in the CAR T-cell therapy scenario
is represented by the possibility of generating allogeneic T cells
from a universal donor (uCAR T), with the twofold goal of
overcoming the intrinsic functional limitations of patient-
derived CAR T cells and of broadening the potential use of
CAR T-cell treatment. Preclinical studies have already shown
that CAR T cells generated from healthy donors perform more
effectively than patient-derived CAR T cells, especially when
compared to CAR T cells generated from patients with a high
number of circulating leukemic cells or from patients refractory
to autologous CAR T cells (84, 91). Up to date, it has been
reported that the administration of allogeneic anti-CD19 CAR T
cells resulted to be feasible, effective and safe in CLL patients who
relapsed after HSCT (92–94). In this view, donors could be
screened for a T-cell phenotype associated with a more efficient
anti-leukemia effect, thus providing a standardised high-quality
transfusion product. By contrast, transferring an allogenic CAR
might induce GvHD to patients, or the allogeneic product might
be rejected. With the aim of making uCAR T cells a safe and
manageable therapy, genetic modification to remove the TCR (to
limit GVHD) and/or HLA molecules (to limit rejection) are
today under investigation (95).

3.2.2 NK Cells: The Future of Adoptive
Cellular Therapy?
NK cells may represent a valid alternative to T cells in the context
of genetically-modified adoptive immunotherapy, mainly thanks
to their ability to induce tumor cell killing in a MHC-unrestricted
manner and without the need of prior exposure for activation
(96). As a further advantage, NK cells can also be activated by
natural cytotoxicity receptors and can eliminate tumor cells
through a CD16-mediated ADCC, thus adding an additional
death mechanism to the CAR-mediated cell lysis (97). Even more
importantly, allogeneic NK cells can be safely administered
without the need for full HLA-matching, thus avoiding the
need of a custom-made production of one CAR-modified
cellular product for each individual patient (98). As a further
advantage, it has been shown that NK cells, while still retaining
the ability to exert alloreactivity, do not to induce the onset of
GvHD (99). For all the above reasons, NK cells are under
extensive investigation for adoptive immunotherapy, even as
genetically unmodified cellular products (100).

NK cells can be derived from multiple platforms, including
peripheral blood, umbilical cord blood, and from NK92 cell lines,
thus representing a valid “off-the-shelf” treatment (101). At the
moment, cord blood-derived CAR NK cells seem to be the better
option, thanks to their easy worldwide availability, their strong
proliferation potential and the possibility to be manipulated
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during their manufacturing process in order to enhance their
activation profile (101). Based on encouraging preclinical data,
displaying a good activity of cord blood-derived CAR NK cells
towards CLL cells (102), nowadays a few clinical trials are
evaluating the feasibility of CAR NK-cell therapy in CLL
(NCT01619761, NCT03056339). Preliminary evidences of the
NCT03056339 trial established that allogeneic cord-blood
derived CD19-directed CAR NK cells can be safely
administered to relapsed or refractory CLL patients (103).
Most importantly, results from this study suggest that CAR
NK cell-therapy do not produce any major CAR T-cell
treatment-related toxic effects, such as cytokine release
syndrome or neurotoxicity, and, as expected, there was no
evidence of GvHD (103). Unfortunately, in this study, the in
vivo persistence of CAR NK cells, which today represents the
main limitation for this kind of CAR-modified cellular therapy
(104), could not be evaluated as treating physicians were allowed
to perform post remission therapies after the 30 days-long
assessment period.

In conclusion, based on currently available data, NK cell-
based immunotherapy has encouraging therapeutic potential for
the treatment of patients with solid and hematologic cancers,
including CLL.
4 COMBINATION REGIMENS AS A
WINNING STRATEGY: THE EXAMPLE OF
THE USE OF IMMUNE CHECKPOINT
INHIBITORS IN CLL TRANSFORMED TO
RICHTER SYNDROME

In recent years, ICI revolutionized cancer therapy thanks to their
capability of eliciting anti-tumor responses by blocking
inhibitory receptors or their ligands on immune cells. For
instance, interactions of PD1 with its ligand PD-L1 represent a
major immune checkpoint engaged by tumor cells to avoid T-cell
immune surveillance. From the biological standpoint, little is
known about PD1/PD-L1 axis in RS, however studies show how,
differently from CLL, tumor cells in RS overexpress PD1 thus
determining an impairment of T lymphocytes anti-tumor
functions; for such reasons the PD1/PD-L1 axis could be a
valid candidate for immunotherapy of RS (105). In CLL, PD1
inhibitors used as single agents have so far provided
disappointing therapeutic results (60, 106), whereas the anti-
PD1 mAb pembrolizumab has exhibited selective efficacy in
patients with CLL transformed into RS (17, 107). Recently,
clinical trials testing different approaches for RS showed a
good activity of ICI when used in combination with novel
agents. In this context, early results from trials combining
ibrutinib with the anti-PD1 mAb nivolumab showed
considerable results with acceptable toxicities (108, 109), and
the triplet combination of umbralisib, ublituximab and
pembrolizumab reported durable and sustained responses
(110). In line with these results, the association between the
Bcl-2 inhibitor venetoclax, the next-generation anti-CD20 mAb
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obinutuzumab and the anti-PD-L1 mAb atezolizumab led to
high rates of response in previously untreated RS patients (111,
112), demonstrating one more time how immunotherapeutic
approaches aiming a different targets can exploit a synergistic
action against tumor cells. Currently, several ongoing clinical
trials are evaluating the combination of anti-PD1 immune
checkpoint inhibitor and ibrutinib (phase I/Ib NCT04781855
and phase II NCT02420912), or the PI3K inhibitors copanlisib
(phase I NCT03884998) and duvelisib (phase I NCT03892944).
5 CONCLUSIONS

Over the time several immune-based therapeutic options have
been explored in the CLL context, with the ultimate goal of
exploiting and/or boosting the patient’s immune system to fight
tumor cells. Despite encouraging preclinical data showing
significant anti-tumor activity, immune-based therapies often
achieved suboptimal results in terms of tumor control, possibly
due to intrinsic immune defects hampering the obtainment of a
powerful therapeutic response. A demonstration of these
limitations is provided by the disappointing results obtained
with active immunotherapy strategies used individually, which
have shown to be ineffective in re-directing against the tumor an
immune system that was not competent enough. Conversely, the
use of agents that display immunomodulatory properties
reported successful results, especially in combination settings.

Interestingly, targeted agents currently used in the treatment of
patients with CLL (i.e., BTK inhibitors, PI3K inhibitors, and the
Bcl-2 inhibitor venetoclax) have shown not only to act against
malignant B cells but also to exert at some degree an
immunomodulatory activity through mechanisms that are not
necessarily connected to their on-target effects. For example,
ibrutinib, although designed to inhibit BTK downstream the B-
cell receptor, is also able to exert off-target effects on the T-cell
compartment – such as an increase in the T-cell number and
function (113) and a TH1 polarization (114) - through the binding
of the IL-2-inducibile T cell kinase (ITK). Consistently, long-term
treatment with ibrutinib has also demonstrated to reduce the
expression of exhaustion markers and inhibitory checkpoints on
T cells (115, 116). The ability of re-converting the immune system
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from CLL patients to a more effective status has led to the addition
of ibrutinib to other regimens, with significant improvement of
tumor control. Preclinical and clinical results have already
demonstrated the ability of ibrutinib in i) improving the efficacy
of the novel mAbs cirmtuzumab (52, 53), ianalumab (59) and BI
836826 (48), ii) enhancing the susceptibility of CLL cells to BiTE-
mediated killing (66, 67), and iii) potentiating the generation,
functionality and curative effects of CAR T cells (88, 89). Similarly,
other agents capable of modulating the immune system, such as
avadomide, have shown promising results when administered in
combination with checkpoint inhibitors (23), thus leading to
reconsider active immunotherapy as a potential therapeutic
option for patients with CLL.

Based on these evidences, one promising approach currently
under investigation is the design of combination regimens
exploiting the potential synergism of novel agents and
immunotherapy, with the aim of achieving a deeper and more
persistent eradication of leukemic cells, and therefore a potential
cure of CLL.
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