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Purpose: Lower dose outside the planned treatment area in lung stereotactic
radiotherapy has been linked to increased risk of distant metastasis (DM) possibly due
to underdosage of microscopic disease (MDE). Independently, tumour density on
pretreatment computed tomography (CT) has been linked to risk of MDE. No studies
have investigated the interaction between imaging biomarkers and incidental dose. The
interaction would showcase whether the impact of dose on outcome is dependent on
imaging and, hence, if imaging could inform which patients require dose escalation
outside the gross tumour volume (GTV). We propose an image-based data mining
methodology to investigate density–dose interactions radially from the GTV to predict
DM with no a priori assumption on location.

Methods: Dose and density were quantified in 1-mm annuli around the GTV for 199
patients with early-stage lung cancer treated with 60 Gy in 5 fractions. Each annulus was
summarised by three density and three dose parameters. For parameter combinations,
Cox regressions were performed including a dose–density interaction in independent
annuli. Heatmaps were created that described improvement in DM prediction due to the
interaction. Regions of significant improvement were identified and studied in overall
outcome models.

Results: Dose–density interactions were identified that significantly improved prediction
for over 50% of bootstrap resamples. Dose and density parameters were not significant
when the interaction was omitted. Tumour density variance and high peritumour density
were associated with DM for patients with more cold spots (less than 30-Gy EQD2) and
non-uniform dose about 3 cm outside of the GTV. Associations identified were
independent of the mean GTV dose.

Conclusions: Patients with high tumour variance and peritumour density have increased
risk of DM if there is a low and non-uniform dose outside the GTV. The dose regions are
independent of tumour dose, suggesting that incidental dosemay play an important role in
controlling occult disease. Understanding such interactions is key to identifying patients
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who will benefit from dose-escalation. The methodology presented allowed spatial dose–
density interactions to be studied at the exploratory stage for the first time. This could
accelerate the clinical implementation of imaging biomarkers by demonstrating the impact
of incidental dose for tumours of varying characteristics in routine data.
Keywords: image-based data mining, personalised medicine, imaging biomarkers, stereotactic ablative body
radiation (SABR), biomarker-by-treatment interactions, distant metastasis, NSCLC
1 INTRODUCTION

Stereotactic body radiotherapy (SABR) is standard of care for
patients with early-stage non-small cell lung cancer (NSCLC)
who are not eligible for surgery due to refusal or ill health (1).
High dose radiation is delivered in few fractions so tight
radiotherapy (RT) margins are implemented to limit the dose
to surrounding normal tissues. To keep the dose conformal, the
clinical target volume (CTV) is generally omitted as the
dosimetric penumbra is believed to provide adequate coverage
of microscopic disease extensions (MDE) that cannot be
visualised on standard imaging (2, 3). Depending on the
prescription dose, approximately 6 mm of MDE coverage will
be provided by the dose fall-off outside the planned treatment
area (4); however, it is believed that at least 2.6 cm is required for
adequate coverage in 90% of patients (5). If MDE is undertreated,
it can increase the risk of treatment failure (3, 6).

Following lung SABR, the predominant pattern of treatment
failure is distant metastasis (DM), with a 20% failure rate in the
first 5 years (7). Distant metastasis can occur due to untreated
microscopic disease that spreads throughout the body via
lymphatic, vascular, or local invasion (6, 8). The impact of
inadequate coverage of MDE was demonstrated in a study
where a biologically equivalent dose (EQD2) of less than 21 Gy
outside the planning target volume (PTV) was associated with
increased risk of DM (9). In this study, there is an implicit
assumption that inadequate coverage of MDE is associated with
the same increase in risk of DM for all patients, but not all
patients have extensive microscopic disease. It is more likely that
there will be no increase in risk for those with limited MDE, and
to model this interaction, a predictive biomarker is required.

Imaging biomarkers describing density and texture features of
the tumour and peritumour contain biological and prognostic
information, which can help in understanding how the tumour
invades into the surrounding tissue and leads to DM (10). Simple
metrics from pretreatment computed tomography (CT), such as
circularity and density on the surface of the gross tumour volume
(GTV), can predict MDE risk (3). This risk model predicted
local-regional failure, but only for a group that received a low
dose up to 1.5 cm outside the GTV. This demonstrates an
interaction where imaging biomarkers can stratify patients for
MDE risk, and importantly this can lead to changes in the way
radiotherapy is delivered (e.g., increased margins or dose). Such
interactions underpin personalised RT (11).

Few imaging biomarker studies investigate dosimetric
parameters, and vice versa, and their interactions are therefore
not often described (12). Disregarding such important interactions
2

can lead to studies incorrectly claiming a lack of association (13).
When investigated, however, this has typically involved the use of
arbitrarily defined thresholds to split patients into ‘low vs. high risk’
or to describe ‘underdosage vs. adequate coverage’ of target volumes
(3). Dichotomisation of data should be avoided in the exploratory
stage, as it can cause residual confounding, lead to false positive
results, or underestimate the true added value of a variable (14).
Studying continuous interactions is recommended but has yet to be
investigated for tumour/peritumour density and dose (11). It is
currentlyunknownwhether the tumourorperitumourcontains the
most prognostic information, so studies have investigated shells
surrounding theGTV(10, 15, 16). Inaddition, there isnoconsensus
on what location should be investigated for dose (3, 9, 17).

Data mining techniques are useful for combining spatial
information into the exploratory stage of analysis with no a
priori hypothesis. In this work, we introduce a data-mining
technique (‘Cox-per-radius’) in which a Cox regression is
performed for combinations of density and dose metric
derived in annuli around an automatically segmented GTV,
allowing assessment of spatial density–dose interactions whilst
accounting for clinical variables. In this study, we explore this
method for prediction of distant metastasis following lung SABR.
2 METHODS

2.1 Clinical Data
2.1.1 Data Collection
Data were collected for 273 T1–2 N0M0 NSCLC patients
(confirmed histologically or suspected on radiology) who were
treated with SABR for primary lung cancer during 2011–2017 at
The Christie NHS Foundation Trust. Ethical approval for data
collection and analysis was granted by the UK Computer Aided
Theragnostics Research Database Management Committee
(research ethics committee reference number: 17/NW/0060).
Planning four-dimensional CT (4D-CT) scans [described in
Davey et al. (18)] and 3D dose distributions were available for
all patients. Patients received a dose of 54 Gy in 3 fractions, or 60
Gy in 5 or 8 fractions, with further planning details included in
Supplementary Material, Section 1. Clinical variables available
were tumour lobe location, T stage, age, sex, ECOG performance
status (functional ability), ACE27 comorbidity score (presence
and severity of preexisting conditions), and histological subtype.
Information was also available on the number of treatment
fractions and the treatment type (IMRT vs. VMAT). Clinical
variables were only included if they were available for over 90%
of patients.
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2.1.2 Patient Follow-up
Patients underwent clinical follow-up 4 to 6 weeks after
treatment, every 3 months for a year, and then 6 monthly
thereafter. Follow-up CT was performed at the discretion of
the clinician, with an 18F-FDG positron emission tomography
scan and/or biopsy for suspected recurrence. Data on treatment
failure were retrospectively collected from electronic records.
Distant metastasis was defined as recurrence in an uninvolved
lobe, contralateral lung, or any other extra-thoracic location.
Time to DM was recorded from the start of RT to the date of the
first scan that showed progression. Patients were censored at the
most recent follow-up in the absence of failure.

2.2 4D-CT Density Biomarkers
2.2.1 Imaging Data
Treatment plans included a ‘motion-adapted’ GTV (iGTV)
which incorporates the tumour volume and its motion across
all respiratory phases. This is outlined on the maximum intensity
projection (MIP) and edited on individual respiratory phases to
cover the tumour motion observed on 4D-CT. The slice
thickness for contouring was 3 mm, and a fluorodeoxyglucose
(FDG) position emission tomography (PET)-CT was available
for all patients and considered as per ACROP-ESTRO
recommendations (19). The inclusion of tumour spiculations
was considered case by case dependent on the morphological
appearance, size of spicule, and PET-CT information. In routine
practice, contours are reviewed at a peer review meeting and
adjusted if required.

An in-house validated technique was used to segment the
GTV on all phases retrospectively (20). Briefly, local rigid
Frontiers in Oncology | www.frontiersin.org 3
registration was used to estimate the translation required to
match the tumour position on each phase to a reference phase
(50%). From the estimated motion, the GTV was derived and
transferred to all 4D phases. All GTVs were visualised by a single
observer and approved as they outlined the visible macroscopic
tumour (20). A by-product of GTV generation was two
additional clinical variables: GTV volume and the amplitude of
tumour motion. The lung contour from the average scan was also
adapted to each phase using morphological operations and
thresholding (18). Example data are shown in Figure 1A.

2.2.2 Creation of Radial Histograms
A radial histogram framework was constructed to obtain a
measure of density at radial distance from the generated GTV
for all patients. Firstly, a signed distance transform was applied
which assigns each voxel a value representing the distance from
that voxel to the nearest voxel at the border of the GTV, forming
a distance scale of 1-mm annuli that are negative inside the
border. Both the image and transform map were then cropped so
only the lungs are considered to avoid density being linked to
location. A 2D cross-histogram (radial histogram) was created
for every 4D phase where each pixel value is the volume of the
given 1-mm shell (horizontal axis) that is occupied by a
particular density (vertical axis), shown in Figure 1B. Every
histogram was cropped between -0.5 and 2 cm to select tumour
and peritumour only, therefore sampling 25 annuli (Figure 1C).
This region was selected, as we believe predictive information
about MDE presence (that could be beyond 2 cm and invade
surrounding structures) will be captured by tumour
characteristics and peritumour invasion that describes
A B

DEF C

FIGURE 1 | Radial histogram methodology for 4D-CT data. (A) A GTV and lung contour is available and optimised to each phase of the 4D-CT data (five phases for
example). (B) A radial histogram is extracted from every phase. First a signed distance transform map is created, which is cropped to lung tissue only, and finally an
intensity histogram is extracted for every 1-mm annulus and mapped onto a 2D cross histogram. (C) Radial histograms for every phase are cropped to sample
tumour and peritumour only. (D) The optimal phase histogram is selected by maximising the structural similarity matrix between neighbour phases. (E) Summary
statistics are extracted at every mm with mean density shown for example. (F) Gaussian smoothing is applied to the curve to limit the influence of noise.
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likelihood of spread, rather than features at the exact MDE
location (as this cannot be detected on CT).

2.2.3 Optimal 4D Phase Selection
To determine which 4D phase to use for analysis, we found the
‘optimal phase’ individually for each patient (Figure 1D). The
optimal phase is the most stable compared to neighbour phases
and improved model performance in a preceding radiomics
study (18). Although often assumed to be the case, the optimal
phase is not necessarily end-exhale due to 4D-CT artefacts and
the impact of motion that is not related to the respiratory cycle
(e.g., cardiac motion). Adapted from the previous study, each
cropped radial histogram was compared to its neighbour by the
mean structural similarity index (SSIM), which is normalised to
the range 0 to 1, where 1 is a perfect match. For a given phase, Ph,
the sum of the SSIM compared to neighbour phases is

SSIMtotal = SSIM Ph,  Ph + 1ð Þ + SSIM Ph, Ph − 1ð Þ (1)

which is maximised for the optimal phase. The optimal radial
histogram was selected for each patient and the corresponding
phase compared to previous work.

2.2.4 Summary Statistics
For each patient, first-order statistics summarised each 1-mm
annulus to produce 1D curves of density feature over distance
(Figure 1E). Overall, three summary curves were extracted per
patient: mean, standard deviation (SD), and 90th percentile.
Gaussian smoothing was applied to each curve as the annuli
thickness was less than the slice thickness (3 mm). The standard
deviation of the smoothing function, s, was set to 1.5 mm which
is comparative to the reported interobserver variation of
contouring SABR cases (Figure 1F) (21).

2.3 Radial Dose Patterns
2.3.1 Dose Radial Histogram
Similar curves were produced to describe dose over distance.
Firstly, the dose distribution was blurred according to the
respiratory motion to estimate the dose planned to the tumour
and converted to EQD2 using a/b = 10 (Figure 2A). The signed
distance transform map was created based on the GTV in the
Frontiers in Oncology | www.frontiersin.org 4
reference phase and cropped inside the body as MDE can be
present outside the lung tissue (Figure 2B). The GTV was used
as opposed to the PTV to link distances to spread of MDE. Dose
radial histograms were generated and cropped to 0.5 to 4 cm,
purposefully offset from the CT region as we are interested in the
dose to the actual location microscopic disease is present
(Figure 2C). In total, 35 dose annuli were considered.

2.3.2 Summary Statistics
Standard deviation EQD2 was extracted in each annulus and the
same smoothing applied as to the density data for consistency
(Figure 2D). The generalised mean was also calculated as
described by the formula

Generalised mean = o
N

I=1
viD

a
i

� �1
a

(2)

where vi is a weight factor described by the fraction of annulus
volume containing a dose of Di, for all potential dose values (i =
1,., N) (22–24). The parameter a tends to the maximum dose for
a ! ∞ and minimum dose for a ! –∞. A value of -5 has been
recommended for radiosensitive tumours (25), and lymph node
metastases (26), but a higher value is likely appropriate for MDE
due to the shallow dose–response curve and small likelihood of
tumour deposits in each annulus (27). Integer values between -1
and -5 were tested to select an appropriate value. The third
metric calculated was the fraction of volume in each 1-mm rim
that receives EQD2 of less than 30 Gy, as an arbitrary dose
threshold for inadequate MDE treatment (28).

2.3.3 Comparison of Treatment Protocol
The mean dose curve was extracted for exploratory analysis. The
mean and SD dose curves were visualised for patients grouped on
number of fractions and treatment technique (IMRT vs. VMAT)
to determine whether analysis should be limited to a
particular subgroup.

2.4 Cox per Radius
2.4.1 Interaction Map
A baseline clinical model was built to predict DM using
remaining clinical variables (i = 4,..., N), and the concordance
A B DC

FIGURE 2 | Radial histogram methodology for dose distribution. (A) The dose distribution is blurred for respiratory motion using 50% as reference and converted to
a biologically equivalent dose in 2 Gy per fraction (EQD2). (B) The signed distance transform map is created to sample dose at distance from the GTV and cropped
inside the body. (C) Radial histogram which is cropped to 0.5 to 4 cm. (D) Standard deviation of EQD2 at distance from the GTV summarised from the cropped
radial histogram.
March 2022 | Volume 12 | Article 838155
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index (C-index) was extracted. For each combination of density
feature and dose metric (nine in total), there were 35 annuli to
extract the dose value, and 25 annuli to extract the density value,
leading to 875 dose–density combinations for each metric
combination. For each combination, an interaction Cox model
was built containing the clinical variables, the density feature, the
dose metric, and an interaction term (density*dose). The model is
formulated as follows:

ln h(tð Þ) =   ln h0(tð Þ)   +   b1Dose   +   b2Density  
+   b3 Dose*Densityð Þ +  o

n

i=4
bi*Variablei  

(3)

where h(t) is the hazard function determined by the
covariates included, h0(t) is the baseline hazard, and the
coefficients (b1, b2, b3,…) describe the size and direction of
effect. A separate model was also produced with the interaction
term not included.

As we were interested in the locations at which density has a
modifying influence on dose (or vice versa), we analysed the
significance of the interaction term by performing a likelihood
ratio (LR) test for the models with and without the interaction
term. The test statistic of the difference in log-likelihood between
the two models has a chi-squared distribution from which a p-
value is obtained (29). The resulting p-value for each
combination was included in a 2D heatmap at the distance of
the annulus in which density was extracted on the horizontal
axis, and at the distance at which the dose was extracted on the
vertical axis (Figure 3). Statistically significant regions (p < 0.05)
were selected. This was repeated for all nine combinations of
density feature and dose metric. To limit the influence of
multiple testing, considering each combination map
independently, only regions that showed significance across
several annuli were taken forward as described in the following.
Frontiers in Oncology | www.frontiersin.org 5
2.4.2 Post-processing
Post-processing was implemented as a form of multiple testing
correction as there are many correlated variables, so tests are not
independent (30, 31). Firstly, connected regions on the
significance map were detected and each was scanned to
remove rows or columns of less than 3-mm thickness. The
average height and width of the processed regions were used to
produce a box with the same centre as the region. As shown in
Figure 3, the x-coordinates of the box define the radial area for
density which has a significant interaction with dose in the
region defined by the y-coordinates. If averaging reduced the
box height or width below 3 mm, it was ignored in
further analysis.

The mean values for the density feature and dose parameter
inside the defined regions were calculated and assessed for
variance across all patients. Regions were not considered if
there was near zero variance—as this does not represent a
meaningful parameter. Near-zero variance was defined as less
than 10% unique values, and a frequency ratio of the most
common to the second most common value greater than 19%
[default in the caret package (32)] assessed at the arbitrary 0.1-
Gy, 1%, and 1-HU difference level.

2.4.3 Model Building
For each remaining region, the mean density feature and
dosimetric parameter value in the defined radial areas were
taken forward for model building. Each positive variable was
tested for skewness, and log transformation was applied if it had
the impact of reducing a large skew [ ± 3 (33)]. The overall
interaction models (analogous to Equation 3) were developed for
each defined region built across 500 bootstrap resamples and fit
to the original data to obtain median and 95% confidence
intervals (CI) of the C-index. An LR test was performed on the
interaction term in each case, and the number of times the
FIGURE 3 | Simplified schematic of the Cox-per-radius method. The value of density feature and dose parameter is extracted at combinations of distance from the
GTV for every patient. These values are used to build the Cox models and assess the significance of the interaction term. The p-value of the interaction term from a
likelihood-ratio test is included in the heatmap at the distance combination. The example highlighted shows mean density at 0 cm from the GTV and standard
deviation dose at 3 cm. The corresponding p-value for this interaction is included at (0,3) on the map. An example significant region demonstrates an interaction
between density 0.5 and 1.5 cm from the GTV and dose 1–3 cm.
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interaction significantly improves the model was recorded.
Distribution of the interaction coefficient across resamples was
also investigated to ensure stability (34). A coefficient was
considered stable if the lower and upper bounds of the 95% CI
in the bootstrap distribution were the same sign. Regions were
excluded if the interaction term was unstable or if the inclusion
of the dose and density did not improve the C-index.

2.5 Model Interpretation
Coefficients and p-values were reported for complete models
with and without the interaction term, where a significant
interaction suggests that density modifies the effect of dose
(Supplementary Material, Section 2). For reporting of
coefficients only, the density feature and dose metric in the
relevant regions were scaled to mean zero and unit variance.
Typically, hazard ratios (HR) are used to interpret the size and
direction of effect, but a single value cannot be used in the
presence of an interaction. The hazard ratio for different values
of density compared to the mean value is described by

ln HRð Þ = ln   h t, Densityið Þ  – h0 tð Þ
h t,Densitymeanð Þ – h0 tð Þ

� �
= ln h t,  Densityið Þ½ �

− ln½h(t,  Densitymean)� ð4Þ
where i incorporates the range of values observed across the

patient cohort. From Equation 3, this is analogous to

ln HRð Þ = b2 + b3Dose j
� �

Densityi −  Densitymeanð Þ   (5)

Thus, the hazard ratio can only be interpreted for density at
specific values of dose, and vice versa. To interpret the direction
and size of the association between density and outcome,
contrast plots were created with ln(HR) on the y-axis and
different density values on the x-axis for the 10th percentile,
median, and 90th percentile value of the dose parameter in the
relevant region (35).

The correlation between dose in identified regions and dose to
the tumourwas investigatedwithSpearman’s rankcorrelation to aid
interpretation. The correlation between density and dose metrics
with tumour volume and motion amplitude was also investigated
for potential confoundingdue to inaccurateGTVgeneration,which
would be a particular problem at larger amplitudes.

2.6 Software
The radial histogram methodology was developed in a custom
in-house Python package, designed in Python 3.6.9. Aspects such
as image registration and GTV generation were implemented
using in-house software [WorldMatch version 9.00 (36)]. All the
statistical analysis methodology was developed using R version
4.0.2. A custom R package was built and linked to the Python
radial histogram workflow using reticulate (37).
3 RESULTS

3.1 Clinical Data
In total, 257 patients with T1–2 N0M0 treated between 2011 and
2017 were available for exploratory analysis with patient
Frontiers in Oncology | www.frontiersin.org 6
demographics and treatment details in Table 1. There were 11%
to 55% missing data in categories histological subtype,
performance status, comorbidity ACE score, and T-stage. T-
stage was removed from analysis as it is redundant to tumour
volume. The other variableswere also removed asmissing data will
likely impact the prediction of DM more than removal, leaving
patient characteristics: sex and age, and tumour characteristics:
volume, lobe location, and motion amplitude for inclusion in a
multivariable Cox model. The median follow-up was 18 months
(95% CI 15–20 months) and 44 patients (17%) had DM.

3.2 Density Features and Dose Metrics
Density information was available for all patients above -0.1 cm
but only for 67% of patients at -0.5 cm, as the shortest axis of the
tumour is below 1 cm so a full annulus could not be calculated 5
mm inside the tumour. For each annulus, models are built on
data with samples available. The same optimal phase was selected
compared to previous work for 41% of patients, with the same
TABLE 1 | Patient demographics and treatment details for 257 stage I and II
patients.

Characteristic Summary1 N (%)

Treatment delivery 257 (100%)
IMRT 171 (67%)
VMAT 86 (33%)

No. of fractions 257 (100%)
3 13 (5.1%)
5 199 (77%)
8 45 (18%)

T stage 229 (89%)
T1 152 (66%)
T2 77 (34%)

Tumour motion amplitude (cm) 0.56 (0–3.43) 257 (100%)
Tumour lobe location 251 (98%)
Lower 84 (33%)
Upper 167 (67%)

ACE 27 comorbidity score 193 (75%)
None (0) 7 (3.6%)
Mild (1) 46 (24%)
Moderate (2) 69 (36%)
Severe (3) 71 (37%)

ECOG performance status 224 (87%)
0 3 (1.3%)
1 77 (34%)
2 117 (52%)
3 27 (12%)

Age 76 (45 - 93) 257 (100%)
Sex 257 (100%)
Female 125 (49%)
Male 132 (51%)

GTV volume (cc) 4.0 (0.3–33.8) 257 (100%)
Histological subtype 257 (100%)
Adenocarcinoma, NOS 47 (18%)
Carcinoma, NOS 18 (7.0%)
Squamous cell carcinoma 42 (16%)
Radiological diagnosis 141 (55%)
Other 9 (3.5%)
March
 2022 | Volume 12 | Ar
1Statistics presented: n (%); median (range).
ECOG, Eastern Cooperative Oncology Group; ACE, Adult Comorbidity Evaluation 27.
N is the total number of patients; n is the number in each category. Tumour volume is the
generated GTV volume on the 50% phase.
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selection more likely in patients with larger differences between
phases (Supplementary Material, Section 3). On visual
inspection, the stability of the peritumoural region in the
optimal phase was confirmed, and the difference in selection
was likely due to different regions investigated for stability. The
optimal radial histogram was used to extract curves of density
features (mean, SD, 90th percentile) outside the GTV.

The dosimetric curves (SD, fraction volume <30 Gy,
generalised mean) were extracted from the EQD2 dose
distribution. For generalised mean, the parameter a = -3 was
implemented as below this the distribution increased in skewness
with small change in the average value (Supplementary
Figure 3). The average mean and SD curves for different
fractionation regimes and treatment types are shown in
Figure 4. Most patients received 5 fractions of treatment
(77%), and 67% of patients received IMRT instead of VMAT.
As expected, the EQD2 dose delivered to the tumour varied for
different fractionation regimes, and VMAT was associated with a
more uniform distribution. There was no significant univariable
association between either fractionation regime or treatment
technique and DM (Supplementary Figure 4). For the
remaining analysis, a subgroup of patients who received 5
fractions was studied to explore the influence of dose and
density without any confounding due to tumour dose.

3.3 Clinical Model
A complete case analysis was performed on all clinical variables
included, and 195 patients remained for analysis of which 36 had
DM (Supplementary Figure 5). A baseline clinical model was
built for DM with C-index = 0.64 and no significant predictors
(Supplementary Table 3).
Frontiers in Oncology | www.frontiersin.org 7
3.4 Cox per Radius
Nine ‘Cox-per-radius’ maps were produced for each density*dose
interaction with at least one region identified as significant in
each map and sixteen regions in total. The significance maps for
all cases before and after post-processing are shown in
Supplementary Material, Section 8. Post-processing removed
a range of 3% to 56% of significant pixels across all maps. After
extracting the radial distance for density and dose, four regions
were below the size threshold. In addition, four regions had near-
zero variance as the volume receiving below 30 Gy for the area
selected (0.6 to 1.5 cm) was 0 for most patients. Three regions
had interaction terms with unstable coefficients (Supplementary
Material, Section 9). Overall, five regions remained, four of
which improved the C-index of the clinical model.

The remaining models are included in Table 2, with the range
of density and dose values reported in Supplementary Table 6.
Two models found that the SD of density inside the tumour (1
and 2) has a relationship with DM which is modified by dose
variables in different locations. The model performance was
significantly improved by the inclusion of the interaction term
for over 70% of resamples. The remaining models (3 and 4) had
identical interpretation as the relationship between peritumour
density and DM is modified by SD dose ~3 cm from the GTV
and the interaction significantly improved the model for 55%
and 51%, respectively. Overall, the inclusion of dose, density, and
an interaction modestly improved the prediction of distant
metastasis compared to the clinical model. All regions
demonstrate that the association between peritumour/tumour
density and outcome is modified by dose at a spatially offset
location. This could support a hypothesis that peritumour and
tumour density can predict the presence of MDE at distance.
A

B

FIGURE 4 | Mean and 95% confidence interval across patients for standard deviation of EQD2 (left) and mean EQD2 (right) at distance from the GTV for patients
treated (A) on different fractionation regimes (3, 5, or 8 fractions), and (B) using different treatment techniques (IMRT vs. VMAT).
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The spatial interpretation of the regions highlighted by the
Cox-per-radiusmaps is overlaid onto an example patient CT and
dose distribution for demonstration (Figure 5). Due to similarity
in conclusion, only the first three models are shown, with Region
4 reported in Supplementary Figure 11. The light pink-
highlighted regions on the Cox per radius map are examples of
those which failed the above checks, and dark pink highlights the
regions of interest.

3.5 Model Interpretation
The results of the multivariable models described in Section 3.4
are reported in Table 3, with clinical variables reported in
Supplementary Table 7. All models have a significant
interaction term, and without the interaction there is no
association with outcome detected. The coefficients and p-
values for density and dose in the interaction model are
calculated at a reference value of zero of the interacting
parameter and so have limited clinical interpretation.

As the coefficients for density can only be interpreted at
reference levels of dose, contrast plots were created for each
model displaying the association between the hazard ratio and
density feature for the 10th percentile, median, and 90th
percentile value of the dose parameter (Figure 6). For regions
2 (Figure 6, R2) and 3 (Figure 6, R3), the 95% CI of the log
hazard ratio includes the zero line for the 10th percentile, and
median dose values. This shows that there is no association
between tumour density SD/mean peritumour density and
distant metastasis when there are fewer cold spots and uniform
dose ~3 cm from the GTV.

An effect is observed, however, in the 90th percentile of the
dose parameter. For model 2, high-density SD inside the tumour
is linked to increased risk of DM if a large fraction of volume is
receiving less than 30 Gy ~3 cm outside the GTV. For model 3,
higher mean peritumour density is associated with worse
outcome if there is non-uniform dose coverage. The lack of
association for higher and more uniform doses agrees with a
hypothesis that if MDE is adequately treated, biomarkers for the
presence of MDE would not predict outcome.

The result of region 1 seems counterintuitive (Figure 6, R1),
as at low dose variability (10th percentile) there is an association
between tumour variability and outcome that is not observed at
high variability (median, 90th percentile). Interestingly, model 1
is the only model to sample the dose variability from 1.1 to 1.9
cm outside the GTV. The contrast plots for dose for different
values of density also demonstrate the reverse in risk direction
dependent on the location the dose is sampled from
(Supplementary Figure 12).
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3.6 Confounding Investigation
The counterintuitive result of Region 1 is explained by
considering the mean EQD2 dose inside each of the regions
identified by the dose parameter (Supplementary Figure 13). In
region 1, the median value is 55 Gy with range 74–92 Gy, which
is significantly higher than 9 Gy (17–32) in R2 and 14 Gy (22–41)
in R3. Considering the difference in dose scales, a large SD in this
region would not lead to underdosage of microscopic disease.

Importantly, all dose parameters are independent of the mean
GTV dose with correlation coefficients 0.26, 0.24, and -0.15,
respectively. The dose is also independent of motion (-0.09,
-0.26, and -0.32), as the dose has already been corrected for in the
blurring of the dose distribution. The dose descriptors at larger
distances somewhat correlate with tumour volume, but this is of
greatest concern for region 2 where the fraction of the rim
receiving a dose less than 30 Gy is measured (r = -0.68),
compared to the models including standard deviation (0.29 for
region 1 and 0.47 for region 3). The fraction of volume
measurement is therefore sensitive to the increasing annulus
size with larger tumours.

All density biomarkers are independent of tumour volume,
0.20, 0.17, and 0.21 for regions 1 to 3, respectively. Biomarkers
representing tumour variability were completely unrelated to
tumour motion (r < 0.01), but a higher peritumour means
density weakly links to a higher motion amplitude (r = 0.42)—
which could be an indication of under-contouring of the iGTV
for large moving tumours.
4 DISCUSSION

In this study, we have developed a novel methodology to explore
spatial interactions of density and dose, using radial data mining
and no a priori assumption on the most important region for
extracting imaging biomarkers or dose data. This methodology is
coined ‘Cox-per-radius’ and can be seen as complementary to the
‘Cox-per-voxel’ method (38). However, because the annuli are
centred on the GTV, this method is applicable for tumours with
variable position. This work, for the first time, has demonstrated
the importance of considering how CT imaging biomarkers
interact with dose to predict distant metastasis. We found that
high tumour density variability and high peritumour density are
associated with metastasis but only for patients who receive low
and non-uniform doses ~3 cm from the GTV. Overall, the results
support the hypothesis that density biomarkers predict MDE
risk, and outcome is ultimately controlled by the amount of
TABLE 2 | The models selected after assessment of region size, variance, stability, and model performance.

Region Density parameter Density region Dose parameter Dose region C-index median (95% CI) Freq (%)

1 Standard deviation -0.5 to -0.2 Standard deviation 1.1 to 1.9 0.66 (0.61–0.69) 76
2 Standard deviation -0.5 to -0.1 Fract vol <30 Gy 3.0 to 3.9 0.65 (0.60–0.68) 71
3 Mean 0.1 to 0.4 Standard deviation 2.4 to 3.5 0.66 (0.61–0.70) 55
4 90th percentile 0.0 to 0.4 Standard deviation 2.8 to 3.5 0.65 (0.61–0.69) 51
March 2022 | Volume 12 | Artic
The parameter of density and dose is recorded, along with the regions from which data are extracted. C-index reports the model performance over all bootstrap resamples. Frequency
reports the percentage of times the likelihood-ratio test of improvement in model performance due to the interaction term is significant (p < 0.05) over bootstrap resamples.
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TABLE 3 | Coefficients (coef) and p-values for the density features and dose parameters extracted from the multivariable model for each region.

Region 1 Region 2 Region 3

Coef p value Coef p value Coef p value

With interaction
Density feature in region 0.16 0.279 0.19 0.253 0.19 0.364
Dose parameter in
region

-0.31 0.079 0.24 0.351 0.09 0.676

Density *dose -0.46 0.012 0.47 0.014 0.44 0.025
Without interaction
Density feature in region 0.15 0.334 0.13 0.435 0.20 0.303
Dose parameter in
region

-0.27 0.153 0.43 0.097 0.09 0.703
Frontiers in Oncology | www.frontiersin.o
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The parameters have been scaled to mean zero and unit variance to aid interpretation. The interaction term is required to detect the association between density, dose, and outcome.
The values in bold represent significant p-values.
A

B

C

FIGURE 5 | Left: Cox per radius significance maps of interaction between density versus dose parameters at distance from the GTV [note the difference in x- and y-
axis labels for (A), (B), and (C)]. p-value represents the result of a likelihood-ratio test of improvement in model performance due to inclusion of the interaction
between dose and density at each location. All significant points are shown with a white circle, and the region extracted for assessment in bootstrap is highlighted in
light pink. After removal of regions that are too small, have near zero variance, have unstable coefficients, or do not improve model performance, only three remained
(dark pink). Right: volumes defined by the selected regions on an example patient.
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incidental dose received at a spatially offset location. Such
interactions could inform increased margins to ensure the dose
coverage for patients identified as high-risk with potential to
improve patient outcome whilst minimising toxicity for low-
risk patients.

The biomarkers identified are in agreement with the high
surface density, high tumour density, and more complex tumour
shape that has so far been linked to MDE risk (3, 5). Surface
density and shape features have so far predicted local-regional
failure for patients with a lower dose up to 1.5 cm from the GTV
but failed to predict distant metastasis (3). The interaction
between dose and density at a greater distance (~3 cm) to
predict DM is described for the first time in our study.
However, the dose location is similar to that observed by
Diamant et al. where a lower dose ~3 cm from the PTV was
found to predict DM independent of prescription dose (9). The
confirmation that an incidental dose over 3 cm outside the GTV
is independent of tumour dose suggests that studies investigating
prescription dose should also consider dose outside the planned
treatment area (17). The importance of considering multiple
locations was further identified by the counterintuitive results
displayed for Region 1. The interpretation of Region 1 is unclear,
but it is located close to the edge of the PTV and the mean dose to
this area is over 50 Gy for all patients, so the standard deviation
of the dose may relate to conformality rather than underdosage.
Further work is needed to determine its clinical relevance.
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The idea of combining clinical, imaging, and treatment data
to inform prediction is not new with pipelines developed to
incorporate all aspects into model-building (12). However, each
factor is usually assumed to contribute the same increase in risk
across all patients, so interactions are ignored. If the interaction
term was removed in this analysis, there was no association
between density features and dosimetric parameters with
outcome. However, this contrasts with the work of Diamant
et al. where there was an increased risk of metastasis for lower
dose across all patients (9). Further investigation is required to
determine how the interaction validates in different cohorts.
Overall, this study suggests that considering imaging or dose
alone may underpower a study when there is biological rationale
supporting that an interaction could be present (13). The link
between microscopic disease and incidental dose is an example of
a biological interaction, which could be relevant beyond lung
cancer, for example in prostate cancer where a lower incidental
dose outside the prostate has been linked to failure (39). Other
examples of interactions could include the influence of genes
linked to tissue radiosensitivity (40), or patient performance
status on risk of experiencing a radiotherapy-related side effect
(38). Although some biomarkers may not differ spatially, the
ideas presented are relevant for assessment of the dose
distribution whilst controlling for a biomarker of interest. Such
studies could include one-dimensional radial curves, surface
maps (31), or voxel-based analysis (38).

The improvement in model performance observed in this
study is modest, but it is the first time this methodology has
been presented and therefore density features and dosimetric
parameters were chosen to be simple and interpretable. As a
balance between mean and minimum dose (3, 9), we considered
the generalised mean dose, but this was not selected and is likely
sensitive to the a parameter chosen. One of the best models
included the fraction of annuli volume receiving EQD2 below 30
Gy. Although investigated as a continuous parameter, defining a
dose threshold without an adequate basis may lead to similar
issues to subgroup analysis, i.e., increased risk of false positives
(14). The threshold implemented was based on descriptions of
MDE dose–response (28) and is slightly larger than a threshold
previously investigated (21 Gy) (9). In addition, the fraction of
volume assessment correlates with tumour volume which cannot
be ignored when interpreting results. Standard deviation was also
included in final models but may not always imply underdosage as
SD scales with both the minimum and maximum dose. Standard
deviation was not influenced by volume at distances close to the
PTV—but volume becomes more important at larger distances.
Despite this concern, the interaction result is significant after
correcting for volume in the multivariable model.

For imaging biomarkers, we concentrated on first-order
metrics which have shown potential (3), but we did not
consider tumour shape or more complex texture metrics due
to increased potential of tumour volume confounding (41, 42).
The reduced chance of volume confounding with first-order
density metrics was confirmed in this work. Testing more
imaging features and dosimetric parameters would require
integration of feature selection techniques, which was deemed
FIGURE 6 | Contrast plots for each of the models built displaying the log
(hazard ratio) versus density at different values of the dose parameter. From
top to bottom Regions 1, 2, and 3. Significant association between density
and dose is only detected at low-dose variability in the 1.1- to 1.9-cm region,
and high-dose variability and greater underdosage in the 2.4- to 3.9-cm
region. In these cases, higher tumour variability and higher peritumour density
are associated with increased risk.
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inappropriate due to the sample size in this study. One concern
related to the sample size is the multiple tests performed with an
exploratory data mining methodology. To reduce the number of
false positives, we implemented post-processing based on region
size, investigated the stability of coefficients over bootstrap
resamples, and considered the variance of the values extracted.
Post-processing techniques on region size have been
implemented elsewhere as a replacement for traditional
multiple testing correction methods (i.e., false discovery rate),
which often assumes that tests are independent (30, 31). As we
are studying changes over the distance, there will be a high level
of correlation between neighbouring annuli and traditional
multiple testing is likely too strict. In future, we aim to test the
sensitivity of the post-processing techniques against other
options such as permutation testing based on model
performance statistics. Overall, with post-processing on size,
we identify larger regions in comparison to surface metrics
reported so far (3).

The aim of this study was to describe the ‘Cox-per-radius’
methodology for the first time, but further work is required to
confirm any conclusions and test sensitivity to changes in the
analysis pipeline. The imaging biomarkers reported should
undergo the same level of rigorous testing as traditional
radiomics (43), but smoothing over radial distance and use of
the optimal phase may already control for the impact of motion
and voxel size (15, 18). However, there are different methods
available to compare cross-histograms to determine the optimal
phase (44).

One potential limitation is whether the GTV under-samples
the ground-truth tumour volume. In the GTV generation
methodology, such under-sampling could result from an iGTV
which does not cover the full motion extent of a mobile tumour.
This concern is highlighted in the weak correlation between
tumour motion amplitude and peritumour density, but the
removal of inadequate contours on visual assessment reduces
the chance of under-sampled contours being included in the
study (20). If inadequate contours were included, higher density
could represent tumour that was missed in the original plan, but
this is not limited to our approach as even gold-standard
contours do not always include high-density spiculations at the
border. Before full clinical interpretation of results can be made,
investigation is required on whether uncertainty in contouring
(i.e., inclusion of spiculations) could influence the risk of distant
failure, and hence the likelihood that density biomarkers relate to
microscopic disease rather than missed macroscopic disease. A
key advantage of the Cox-per-radius approach is that
confounders can be corrected for in the exploratory analysis,
but like in other data-mining studies, a full causal interpretation
of results cannot be gained at this stage. For use of this
methodology in clinical studies, we would recommend testing
of negative controls, such as the testing on voxel-randomised CT
data presented by Welch et al. (41). If the outcome is linked to
density rather than the region of interest, the interaction should
disappear in such a test.

As we are presenting this methodology for the first time,
uncertainty remains on the biological correlation between the
Frontiers in Oncology | www.frontiersin.org 11
dose relationships identified and the development of distant
metastasis. Like in other microscopic disease investigations (3,
9), we did not limit the assessment of dose to the surrounding
volume to anatomical regions (such as lung tissue only). This
could lead to inclusion of tissue which is not relevant for disease
spread (e.g., skin, heart) in the defined annuli (see Figure 5), but
this is dependent on tumour location. The inclusion of a link to
anatomical location in this methodology would be interesting as
little is known about tumour location and recurrence after SABR,
as reports on disease spread to chest wall, mediastinum, bronchi,
and vessels are limited to surgical cohorts (45). A quantitative
assessment of location will provide more information than the
tumour lobe location variable currently included in the models
(46, 47). Assessing specific anatomical locations such as ‘lungs
only’ is a potential option to reduce spurious correlations but will
lead to different amounts of data excluded dependent on location
which could introduce bias. Furthermore, data-mining
techniques could provide information on less understood
biological mechanisms, such as immune suppression, where
the inclusion of surrounding anatomy may be important (48).
In addition, it may be important to assess the molecular and
histological characteristics of the tumour when providing a
complete picture of metastatic potential—but this was limited
by data availability.

Overall, although further work is required, we have
demonstrated that spatially offset interaction models can be
built including CT density biomarkers and dosimetric
parameters whilst controlling for potential confounding
variables. The inclusion of interactions is key to personalised
radiotherapy, so that high-risk patients can be identified, and
treatment changes can be implemented to improve
patient outcome.
5 CONCLUSIONS

The interaction between imaging biomarkers and dose has been
under-investigated in radiotherapy research. We have
successfully developed a novel image-based data mining
method to explore interactions between imaging biomarkers
and dosimetric parameters at radial distance from the tumour.
The methodology allows for simultaneous assessment of CT
density and dose on independent distance scales. Density
biomarkers interact with dose to predict distant metastasis, and
associations with DM were not found in the absence of the
interaction term. Higher tumour density variability and
peritumour density are associated with increased risk of DM if
there is a larger chance of underdosage (<30 Gy) and non-
uniform dose ~3 cm from the GTV. The dose regions identified
are independent of tumour dose, but dose standard deviation
does not adequately describe underdosage at all distances leading
to counterintuitive results within 2 cm outside of the GTV.
Overall, most models support the hypothesis that density
biomarkers can predict MDE risk, and adequate dose coverage
outside the planned treatment area is required to reduce risk of
treatment failure.
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