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Epstein Barr virus (EBV) can affect 90% of the human population. It can invade B
lymphocytes, T lymphocytes and natural killer cells of the host and remain in the host
for life. The long latency and reactivation of EBV can cause malignant transformation,
leading to various lymphoproliferative diseases (LPDs), including EBV-related B-cell
lymphoproliferative diseases (EBV-B-LPDs) (for example, Burkitt lymphoma (BL), classic
Hodgkin’s lymphoma (cHL), and posttransplantation and HIV-related lymphoproliferative
diseases) and EBV-related T-cell lymphoproliferative diseases (EBV-T/NK-LPDs) (for
example, extranodal nasal type natural killer/T-cell lymphoma (ENKTCL), aggressive NK
cell leukaemia (ANKL), and peripheral T-cell lymphoma, not otherwise specified (PTCL-
NOS). EBV-LPDs are heterogeneous with different clinical features and prognoses. The
treatment of EBV-LPDs is usually similar to that of EBV-negative lymphoma with the same
histology and can include chemotherapy, radiotherapy, and hematopoietic stem cell
transplant (HSCT). However, problems such as serious toxicity and drug resistance
worsen the survival prognosis of patients. EBV expresses a variety of viral and lytic
proteins that regulate cell cycle and death processes and promote the survival of tumour
cells. Based on these characteristics, a series of treatment strategies for EBV in related
malignant tumours have been developed, such as monoclonal antibodies, immune
checkpoint inhibitors, cytotoxic T lymphocytes (CTLs) and epigenetic therapy. These
new individualized therapies can produce highly specific killing effects on tumour cells, and
nontumour cells can be protected from toxicity. This paper will focus on the latest
progress in the treatment of EBV-LPDs based on pathological mechanisms.
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BACKGROUND

Epstein Barr virus (EBV) is classified as a gamma-1 herpesvirus, and people are generally susceptible
to this virus. Patients with EBV infection are usually asymptomatic, and the development of
symptomatic disease is associated with delayed primary infection, leading to infectious
mononucleosis in young people. In addition, EBV infection is associated with various EBV-
related malignancies, such as nasopharyngeal carcinoma (NPC), gastric cancer subtypes, and several
lymphoproliferative diseases (LPDs), especially B-cell and T-cell lymphomas (1, 2). It causes about
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200000 new cancer cases worldwide every year. In cancer cells,
EBV usually remains latent to escape human immune
surveillance but can switch from a latent to a lytic cycle to
infect new cells in response to physiological stimuli (3, 4). There
are three groups of viral proteins expressed by EBV during a
latent infection: (1) the Epstein Barr virus nuclear antigen
(EBNA) family, which includes EBNA1–EBNA4, within which
EBNA3 encompasses EBNA3a, EBNA3b and EBNA3c; (2) the
late membrane protein (LMP) group, which includes LMP1 and
LMP2; and (3) EBV-encoded RNA (EBER). These viral proteins
follow four latent expression patterns, and different host cells
express different viral proteins (3) (Figure 1). In cells infected
with latent EBV, the immediate early (IE) proteins BZLF1 (Zta)
and BRLF1 (Rta) are key for mediating transformation, but the
two promoters that control Zta and Rta gene transcription are
inactive (4). Upon induction by stimulants that activate B cells,
such as calcium ionophores, phorbol esters and histone
deacetylase (HDAC) inhibitors, these promoters are activated,
resulting in the expression of immediate early lytic proteins,
followed by the production of early lytic proteins (BMRF1,
BALF1, BHRF1, BSLF1, etc.) and the initiation of viral DNA
replication (9, 10). At the same time, early lytic proteins and
DNA replication trigger the expression of late lytic proteins
(VCA-p18, gp350/220, MCP, gH/gL, etc.), which eventually
leads to the production of infectious virus particles such as
BLLF1 and BFRF3 (4, 9). More than 70 viral proteins can be
produced in the entire process (11) (Figure 2).

There is increasing evidence that virus latent and lytic
proteins can maintain the proliferation and survival of EBV-
positive cancer cells by influencing cellular mechanisms
regulating the cell cycle, apoptosis and immune recognition of
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host cells. Research to identify therapeutics for EBV has
produced many surprising results. The specific killing effect
not only improves the curative effect but also greatly reduces
toxicity and side effects. Therefore, in addition to chemotherapy,
regulatory immunosuppressive therapy and allogeneic
hematopoietic stem cell transplant (allo-HSCT), different EBV-
based treatment strategies, such as immunotherapy, gene therapy
and epigenetic therapy, are research hotspots. This paper will
summarize EBV-LPD treatment methods and discuss research
advances regarding these new schemes.
EBV-ASSOCIATED B-CELL
LYMPHOPROLIFERATIVE DISORDERS

Chemotherapy
EBV was initially detected by Epstein MA et al. in isolated and
cultured cells from a BL child in Uganda (12). BL is a highly
proliferative B-cell non-Hodgkin lymphoma (NHL) that can be
divided into three different variants: endemic (African) BL,
sporadic BL and immunodeficiency-related BL (13). EBV can be
detected in almost all cases of endemic BL and up to 40% of cases
of immunodeficiency-related BL (14). Various intensive treatment
schemes have shown great activity in patients with BL. Previous
research found that CODOX-M/IVAC +/- R (cyclophosphamide,
vincristine, doxorubicin, methotrexate, ifosfamide, etoposide, and
cytarabine with or without rituximab), CALGB (Cancer and
Leukemia Group B), Hyper-CVAD +/- R (cyclophosphamide,
vincristine, doxorubicin, and dexamethasone with or without
rituximab), and dose-adjusted (DA) R-EPOCH (rituximab,
etoposide, prednisone, vincristine, cyclophosphamide, and
FIGURE 1 | EBV expresses different viral proteins in different host cells during a latent infection. Latent type 0: EBER and miRNA are expressed in the nucleus of
host cells, mainly in EBV carriers in good health. Latent type I: EBNA1, EBER and miRNA are commonly expressed in patients with Burkitt lymphoma (BL) (5). Latent
type II: EBNA1, EBER, miRNA, LMP1, LMP2A, and LMP2B are generally expressed in patients with HL, nasal NK/T cell lymphoma (NKTCL), NPC and diffuse large
B-cell lymphoma (DLBCL) (6, 7). Latent type III: EBNA1–4, EBER, miRNA, LMP1, LMP2A and LMP2B can be expressed in posttransplant lymphoproliferative disease
(PTLD), lymphoblastic cell line (LCL) and AIDS-associated B-cell lymphoma (8).
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doxorubicin) achieved significant results. The best results showed
that patients can achieve 95% event-free survival (EFS) and 100%
overall survival (OS) (15–20) (Table 1). The low-dose adjusted R-
EPOCH regimen represents major progress, allowing the
treatment of elderly and human immunodeficiency virus (HIV)-
positive patients and solving the problem of limited application of
a high-intensity regimen due to severe toxicity in these patient
groups. However, for patients with endemic diseases, treatment
schemes are usually limited by cost, and different low-income and
Frontiers in Oncology | www.frontiersin.org 3
middle-income countries approve different schemes. For example,
the OS rate of patients in sub-Saharan Africa is between 51% and
67%, which is much worse than that in resource rich countries
(38). Therefore, those successful studies cannot represent the
heterogeneous population. Meanwhile, chemotherapy is not
sufficient to block disease activity and eradicate infected cells.
There is a lack of further salvage treatment for patients with
recurrent or refractory BL, and there is an urgent need to develop
more effective treatments.
TABLE 1 | Summary of available therapies in EBV-B-LPD.

Therapy Patients
characteristics

Efficacy Reference

Chemotherapy CODOX-M/IVAC+/-R BL 2-year EFS: 65%, 2-year OS: 73%; 3-year PFS: 74%, 3-year OS:
77%

(15, 16)

GALGB+/-R BL 3-year EFS: 74%, 2-year OS: 78%; 3-year EFS、OS: 45-54% (18, 19)
HyperCVAD +/-R BL 3-year EFS: 80%, 3-year OS: 89% (17)
(DA)R-EPOCH BL EFS: 95%, OS: 100% (20)

Immunotherapy Monoclonal
antibody

R-CHOP PTLD/DLBCL First-line treatment –

Rituximab PTLD It is related to the elimination of PTLD related mortality (21)
BV PTLD/DLBCL The patient had no disease progression 3.5 years after PTLD. (22)
Daradaratumumab PTLD A rapid decrease in EBV viral load was observed (23)

Checkpoint
inhibitors

Nivolumab HL ORR: 66% (24)
HL ORR: 89%, CR:59% (25)

Pembrolizumab HL ORR: 69%, CR: 22.4% (26)
Sintilimab HL ORR: 80% (27)
Tislelizumab HL CR: 62.9%, ORR: 87.1% (28)
Camrelizumab HL CR: 28%, ORR:76% (29)
Nivolumab + BV HL CR: 67%, ORR:85% (30)

HL OS: 98% (31)
HL It is effective and well tolerated in the elderly (32)

Nivolumab PTLD The child received CR (33)
Nivolumab The woman received CR (34)

CTL EBV-CTL PTLD CR: 84.6% (35)
EBV-CTL line bank PTLD The 6 months effective rate was 52% (36)
CMD-003 R/R lymphoma and

PTLD
It has been granted fast track by FDA (3)

EBV-CTL and LMP-2-
CTL

cHL The patients were well tolerated and sustained clinical responses
were observed.

(37)
April 2022 | Volume 12 | Art
FIGURE 2 | EBV lytic cycle reactivation. After a variety of stimulants activate the EBV Z/R promoters (Zp and Rp), the two immediate early proteins reciprocally
activate expression and drive the EBV lytic cycle. In this process, a series of lytic proteins are produced to regulate gene expression and induce DNA replication.
Finally, the virus particles are packaged by structural proteins and released through exocytosis.
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Immunotherapy
Monoclonal antibodies
EBV is detected in 25–50% of Hodgkin’s lymphoma (HL) cases in
the United States and Europe (39, 40). In immunosuppressed
individuals, EBV-encoded LMP-1 contributes to NF-kB pathway
activation and induces an antiapoptotic phenotype in Reed–
Sternberg (RS) cells in HL (41). CD30, a transmembrane protein
belonging to the tumour necrosis factor receptor family, is
specifically expressed in normally activated (rather than static) B
and T cells and NK cells. The CD30-targeted antibody brentuximab
vedotin (BV) showed significant antitumour activity in recurrent or
refractory (R/R) HL and anaplastic large cell lymphoma (ALCL),
leading to its accelerated approval by the FDA (42). The results of a
preliminary phase II study showed moderate efficacy of SGN-30 in
HL patients with all levels of CD30 expression (43). In addition,
continuous treatment with MDX-060, a human anti-CD30
immunoglobulin G1 monoclonal antibody, was well tolerated in
phase I and II clinical trials. However, there has been no study on
the effect of CD30 mAbs on EBV load.

In 2003, EBV+ diffuse large B cell lymphoma (DLBCL) was first
described as a unique entity in elderly patients, and in situ
hybridization showed that this disease was related to EBV (44). In
2008, the World Health Organization (WHO) defined the
temporary entity of DLBCL based on a large number of studies
conducted in Asian populations and named it ‘‘EBV positive
DLBCL of the elderly”. After that, several groups studied the
association between EBV and DLBCL in children and young
people, and proved that EBV positive was also detected in these
age groups (45–50), and some of which showing a larger
morphological spectrum and better survival rate (51). Therefore,
the term “elderly”was replaced with “not otherwise specified” (EBV
+ DLBCL, NOS) in the 2016 classification and is no longer
considered provisional (52). Sarah Park et al. evaluated EBER
expression by in situ hybridization in 380 samples from DLBCL
patients to evaluate the significance of EBV positivity on the survival
and prognosis of DLBCL patients. These researchers found that
patients with EBER-positive DLBCL showed more rapid clinical
deterioration and worse survival rates and treatment responses (53).
CD20 is a nonglycosylated pan B-cell transmembrane
phosphoprotein with a molecular weight of 35 KD that is
expressed on the surface of most mature B cells. At present,
rituximab, which targets CD20, combined with chemotherapy is
the first-line treatment for EBV+ DLBCL. Different reactions to R-
CHOP (rituximab, etoposide, prednisone, vincristine,
cyclophosphamide, and doxorubicin) have been reported
worldwide, but no prospective comparative study has been
conducted (54). CD30 is expressed in some posttransplant
lymphoproliferative diseases (PTLDs) induced by EBV infection,
including DLBCL. Brentuximab vedotin (BV), a CD30-directed
antibody–toxin conjugate, represents an attractive treatment.
Thomas Mika et al. reported the first case of long-term control/
cure of highly invasive EBV-DLBCL by combining BV and adoptive
EBV-specific T cell therapy. The patient had no disease progression
3.5 years after PTLD. However, the long-term efficacy of BV
monotherapy in the treatment of CD30+ DLBCL caused by
PTLD has not been determined (22). Clinical trials of BV
Frontiers in Oncology | www.frontiersin.org 4
combined with other therapies are ongoing (Table 3). Other
therapies were mainly studied in the background of PTLD, which
has extensive effects on EBV+ DLBCL.

Reactivation of EBV after bone marrow transplantation
usually leads to a LPD that does not respond well to standard
treatment and is usually fatal. As early as 1969, the incidence rate
of LPDs in solid organ and bone marrow transplant recipients
was very high, between 0.5% and 17% (79, 80). EBV infection
affects approximately 60–80% of patients with PTLD, including
100% of patients with early-onset PTLD (81). Associated EBV
infection and CD20+ B cell proliferation were observed in 90% of
cases. Therefore, in addition to stopping immunosuppressive
drugs, monoclonal anti-CD20 antibodies (such as rituximab) can
be used in standard treatment (82, 83). W J F M van der Velden
et al. noted that pre-emptive treatment, which is defined as
rituximab administration to patients with a symptomatic EBV
infection, is related to the elimination of PTLD-related mortality
(21). At present, there is no standardized rescue treatment. If
there is no response to anti-CD20 treatment, patient prognosis is
very poor. Patrick-Pascal Strunz et al. reported the first case of
combined treatment with a CD38 antibody (daratumumab) and
EBV-specific cytotoxic T lymphocytes for EBV+ rituximab-
refractory PTLD. The flow cytometry results of a sample from
the 55-year-old male patient showed the loss of CD20 and
continuously high CD38 expression in the homogeneous B cell
population. Therefore, after the administration of EBV-specific
cytotoxic T lymphocytes to this patient, daratumumab was
added, and a rapid decrease in EBV viral load was observed.
However, the examination results showed early recurrence of
PTLD after 2 weeks (23). The role of CD38-targeted
immunotherapy in the treatment of rituximab-refractory
CD38+ PTLD needs to be further explored. In addition, the
CD30 antibody mentioned above is also used to treat PTLD.

Checkpoint Inhibitors
Programmed death ligand 1 (PD-L1) is an immunomodulatory
molecule expressed by antigen-presenting cells that selectively
binds to the PD-1 receptor on T cells to inhibit T cell immune
function. Both RS cells of cHL and malignant B cells of PTLD
express PD-L1, and this expression is promoted by EBV.
Therefore, these diseases share this immune escape mechanism
(35, 36, 84) (Figure 3). Nivolumab and pembrolizumab,
humanized anti-PD-1 monoclonal antibodies, have been
proven to be effective in the treatment of patients with R/R
cHL. In 2016, Anas Younes and his team found that the overall
response rate (ORR) for nivolumab was 66% with acceptable
safety in cHL patients who failed autologous stem cell transplant
(ASCT) (24). In 2017, a phase II study involving 221 R/R HL
patients showed that the ORR for pembrolizumab was 69%, and
the complete remission (CR) rate was 22.4% (26). Subsequent
extended follow-up reported that the median PFS was 14 months
(85). Nivolumab and pembrolizumab were approved by the FDA
in 2016 and began to be used in the treatment of cHL in R/R
patients in 2017. In addition, pembrolizumab can be included in
consolidation treatment after ASCT. Philippe Armand et al.
conducted the first immune checkpoint blocking study for
April 2022 | Volume 12 | Article 838817
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consolidation therapy in patients with R/R cHL and proved that
PD-1 blockade with pembrolizumab after ASCT had acceptable
safety and a significant progression-free survival (PFS) benefit
(86). A large number of combined therapy studies including PD-
1 have emerged (Table 1). The combined use of BV-nivolumab is
a promising scheme. In a single arm phase I/II study, BV-
nivolumab was applied to patients before ASCT, achieving a
high CR of 67% and an ORR of 85% (30, 87). Among patients
with high-risk R/R HL, consolidation after HCT with BV-
nivolumab resulted in an estimated 18 month PFS and OS of
95% and 98% in all 59 patients, respectively (31). In addition, the
combination of the two drugs is effective and well tolerated in
newly treated elderly patients with HL (32). There are also a
variety of new PD-1 inhibitors, such as sintilimab, tirizumab and
camerezumab, which are under development. Their ORR is
about 80% and CR rate is 30 – 60% (27–29) (Table 1). These
studies excluded patients previously treated with PD-1. In the
future, it will be interesting to assess the response of patients
previously exposed to checkpoint inhibitors to new PD-1
inhibitors. Given the known efficacy in cHL, the use of
immune checkpoint inhibitors in PTLD is promising (88). It is
reported that after all conventional treatments failed and
significant toxicity occurred in a child with PTLD, the salvage
treatment with nivolumab achieved CR (33). Similarly, this result
was also observed after application of nivolumab in a woman
with cHL-like PTLD (34). At present, a phase I clinical trial to
explore the efficacy of nivolumab and EBV-specific T cells in
patients with R/R EBV-positive lymphoma, including PTLD, is
completed, but no results were released (NCT02973113).

CTLs
Immunotherapy strategies to restore virus-specific immunity are an
attractive alternative to antiviral therapy. EBV-specific CTLs of
human leukocyte antigens (HLA)-matched donors or autologous
lymphocytes can be activated and expanded in vitro and then
injected into the recipient, where they can restore cellular
immunity after EBV infection and eradicate EBV-infected cells.
The most common adverse reaction is graft-versus-host disease
(GVHD). Compared with adoptive therapy with monoclonal
antibodies, CTLs can actively migrate through the microvascular
wall to reach isolated tumour cells and undergo self-expansion.
CTLs can kill tumour cells through cytotoxic effectors and have
advantages in biological distribution and antitumour activity (89).
In some initial single-centre experiments, EBV-CTLs were used to
treat viral reactivation after bone marrow transplantation and
achieved clear results (90, 91). In 1994, Ekaterina Doublovina
et al. reported that five patients with EBV-associated lymphoma
achieved sustained clinical remission after receiving peripheral
blood mononuclear cells (PBMCs) from EBV-seropositive
transplant donors (92). Subsequently, C M Rooney et al. prepared
the first EBV CTL line in vitro from donor leukocytes and infused
these cells into ten lymphoma patients after allogeneic
transplantation to reconstruct EBV-specific immunity; the cells
were found to persist for ten weeks in vivo without GVHD (93).
The team infused EBV-CTLs in 114 HSCT patients at three
different centres over a 12-year period. The CR rate reached
84.6% in 13 patients with PTLD and proved that the duration of
Frontiers in Oncology | www.frontiersin.org 5
functional CTLs was up to 9 years. The other patients who received
preventive treatment did not develop PTLD [42]. The main
disadvantages of generating EBV-CTLs for specific patients are
that it is expensive and time-consuming; it takes three to four
months to generate a suitable CTL system. Tanzina Haque et al.
generated allogeneic virus-specific CTL line banks from normal
donors, overcoming the main limitations. It was found that the
higher the HLA match between patients and CTLs was, the better
the response. In this phase II clinical trial, the 6-month response rate
of 33 patients with PTLD who failed conventional treatment was
52% (94). In addition, the autologous T cell therapy CMD-003 has
been approved by the FDA for the treatment of R/R lymphoma and
PTLD (3) (Table 1). Due to cost constraints and technical
difficulties, EBV-specific CTLs are always used after the patient’s
condition has deteriorated, and this treatment strategy is not
currently being used in the clinic. A multicentre, open label,
single arm, phase III study was completed in March 2021. In the
context of allogeneic haematopoietic cell transplantation, the
efficacy and safety of an allogeneic T cell immunotherapy called
tabelecleucel in the treatment of EBV+ PTLD were evaluated. The
results have not been published (NCT03392142). Other relevant
clinical trials are still in progress (Table 3).

RS cells in EBV-positive cHL can downregulate immune-
dominant EBV nuclear antigens such as EBNA3A, EBNA3B and
EBNA3C so that most CTLs against potential antigens lose their
effect. However, the latent proteins LMP-1 and LMP-2 expressed by
tumour cells in approximately 40% of patients with Hodgkin’s or
non-Hodgkin’s lymphoma then become the immunotherapeutic
targets of CTLs (95) (Figure 3). M A Roskrow et al. conducted a
number of phase I clinical trials in patients with cHL using
polyclonal EBV-CTLs and CTLs rich in precursors targeting
LMP-2 (37). A large number of EBV-specific T cells were
obtained from 9 patients with advanced Hodgkin’s disease and
successfully expanded slowly in vitro. After these cells were injected
into patients with multiple relapses, the activity of EBV-specific
CTLs increased, which enhanced the immune response to EBV for
more than 13 weeks. In addition, it was found that these CTLs could
recognize LMP2A expressed by tumour cells (Table 1).

Gene Therapy
The transcription factor EBNA2, a latent viral gene expressed by
malignant cells latently infected with EBV, is a transactivator of
virus and gene expression (96). M Franken et al. showed that use
of the BamHI C promoter (CP) of EBNA2 in B-cell lymphoma
can regulate the expression of the suicide gene and can selectively
enhance the sensitivity of EBNA2-expressing cells to ganciclovir.
These results provide in vivo and in vitro support for gene
therapy based on the molecular basis of tumour development
(96). Jian Hua Li et al. reported the feasibility of adenovirus-
mediated wild-type p53 (Ad5CMV-p53) gene therapy for NPC.
The adenovirus vector regulates transgene expression through
the EBV replication initiation site, which can accurately transmit
p53 to EBV-positive cancer cells and induce apoptosis. This
approach shows effective cytotoxicity that can be enhanced by
ionizing radiation (97). The team then further demonstrated that
the results of EBV-targeted gene therapy could be replicated in
mouse tumour models, which is expected to support the
April 2022 | Volume 12 | Article 838817
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translation of this strategy into the clinic for NPC patients (98).
At present, there is little research on gene therapy in EBV-LPDs,
although there is much space for further exploration.
EBV-ASSOCIATED T- AND NK-CELL
LYMPHOPROLIFERATIVE DISORDERS

Chemotherapy
Epstein Barr virus (EBV) can cause B-cell lymphoma and is also
found in some T or NK cell lymphoid tumours, such as
extranodal NK/T-cell lymphoma (ENKTCL), invasive NK cell
leukaemia (ANKL) and chronic active Epstein Barr virus
infection (CAEBV). The WHO classification of haematopoietic
and lymphoid tumours was revised in 2017 (WHO 2017), and
CAEBV is defined as an T cell or NK cell tumour (99). The
infected cells in CAEBV are activated and clonally proliferate
with the characteristics of inflammation and malignancy.
Affected patients experience fatal progression after lymphoma
or HLH, so treatment needs to be started before this occurs.
Chemotherapy can significantly reduce disease activity and the
burden of residual EBV-infected T cells, but it is usually
Frontiers in Oncology | www.frontiersin.org 6
impossible to significantly reduce EBV-DNA load before
haematopoietic cell transplantation. One of the main goals of
chemotherapy is to control disease and reduce the risk of
transplantation-related complications. Akihisa Sawada and
others selected the combination of steroids, etoposide and
cyclosporine or cytotoxic chemotherapy according to the
treatment of lymphoma and then performed HSCT. The OS of
79 patients with CAEBV and related diseases reached 87% (100).

The prototype of EBV-driven lymphoma is extranodal NK/T cell
lymphoma of the nasal type. Due to the high expression level of P-
glycoprotein in NK lymphoma cells, chemotherapy, such as CHOP-
and doxorubicin-based regimens, is largely ineffective. However, the
lack of asparagine synthase makes ENKTCL sensitive to
L-asparaginase. DDGP (cisplatin, dexamethasone, gemcitabine
and pegaspargase) was recommended as the first-line
chemotherapy for NK/T-cell lymphoma in the National
Comprehensive Cancer Network (NCCN) guidelines in 2020.
Other schemes based on L-asparaginase, such as SMILE
(dexamethasone, methotrexate, ifosfamide, asparaginase, and
etoposide), also showed good efficacy; however, this regimen is
highly toxic and can even lead to death (55). DDGP, P-Gemox and
AspaMetDex are less toxic alternatives to SMILE (56, 57) (Table 2).
TABLE 2 | Summary of available therapies in EBV-T/NK-LPD.

Therapy Patients
characteristics

Efficacy Reference

Chemotherapy Steroids, etoposide and cyclosporine or cytotoxic
chemotherapy + HSCT

CAEBV OS: 87% (31)

DDGP NKTCL First-line treatment. -
SMILE regimen NKTCL ORR: 79%, CR: 45% (55)
P-Gemox NKTCL ORR: 80%, CR: 51.4% (56)
AspaMetDex NKTCL ORR:77.8% (57)
CHOP PTCL-NOS Usually incurable. –

Allo-HSCT EBV-T/NK-LPD It is a method to cure EBV-T/NK-LPD. (58)
Immunotherapy Monoclonal

antibody
Daratumumab NKTCL ORR:35.7% (59)

ORR:25% (60)
BV NKTCL 2 patients received CR. (61, 62)

Checkpoint
inhibitors

Pembrolizumab NKTCL 5 of the 7 R/R patients achieved CR. (63)
NKTCL 2 patients received CR 2 patients received PR. (64)

Nivolumab NKTCL 3 patients with R/R NKTCL achieved clinical
response.

(65)

Sintilimab NKTCL ORR:68% (66)
Avelumab NKTCL CR:24%, ORR:38% (67)
Geptanolimab PTCL CR:14.6%, ORR:40.4% (68)
PRN371 NKTCL It can inhibit tumor growth in NKTCL xenograft

model.
(69)

Tofacitinib NKTCL It can inhibit JAK3 activity in vivo and in vitro. (70)
CTL LMP-CTL NKTCL CR was 2-6 years, and 8 survived for at least

2 years.
(71)

LMP-CTL NKTCL OS: 100%, PFS:90% (72)
Epigenetic
therapy

HDAC
Inhibitors

SAHA PTCL and
CTCL

It can inhibit tumor growth and metastasis in
NKTCL xenograft model.

(73)

Romidepsin PTCL and
CTCL

It can induce complete and lasting response. (74)

Chidamide PTCL It has significant single drug activity and
controllable toxicity

(75)

Other
approaches

Proteasome
inhibitor

Bortezomib+ CHOP NKTCL ORR: 61.5% (76)
Bortezomib CTCL and

PTCL
ORR: 67% (77)

Bortezomib NKTCL ORR: 42.8% (78)
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EBV+ PTCL-NOS is a highly heterogeneous mature post-
thymic T cell tumour. CHOP is the most commonly used first-
line treatment for systemic PTCL, but this disease is usually
incurable. When EBV-related LPD is pathological grade 3 and
the patient has severe systemic symptoms, chemotherapy can be
considered to control the disease condition but cannot improve
patient prognosis (101).

Allo-HSCT
Numerous studies at home and abroad have proven that allo-
HSCT can cure EBV-T/NK-LPD. In 2000, K Kawa et al. first
reported the cure of a patient with CAEBV by allogeneic bone
Frontiers in Oncology | www.frontiersin.org 7
marrow transplantation, which also eradicated EBV-infected
peripheral T cells and natural killer cells (102). A series of
studies have proven an obvious survival benefit for patients
treated with HSCT (103, 104). However, the prognosis
of patients with active disease at allo-HSCT is worse than that
of patients without active disease (105). Arai et al. found that 4 of
the 5 patients with active disease at the time of HSCT
experienced transplantation failure or recipient cell recovery.
These findings suggest the importance of disease control before
HSCT. Recently, Ichiro Yonese et al. evaluated 100 patients with
newly diagnosed EBV-T/NK-LPD in Japan from January 2003 to
March 2016 and found that the 3-year overall survival rates of
TABLE 3 | Clinical trials of therapy for EBV LPDs.

Intervention/treatment Phase Tumour type ClinicalTrials.gov
Identifier

CD30 monoclonal
antibody

MDX-1401 Phase 1 R/R HL NCT00634452
BV Phase 2 cHL, PTCL NCT03947255
BV/BV + bendamostine/BV+ dacarbazine/BV+nivolumab Phase 2 HL, PTCL NCT01716806
BV/BV + nivolumab Phase 2 R/R HL, NHL NCT01703949
BV + nivolumab Phase 2 R/R HL NCT04561206
BV Phase 2 R/R HL NCT01508312
BV + chemotherapy Phase 1 and

phase 2
Stage II-IV HIV associated HL NCT01771107

BV + irutinib Phase 2 R/R HL NCT02744612
BV + nivolumab Phase 2 R/R HL NCT03057795
BV + chemotherapy Phase 2 Stage II-IV elderly HL NCT01476410
BV + chemotherapy Phase 3 Stage IIB/IIIB-IVB adolescent

HL
NCT02166463

BV + chemotherapy Phase 1 and
phase 2

R/R DLBCL NCT03356054

BV + lenalidomide + rituximab Phase 3 R/R DLBCL NCT04404283
BV / R/R PTCL NCT04213209
BV Phase2 PTCL NCT03947255

CTL Rituximab + LMP-CTL Phase 2 child PTLD NCT02900976
Tabelecleucel Phase 3 PTLD NCT03394365
Tabelecleucel Phase 2 EBV related diseases NCT04554914

PD-1 inhibitor Nivolumab + ifosfamide, + carboplatin+ etoposide Phase2 R/R HL NCT03016871
Nivolumab+radiotherapy Phase2 cHL NCT03480334
Camrelizumab +/— decitabine Phase2 HL NCT03250962
Camrelizumab + GEMOX Phase2 R/R HL NCT04239170
Sintilimab + RCHOP Phase2 EBV+DLBCL NCT04181489
Tislelizumab + zanubrutinib Phase2 EBV+DLBCL NCT04705129
Tislelizumab + dexamethasone, azacytidine + pegaspargase Phase2 NKTCL NCT04899414
Tislelizumab + (azacytidine + lenalidomide)/(etoposide,
pegaspargase)

/ NKTCL NCT05058755

Tislelizumab Phase2 NKTCL/PTCL NCT03493451
Avelumab Phase2 PTCL NCT03046953
PD-1 blocking antibody+ chidamide + lenalidomide +
gemcitabine

Phase 4 PTCL NCT04040491

PD-1 antibody+ HDAC inhibitor Phase 2 PTCL NCT04512534
Geptanolimab (GB226) Phase 2 PTCL NCT03502629
Sintilimab + chidamide+ azacidine Phase 2 PTCL NCT04052659
Nivolumab + cabiralizumab Phase 2 PTCL NCT03927105

HDAC inhibitor Romidepsin + pralatrexate+durvalumab +5-azacitidine Phase 1 and
phase 2

R/R PTCL NCT03161223

HDAC inhibitor+PD-1 antibody Phase 2 PTCL NCT04512534
Romidepsin + lenalidomide Phase 2 PTCL NCT02232516
Romidepsin + Ixazomib Phase 1 and

phase 2
R/R PTCL NCT03547700

Romidepsin + lenalidomide+ CC-486 (5-azacitidine) +
dexamethasone

Phase 1 PTCL. Etc. NCT04447027

Azacytidine + romidepsin + belinostat + pralatrexate +
gemcitabine

Phase 2 PTCL NCT04747236
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chemotherapy alone, allo-HSCT after chemotherapy and allo-
HSCT alone were 0%, 65% and 82%, respectively (58). Therefore,
chemotherapy has not solved the problem of disease activity
before transplantation. Although allo-HSCT can cure patients,
the risk of complications after transplantation is high, and it is
generally reserved for use in severe cases.

Immunotherapy
Monoclonal Antibodies
To date, several monoclonal antibodies against human CD38
have been successfully developed, such as daratumumab,
isatuximab (SAR650984) and MOR202 (59). Wang L and
colleagues demonstrated that 95% of NK/T cell lymphoma
(NKTCL) cases were CD38 positive and half had high CD38
expression, which was significantly correlated with adverse
results, indicating the potential role of CD38 as a therapeutic
target in ENKTCL (106). A subsequent case report described an
Asian woman with R/R NKTCL who achieved CR with
daratumumab (107). At the 2018 American Society of
Haematology (ASH) meeting, preliminary results reported a
good remission rate with daratumumab for the treatment of
patients with R/R NKTCL, and the ORR was 35.7% (59). The
latest phase 2 study of R/R NKTCL included 32 Asian patients,
and the ORR reached 25% after the application of single drug
daratumumab. All patients were well tolerated, but none reached
CR and the response duration was short (60). This may indicate
that daratumumab alone is insufficient to treat patients with
invasive characteristics, especially those with poor prognosis.
Whether daretouximab can be used in combination with drugs
Frontiers in Oncology | www.frontiersin.org 8
for the treatment of NKTCL remains to be further studied. The
CD30 drug–antibody conjugate brentuximab vedotin is effective
in NKTCL because CD30 was reported by Feng Y et al. to be
expressed in approximately 50% of 622 patients (108). To date,
no clinical trials have been conducted specifically for recurrent/
refractory NKTCL, but two patients were reported to achieve CR
after BV treatment. Hee Kyung Kim et al. reported a case of an R/
R NKTCL male patient with skin lesions who received
brentuximab vedotin monotherapy and achieved long-term CR
after 4 cycles. Subsequently, Li Mei Poon et al. treated ENKTCL
that relapsed after chemotherapy with a combination of
brentuximab vedotin with bendamustine and achieved CR (61,
62) (Table 2).

Checkpoint Inhibitors
EBV-driven latent membrane protein LMP1 is overexpressed to
activate the NF-kB/MAPK and JAK/STAT signalling pathways,
which leads to high PD-L1 expression. Based on the involvement
of these signalling pathways, anti-PD-1 antibodies and JAK1/2/3
inhibitors have been the subject of specific drug research and
applications (59) (Figure 3). Anti-PD-1 antibodies such as
pembrolizumab and nivolumab can disrupt the interaction
between PD-L1 and PD-1, thereby restoring the antitumour
activity of activated T cells (109). Kwong et al. Have confirmed
the efficacy of pembrolizumab in NKTCL patients (63); five of
the seven patients with advanced disease achieved a CR.
Immunohistochemical staining of residual lesions showed only
a few CD56+EBER+ cells in infiltrating lymphocytes. This
finding is consistent with the hypothesis that pembrolizumab
FIGURE 3 | Summary of the immunotherapeutic mechanism of EBV infected tumor cells. EBV infected tumor cells express PD-L1, and binding with PD-1-
expressing T cells in microenvironment can inhibit immune killing function; EBV drives the overexpression of latent membrane protein LMP and the activates NF- kB/
MAPK and JAK/STAT signaling pathways lead to high expression of PD-L1. Therefore, after the infusion of polyclonal EBV specific CTLs, the increased frequency of
EBV and LMP specific T cells and the application of PD-1/PD-1/L1 drugs can reduce immunosuppression and kill tumour cells.
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treatment allows T cells to recognize and kill EBV-infected NK/T
lymphoma cells. Xin Li et al. applied pembrolizumab in seven
patients with R/R ENKL after extensive pretreatment. Two had
CR and two had PR. The total response rate was 57% (64). In an
independent study, three patients with R/R NKTCL also
achieved a clinical response with low-dose nivolumab (65). In
addition to these two popular drugs, some other PD-1/PD-L1
studies have preliminary results. In a multicenter, single arm,
phase 2 clinical trial, among 28 R/R NKTCL patients, 75%
achieved ORR after continuous use of sindilimab for 24
months (66). The PD-L1 inhibitor avelumab also showed
monodrug activity in some patients with R/R NKTCL. In the
open label phase 2 study, Seok Jin Kim et al. reported a CR of
24% (5/21) and an ORR of 38% (8/21) (67). More relevant
prospective studies are still in progress (Table 3). PRN371 is a
small molecule selective JAK3 inhibitor. Nairismägi ML and his
colleagues conducted a preclinical evaluation of PRN371 and
found that it significantly inhibited tumour growth in an NKTCL
xenotransplantation model carrying a JAK3 activating mutation,
which is consistent with the in vitro results (69). In addition,
tofacitinib can significantly inhibit JAK3 activity in vivo and in
vitro, but its clinical application in cancer treatment is limited by
pan-JAK inhibitory activity. Shotaro Ando et al. found that
treatment of EBV-positive T and NK cell lines with tofacitinib
reduced phosphorylated STAT5 levels, inhibited proliferation,
induced G1 phase arrest and reduced EBV LMP1 and EBNA1
expression (70). In addition, Erika Onozawa et al. determined
that the JAK1/2 inhibitor ruxolitinib can inhibit the
phosphorylation of STAT3, thereby reducing the survival rate
of EBV-positive cells and cytokine production in CAEBV
patients (110) (Table 2).

PD-1 expression can be detected in 30–60% of PTCL/NOS
cases (111). In a single arm multicenter phase 2 study completed
in China, all R/R PTCL patients received at least one dose of
geptanolimab. Of the 89 patients with FAS, 40.4% achieved ORR,
and 14.6% achieved CR. Patients with PD-L1 expression ≥ 50%
benefited more from treatment (68). A large number of trials of
PD-1 inhibitors alone or in combination with other drugs in
PTCL are still ongoing (Table 3).

CTLs
Greater than 90% of cases of natural killer (NK)/T cell NHL,
nasal type, are related to latent type II EBV. Tumour cells can
express the weakly immunogenic EBV antigens LMP1, LMP2
and EBNA1. The stimulation of cytotoxic T lymphocytes
(CTLs) targeting LMP1 and LMP2 showed efficacy in EBV+
NKTCL. In a clinical trial of LMP-CTLs in 52 EBV-associated
lymphomas in the United States, 5 of 11 NKTCL patients
received CTLs as consolidation treatment after primary
radiotherapy or autologous stem cell transplantation. CR was
achieved for 2–6 years, 8 patients survived for at least 2 years,
and the longest period of CR was 6 years. In half of the patients,
EBV levels could not be detected in plasma during CR (71). One
patient with refractory NKTCL after autologous stem cell
transplantation also remained in CR for 2 years after CTL
infusion. Cho and colleagues studied LMP-CTL treatment in 8
patients with local disease and 2 patients with advanced
Frontiers in Oncology | www.frontiersin.org 9
NKTCL. All patients achieved CR within 4 years, with OS and
PFS rates of 100% and 90%, respectively (72). However, since
the 5-year survival rate of radiotherapy and chemotherapy can
be as high as 90%, it is not clear whether patients with early
disease truly benefit from CTL infusion. In conclusion, these
trials represent significant advances in NKTCL and EBV-
associated lymphoma. The role of CTL treatment in
maintaining local disease after first-line treatment remains to
be clarified. Longer follow-up and larger studies are needed to
confirm these results. At present, there is no phase III clinical
trial to guide clinical treatment.

Epigenetic Therapy
Histone Deacetylase Inhibitors
Reactivation of the EBV lytic cycle can enable cytotoxic antiviral
drugs to achieve a specific killing effect on EBV-positive cells.
These types of therapy include chemical lytic inducers and
nucleoside analogue antiviral prodrugs. Studies have shown
that HDAC inhibitors can reactivate the lytic cycle and lead to
enhanced apoptosis of NPC and gastric cancer cells (112–114).
HDAC inhibitors are divided into three categories according to
their chemical structure: hydroxamate, cyclic peptide and
benzamide. Suberoylanilide hydroxamic acid (SAHA) induces
apoptosis and/or cell cycle arrest in some T and NK cell lines.
SAHA also inhibited tumour progression and metastasis in a
mouse xenograft model, demonstrating that it can inhibit EBV-
related T and NK cell lymphoma (73). The cyclic peptide
romidepsin has been studied by Bertrand Coiffier et al., who
been found that romidepsin monotherapy can induce a complete
and lasting response in patients with recurrent or refractory
PTCL of all major subtypes, regardless of the number or type of
previous treatments, and has controllable toxicity (74). At
present, SAHA and romidepsin have been approved by the
FDA for the treatment of many types of malignant tumours,
such as peripheral and cutaneous T-cell lymphomas (115). Both
drugs can induce an EBV lysis cycle at acceptable concentrations
in patient plasma (113, 116). Chidamide is a novel oral
benzamide HDAC inhibitor. In a phase II study, Y. Shi et al.
evaluated the efficacy and safety of chidamide in recurrent or
refractory peripheral T-cell lymphoma (PTCL) in a Chinese
population and found that it has significant single-agent activity
and controllable toxicity (75). Seventy-nine patients were
enrolled, and an ORR of 28% was reported; 14% of the
patients achieved a CR/CRu, and the OS was 21.4 months.
Among these patients, the effects were more pronounced and
the response was more durable in AITL patients. Most adverse
events were limited to grades 1–2. Based on the results of this
critical trial, CFDA approved chidamide for this indication in
December 2014. However, it should be noted that HDAC,
especially romidepsin, may lead to serious adverse events
based on the mechanism of EBV cleavage recirculation
activation. In an open label prospective pilot study, SJ Kim
et al. found that three of the five NKTCL patients treated with
romidepsin had a rapid increase in EBV DNA titer in their blood
and an increase in liver enzymes and bilirubin levels (117).
Therefore, patients with NKTCL should avoid using romidepsin,
but patients with recurrent refractory diseases without other
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treatment options can consider the combination of two or more
research drugs with strong biological principles. Joo Hyun Kim
et al. conducted high-throughput screening of FDA approved
drugs and tested them in EBV positive cell lines. It was found
that phosphodiesterase 5 (PDE5) inhibitors, such as sildenafil,
seem to be non-toxic and effective inhibitors of romidepsin
induced EBV reactivation (118). A large number of clinical trials
of HDAC inhibitors combined with other drugs are
ongoing (Table 3).

Other Approaches
Proteasome Inhibitors
Proteasome inhibitors have been shown to inhibit cell growth
and promote cell death in a variety of cancers. Bortezomib is the
first proteasome inhibitor approved by the FDA in 2003 for the
treatment of multiple myeloma (MM) and mantle cell
lymphoma (119). The manipulation of normal ubiquitin
proteasome system function by EBV is vital for virus
replication and the survival of virus-infected cells. EBNA-1,
LMP-2A and LMP-1 inhibit proteasome-mediated degradation
to maintain virus latency, while bortezomib can reactivate the
EBV lytic cycle in EBV-related BL cells (120). Induction of the
EBV lytic cycle can activate the radioisotope [125I]2’-fluoro-2’-
deoxy-b-D-5-iodouracil-arabinofuranoside, selectively
inhibiting the growth of BL xenografts in severe combined
immunodeficiency (SCID) mice (121). Granato M et al. found
that bortezomib activates endoplasmic reticulum (ER) stress and
that C/EBP-b, C-Jun N-terminal kinase (JNK) and autophagy
mediate the transformation of a latent to a lytic EBV infection. It
is more difficult to induce the EBV lysis cycle in lymphoid cells
than in epithelial cells, and this effect is limited to BL cells (122).
In addition to reinducing the lysis cycle, bortezomib can affect
the apoptosis of EBV-related malignant tumour cells. The latent
EBV membrane protein LMP-1 has been shown to activate the
NF-kB pathway in BL and NPC, and this pathway has strong
tumorigenic activity and may contribute to resistance to
apoptosis inducers (123, 124). Bortezomib can protect the
inhibitory protein IkBa and block NF-kB activation, leading to
malignant cell apoptosis (125–128). It has been reported that
bortezomib can induce the apoptosis of NK lymphoma/
leukaemia cells, and this result was verified in vivo (76, 77,
129). In a phase I study, bortezomib combined with CHOP was
administered to patients with advanced invasive T-cell
lymphoma, and the ORR was 61.5%. Pier Luigi Zinzani et al.
obtained a 67% ORR in patients with cutaneous T-cell
lymphoma and invasive T/NK cell lymphoma treated with
bortezomib monotherapy. In a study involving 6 NKTCL
patients, the ORR after treatment with the B-GIFOX
(bortezomib, gemcitabine, oxaliplatin and ifosfamide) regimen
was 42.8% (78).

Selective Nuclear Export Protein Inhibitors
XPO1 is a nuclear export protein responsible for transporting
biological macromolecules from the nucleus, including tumour
suppressor proteins (TSPs) (e.g. p53, p73, FOXO3a, and IkB),
growth regulators (e.g., glucocorticoid receptors), and oncogenic
proteins (e.g., mRNA, c-myc, cyclin D, Bcl-2, and Bcl-6). In
Frontiers in Oncology | www.frontiersin.org 10
healthy cells, this process is strictly regulated to maintain an
appropriate balance between cell growth and apoptosis (130).
Studies have found that high levels of XPO1 are associated with
poor clinical prognosis of multiple myeloma, DLBCL,
glioblastoma and other diseases (130–132). As a linker protein,
the EBV protein SM is involved in the nuclear output of mRNA
encoding the soluble EBV gene. XPO1 inhibitors can covalently
bind to XPO1 active sites and inhibit the output of
corresponding mRNAs to the cytoplasm for translation,
thereby effectively inhibiting EBV replication and virus
transmission (133). Based on the mechanism of action of
XPO1 inhibitors, they have broad application prospects in
EBV-LPD and are under clinical investigation. A double-blind,
placebo-controlled, phase I study of ATG-527 (KPT-335,
verdinexor) for the treatment of CAEBV is ongoing; the aim of
this study is to evaluate the safety, tolerability, pharmacokinetics
and overall treatment response of different dose levels of ATG-
527 in patients with CAEBV.

Exosomes
Exosomes are small membrane-bound vesicles secreted by cells.
These extracellular vesicles (EVs) carry a wide range of molecules
and affect intercellular communication, which contributes to the
pathogenesis of various diseases and infections (134, 135). There
is considerable evidence that EBV-related exosomes specifically
package a variety of viral components that may promote EBV
infection (such as LMP-1, lmp-2a, EBER, viral RNA, and
miRNA) (136–139), which may help EBV establish the
surrounding tumour microenvironment to promote tumour
growth and survival. In addition, Keryer-Bibens C et al. found
that galectin-9-containing exosomes inhibited EBV-specific T
cell proliferation and induced apoptosis (136). Therefore,
blocking these exosomes can restore immune surveillance
while resisting tumours. Exosomes have been designated as an
effective target for cancer treatment, but they need to be
further explored.
CONCLUSION

In general, there has been great progress in our understanding
and treatment of EBV-LPDs in recent years from traditional
chemotherapy, changes in immunosuppressants and HSCT to
immunotherapy, gene therapy and epigenetic therapy stemming
from discoveries of signaling pathways and virus latency and
lysis cycles; together, this improved understanding will lead to
the development of better treatment options with fewer side
effects. Among such potential treatments, proteasome inhibitors,
HDAC inhibitors and JAK inhibitors have been tested in vitro
and in vivo using xenotransplantation models. The effects of
rituximab, nivolumab, pembrolizumab, daratumumab,
bortezomib and CTLs have been confirmed in clinical trials.
However, we must appreciate that most of the research results
are limited to specific groups. For heterogeneous populations of
EBV-LPDs, immunotherapy targets, checkpoint inhibitors,
CTLs, small molecule targets and even gene therapy are still
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elusive. We hope that as the data and science related to these
methods mature, they will provide alternative treatments as both
monotherapy and combination therapy.
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