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Background: Intracranial hemangiopericytoma/solitary fibrous tumor (SFT/HPC) is arare
type of neoplasm containing malignancies of infiltration, peritumoral edema, bleeding, or
bone destruction. However, SFT/HPC has similar radiological characteristics as
meningioma, which had different clinical managements and outcomes. This study aims
to discriminate SFT/HPC and meningioma via deep learning approaches based on routine
preoperative MRI.

Methods: We enrolled 236 patients with histopathological diagnosis of SFT/HPC (n =
144) and meningioma (n = 122) from 2010 to 2020 in Xiangya Hospital. Radiological
features were extracted manually, and a radiological diagnostic model was applied for
classification. And a deep learning pretrained model ResNet-50 was adapted to train T1-
contrast images for predicting tumor class. Deep learning model attention mechanism
was visualized by class activation maps.

Results: Our study reports that SFT/HPC was found to have more invasion to venous
sinus (p = 0.001), more cystic components (p < 0.001), and more heterogeneous
enhancement patterns (o < 0.001). Deep learning model achieved a high classification
accuracy of 0.889 with receiver-operating characteristic curve area under the curve (AUC)
of 0.91 in the validation set. Feature maps showed distinct clustering of SFT/HPC and
meningioma in the training and test cohorts, respectively. And the attention of the deep
learning model mainly focused on the tumor bulks that represented the solid texture
features of both tumors for discrimination.

Keywords: hemangiopericytoma, meningioma, magnetic resonance imaging, deep learning, classification

INTRODUCTION

Intracranial hemangiopericytoma (HPC) is a rare type of neoplasm developing from meningeal
mesenchyme around vessels. Considering the overlapping molecular characteristics (1-3), the 2016
World Health Organization (WHO) classification of tumors of the central nervous system (CNS)
combined HPC and solitary fibrous tumor (SFT) into one term SFT/HPC and assigned three grades
within the entity (4). As such, this low proportion of intracranial tumors has a high risk of
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recurrence and systemic metastasis (5-7). Once diagnosed, SFT/
HPC must be treated aggressively with a more detailed surgical
treatment followed by radiotherapy and chemotherapy due to its
malignancy of infiltration, peritumoral edema, bleeding, and
bone destruction (8-11). However, it might be difficult to
discriminate SFT/HPC from meningioma because of the
different incidences but similar characteristics on clinical
and radiological manifestations (Supplementary Figure S1)
(12). On the contrary, not all meningiomas need to be treated
aggressively. Therefore, precise distinction between SFT/HPCs
and meningiomas are essential before surgery or therapy.

Previous studies have revealed that MRI-based imaging may
contribute to the diagnosis of SFT/HPC (13-15). Radiologically,
SFT/HPCs exhibit more aggressive behaviors like necrosis and
bone erosions and heterogenous enhancement (16). And
preoperative multimodal MRI images could supply sufficient
information on tumor location, size, and peritumoral tissues for
surgical planning. Previous quantitative analysis provides effective
markers such as apparent diffusion coefficient (ADC) values in
diffusion-weighted imaging (DWI) and the degree of intratumoral
susceptibility signal intensity (ITSS) in susceptibility weight
imaging (SWI) (14, 15, 17). However, SFT/HPC has a very low
incidence, so that physicians might neglect the prescription of
multimodal imaging. And these multimodal images are not always
obtainable due to the machine-hour shortage and patients’
economic condition in many developing countries. Preoperative
classification by routine MRI images is urgently needed.

Artificial intelligence approaches for routine MRI images
have been proven to be efficient ways to achieve semantic
segmentation of lesions and extraction of multidimensional
information (18-20). State-of-the-art deep learning
architectures such as convolutional neural network (CNN)
have powerful performance in brain tumor classification,
objection, and segmentation (21-23). And another advantage
is to implement transfer learning that uses large pretrained
model weights and fine-tunes the classification layers to obtain
higher accuracy with few data.

In this study, we retrospectively collected data from patients
from Xiangya Hospital with histopathologically confirmed SFT/
HPCs and meningiomas. The aim was to adopt a pretrained deep
learning neural network model ResNet-50 (24). By implementing
the deep learning algorithms through single-modal conventional
MRI images, our model achieved a high accuracy of preoperative
diagnosis of SFT/HPCs and meningiomas. Hence, it can assist in
surgical planning and treatment after the operation.

MATERIALS AND METHODS

Clinical Cohort and Data Acquisition

In our retrospectively study, a total of 236 patients with MRI data
were enrolled in Xiangya Hospital from 2010 to 2020, with their
clinical and pathological data collected from the Electronic
Medical Record System. Considering that meningioma is way
more common in our center, we selected similar numbers of
patients to prevent model overfitting. Among them, 114 cases

were pathologically diagnosed with SFT/HPC and 122 cases were
pathologically diagnosed with meningioma. Exclusion criteria
included previous relevant treatment history or recurring cases;
patients without MRI images in our hospital or poor image
qualities (Figure 1). Brain MRI was performed as part of routine
clinical care on scanners from various manufacturers with
different magnetic field strengths (Table 1) and acquisition
parameters. This study was approved by the institutional
review board of our hospital.

Imaging Preprocessing

For each patient, presegmentation image registration was
performed with T1, T2, T1-weighted contrast-enhanced (T1C),
and T2-weighted fluid-attenuated inversion recovery (FLAIR)
images. Affine images were coregistered into the same geometric
space using the Elastic toolbox (25). Voxels of different sets of
images were resliced into an average size of 0.52 mm x 0.52 mm X
4.74 mm. All the sequences of images were used for the
segmentation of tumors, peritumoral edemas, and cysts. ITK-
SNAP, an open-source 3D image analysis software (26), was
implemented for delineating tumor boundaries in a
semiautomated fashion on a slice-by-slice basis. All regions of
interest (ROIs) containing the main disease components were
manually delineated on each MRI image by two neuroradiologists
(NY and NJ) who had 5 and 10 years of combined experience in
neurosurgery and brain tumor imaging, respectively. They were
blinded to the patients’ medical information.

We evaluated the interobserver (reader 1 vs. reader 2) and
intraobserver (reader 1 twice) reproducibility of lesion labeling
by calculating the interclass and intraclass correlation coefficients
(ICCs). For interobserver reproducibility, reader 1 and reader 2
segmented the lesions independently and they were blinded to
each other’s segmentations. In addition, and for intraobserver
reproducibility, reader 1 repeated the segmentation procedure
within 1 week of the first analysis. Generally, ICC >0.80 indicated
a good agreement for segmentation.

Simultaneously, we extracted the radiological factors including
tumor boundary, bone erosion, dural sign, T1C enhancement
patterns, venous sinus invasion, cystic components, and
peritumoral edema. And we adapted a logistic regression to
train a radiological diagnostic model for classification.

Deep Learning Training and Validation

ResNet-50 pretrained model was adapted to train the
classification model, and we selected the center slice for each
lesion to build our datasets. To fit the pretrained initial weights of
3 color channels, we applied the Jet colormap to convert the
gray-level images into RGB images, then data augmentation was
performed to prevent overfitting and extend the datasets.
Concretely, 5 data augmentation approaches were used by
TorchIO (27) including random flip random noise, random
motion, random blur, and random ghosting. Finally, all images
were normalized and recropped to 3 x 224 x 224 initial input size
as expected by the model and divided into batches by batch size
16 for more efficient training (Figure 2). In this study, we
compared different sequences including T1, T1C, and T2 and
found superior model performance with a single T1C. Thus, we
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FIGURE 1 | Flowchart of the whole study.

only used T1C and chose the center image of ROI in axial slice as
input data. Given that T1C-based MRIs are commonplace
among clinical protocols for patients with SFT/HPC or
meningioma, our model would be broadly applicable.

We trained our model on an Ubuntu 18.04 computer with 1
Intel Core i9-7940 CPU using an NVIDIA GTX 1080Ti 11GB
GPU, with 256 GB available system RAM. Training in all
categories was run for 300 epochs by an SGD optimizer with

TABLE 1 | Clinical scanners used in the study.

SFT/HPC Meningioma (n = 122) p-value
(n=114)
All manufacturers 0.451
Total at 1.5T 81 68
Total at 3T 33 36
3.0T Scanners 0.847
SIEMENS 5 5
GE Medical Systems 28 31
1.5T Scanners 0.925
SIEMENS 53 58
TOSHIBA 18 19
Alltech Medical Systems 10 9

HPC, hemangiopericytoma; SFT, solitary fibrous tumor.

momentum 0.9 and weight decay 4e-5 and cross entropy loss
function. To fine-tune the pretrained model, we froze the
convolutional layers and retrained the final fully connected
classification layer. Learning rate was initially set as 2e-5 in the
frozen layers and le-5 in the classification layer and utilized a
decay rate of 0.9 for each of the 4 steps until the model reached
convergence. In this study, we split our data into training set and
validation set according to a 4:1 ratio (training cohort = 189,
validation cohort = 47).

Feature Analysis

We applied classification activation maps (CAMs) to visualize
network attention. Internal mechanisms of deep learning
algorithms have often been referred to as a “black box.”
Implementation of CAMs could improve transparency and
understand the operations and attentions of the model. We
applied Smooth Grad-CAM++ (28) that uses the gradients of
the target concepts to produce a coarse localization heatmap
highlighting the important regions in images for predicting the
concept for model visualization. Specifically, in any class ¢, Grad-
CAM firstly computed the gradient of the score y° before softmax
with respect to feature maps A, then random samples in a
neighborhood of inputs are taken to smooth the feature maps,
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FIGURE 2 | Image preprocessing and model training. Regions of interest (ROIls) were extracted from the aligned images, and the jet colormap was applied to
grayscale MRI images, followed by the use of 5 image augmentation techniques (A). After preprocessing, input image size was reshaped to 3 x 224 x 224. ResNet-
50 convolutional layers were frozen, and the last classification layers were retrained for solitary fibrous tumor/hemangiopericytoma (SFT/HPC) and meningioma

and gradients flow back to obtain the importance weights from
AF. To produce Smooth Grad-CAM++, we calculated the
gradient of the ground truth with respect to the last layer
before classification and used the pytorch-grad-cam github
repository (https://github.com/jacobgil/pytorch-grad-cam).
And we calculated the distance from the activation center to
the center or edge of the tumor to compare the difference of the
tumor recognition patterns.

We also extracted feature maps of the last layer before
classification in the ResNet model and analyzed them by an
unsupervised algorithm t-distributed stochastic neighbor
embedding (t-SNE). This showed similarity between data
points to joint probabilities and reduce the number of
dimensions of image features depending on the non-linear
function. And t-SNE was also applied to visualize high-
dimensional radiological factors.

Statistical Analysis

We used Student t and ¥ tests to evaluate differences in patient
demographics between data split. Deep learning model
performance was also assessed using positive predictive value
(PPV), negative predictive value (NPV), sensitivity, specificity, f1-
score, receiver-operating characteristic curve area under the curve
(AUC), and average precision (AP) score. And p < 0.05 was

considered statistically significant. All statistical analysis and
visualization were performed using scikit-learn, numpy, pandas,
matplotlib, scipy, statsmodels, and seaborn libraries in Python 3.8.0.

RESULTS

Demographics and Radiological
Characteristics

A total of 236 cases were enrolled in this study (Table 2), of
which 114 cases were pathologically diagnosed as SFT/HPCs and
122 cases were pathologically diagnosed as meningiomas. There
were no significant differences between the two groups in terms
of gender (p = 0.770) and age (p = 0.163). Almost half the cases of
both tumors occurred in the convexity, including cerebrum and
cerebellum. Yet, 50 cases of meningiomas were located at the
skull base compared to 32 cases of HPCs. For radiological factors,
most cases showed clear tumor boundary without bone erosion.
Meningiomas displayed more dural tail sign, while only 9.3% of
SFT/HPCs displayed the dural tail sign. However, SFT/HPC
lesions showed more invasion to venous sinus (p = 0.001) and
more cystic components (p < 0.001). A heterogeneous
enhancement pattern was observed in 79.6% of all SFT/HPCs
and in 64.7% of all meningiomas with significant differences (p <
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FIGURE 3 | Deep learning training and validation. We trained 300 epochs and training and validation loss reached convergence at around 100 epochs. (A, B)
showed loss curve of the transfer model in the training set and validation set, respectively. (C, D) showed the accuracy curve of the transfer model in the training set

0.001). No significant differences in bone erosion (p = 0.39) and
peritumoral edema (p = 0.361) were present.

Diagnostic Performance of Radiological
Features and Deep Learning Model

As shown in Figure 3, the transfer learning model reached a
stable convergence at around 100 steps of training. After a model

convergence, we got an average loss of 0.400 + 0.040 [mean +
standard deviation (SD)] and an accuracy of 0.889 + 0.024 in the
validation set. The deep learning model reached satisfactory
AUCs (Figures 4A, C) of 0.92 and 0.91 in the training and
validation cohorts, respectively. In comparison, applying these
radiological features (tumor boundary, bone erosion, dural sign,
T1C enhancement patterns, venous sinus invasion, cystic

TABLE 2 | Demographic table.

SFT/HPC (n = 114) Meningioma (n = 122) Total (n = 236) p-value

Age (years) 42,72 + 14.87 4513 + 11.64 43.97 + 13.32 0.167
Female (n, %) 52 (45.6%) 59 (48.3%) 111 (47.0%) 0.77
Location 0.024

Convexity 74 58 132

Skull base 40 50 90

Falx 5 ih 16

Intraventricular 5 3 8
Boundary Clear (n, %) 89 (78.1%) 108 (88.5%) 197 (83.5%) 0.05
Bone Erosion (n, %) 12 (10.5%) 8 (6.6%) 20 (8.5%) 0.39
Dural Tail (n, %) 10 (8.8%) 41 (33.6%) 51 (21.6%) <0.001
Enhancement n=109 n=119 0.011

homogeneous 21 42 63

heterogeneous 88 77 165
Venous sinus invasion (n, %) 49 (43.0%) 28 (23.0%) 77 (32.6%) 0.001
Peritumoral edema (n, %) 41 (36.0%) 52 (42.6%) 93 (39.4%) 0.361
Cystic component (n, %) 26 (22.8%) 6 (4.9%) 35 (14.8%) <0.001

HPC, hemangiopericytoma, SFT, solitary fibrous tumor.
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FIGURE 4 | Model evaluation. (A) Receiver-operating characteristic (ROC) curve of the transfer model in the training set with receiver-operating characteristic curve
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components, and peritumoral edema) for differentiating SFT/
HPC from meningiomas in our study only reached AUCs
(Figures 4B, D) of 0.74 and 0.78 in the training and validation
cohorts, respectively. And for the validation set, quantitative
metrics were calculated and shown in Table 3. The model
achieved higher NPV (100% for SFT/HPC and 86.00% for
meningioma) and sensitivity (100% for SFT/HPC and 84.21%
for meningioma) for SFT/HPC compared to meningioma. And
the model achieved higher PPV (85.71% for SFT/HPC and 100%
for meningioma) and specificity (84.21% for SFT/HPC and 100%
for meningioma) for meningioma compared to SFT/HPC. The
f1-score for both tumors was similar (0.92 for SFT/HPC and 0.91
for meningioma). The AP value for SFT/HPC was 0.92 and for
meningioma was 0.86.

Analysis of Feature Maps in Convolutional
Layers

The feature maps we extracted represent the average pooling
layer before the classification layer. Furthermore, results from
the t-SNE show a distinct clustering of SFT/HPC and
meningioma in the training and test cohorts (Figures 5A,
C). However, t-SNE of patients based on radiological features

did not show an obvious cluster tendency of the two kinds of
tumor (Figures 5B, D). By implementing Smooth Grad-CAM
++, we identified the regions within the image that mostly
contributed to the prediction model (Figure 6C). The warm
tones in the heatmap in the vicinity of the tumor show
attention regions of the model. We found that for truly
predicted groups, network attention overlapped with the
tumor areas for SFT/HPC and meningioma. For incorrectly
predicted groups, the attention regions of the model were
deviated from the tumor bulks. And we calculated the distance
from the attention focal point to the tumor bulk and found no
significant differences between the SFT/HPC and meningioma
for the ground truth group (p = 0.124) (Figure 6A, left) and
the true predicted group (p = 0.125) (Figure 6A, right). Also,
no significant differences in the distance were found from the
focal points (when outside of the tumor) to the outer edge of
the tumor for the truly predicted group (p = 0.432)
(Figure 6B, right). But for the ground truth group, SFT/
HPC showed a little bit higher distance from the focal
points to the outer edge of the tumor (p = 0.03) (Figure 6B,
left). The results suggested tumor bulks of both tumors are the
attention areas for the model.
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TABLE 3 | Quantitative results for the validation set.

PPV NPV Sensitivity
SFT/HPC 85.71% 100% 100%
Meningioma 100% 86% 84.21%

Specificity F1-score AUC AP
84.21% 0.92 0.91 0.92
100% 0.91 0.91 0.86

HPC, hemangiopericytoma, SFT, solitary fibrous tumor; PPV, positive predictive value; NPV, negative predictive value; AUC, receiver-operating characteristic curve area under the curve;

AP score, average precision score.

DISCUSSION

In our study, we established a neural network classification
model to distinguish SFT/HPC from meningioma. State-of-the-
art deep learning architecture based on pretrained ResNet-50
was adapted on single T1C sequence images, and it achieved a
high prediction accuracy of 0.899 with AUCs of 0.92 and 0.91 in
the training and validation sets. Extracting the feature maps and
applying unsupervised learning also showed good performance
of image feature training. Our results suggest a promising
approach for automated discriminating these two types
of tumors.

Intracranial SFT/HPC is a rare tumor with a diagnostic age of
35-50 years and a similar male-to-female ratio (5, 29, 30).

Consistent with previous studies, our study reports that SFT/
HPC and meningioma occur on similar average age and gender
ratios, and we also reported a similar location distribution in
convexity and skull base. Using demographic features to
diagnose SFT/HPC was difficult, so physicians relied on the
preoperative radiological factors to make decisions. Specifically,
firstly, the “dural tail” sign, described as the thickness of the dura
adjacent and traditionally considered as a specific sign (31), was
significantly different in SFT/HPC and meningioma. Thus, its
appearance points toward diagnosing meningioma. Secondly,
intracranial SFT/HPC has a rich blood supply, leading to marked
heterogeneous enhancement detected in most cases, which may
be explained by pathological characteristics (13, 32, 33). Thirdly,
HPC is more aggressive and tends to have more sinus invasions,
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cysts components, and peritumoral edema (13, 34). Yet, our
study reported no significant difference in edema. On the other
hand, edema and cystic properties of the tumor indicate a high
malignancy and the necessity of surgical resection. We also
evaluated the classification performance by using radiological
features. The results of the radiological diagnostic model in our
study are not good; however, these features are quite important
for a preliminary clinical impression to discriminate the tumors.
Lastly, other studies (14, 15; 35, 36) examined DWI and SWI
characteristics of these two tumors. These studies reported
higher ADC values in SFT/HPC due to its redundant vascular
spaces and increased perfusion. And mean ADC values in
peritumoral edema in SFT/HPC were lower. It may be
speculated that the rapid growth and infiltration into adjacent
normal tissue caused the edema and lower ADC values (36).
Recent advances in deep learning-assisted approaches have
been explored, extracting more quantitative information from
limited data. In 2019, Li etal. (36) investigated the classification
of the two tumors by a radiomics approach on texture analysis.
They reported an accuracy of 77.3% and 87.5% based on DWI
and T1 images. However, the small sample size and lack of
validation set limited the confidence of their results. Wei et al.

(20) developed a clinic-radiomics diagnostic approach called
Intracranial hemangiopericytoma (IHPC) and Meningioma
Diagnostic Tool (HMDT). It achieved an AUC performance of
0.941 in classification of intracranial HPC and meningioma. And
Dong et al. (37) also proposed similar radiomics classification
methods. Compared to our model, radiomics semantic feature
extraction and machine learning classification were independent
and might be biased by different feature extraction and model
classification approaches and researchers. And it mainly relied
on feature fusion of multimodal MRI images, which limited the
application in practice. Thus, our study proposed a transfer
model that could combine feature extraction and prediction
based on only single-modal images with a strong performance
and it could accomplish an end-to-end deployment. In our
training strategies, we also compared the T1 and T2 sequences
with T1C, but they did not reach quite good performance. SFT/
HPC and meningioma often showed enhancement in T1C,
which could appear different with normal brain tissue in signal
intensity. This may help the neural network to recognize the
tumor patterns. T2 sequences may provide more information
about peritumoral edema. However, edema surrounding tumors
showed similar signals with tumors that made the boundary hard
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to identify. On the other hand, we lack some T2 or FLAIR
scanning images because those patients could have scanned in
other hospitals or only have poor image qualities, and
approximative edema pattern of SFT/HPC and meningioma
also increased the difficulty of classification. Thus, our single-
modal model has wider implications in clinical work especially in
primary hospitals, and it is easy to integrate the imaging systems.

By implementing CAMs, the attention area of the model
suggested that the tumor bulk regions are quite essential for
recognition. In other words, the tumor enhancement patterns
play a critical role in model classification. And pseudo color
reflection in our preprocessing steps also was useful for training
by modifying the image contrasts. The results suggested that we
should specifically focus on the enhancement regions and
compare the characteristics of contrast differences. Texture
features caused by abundant blood supply and necrosis in the
tumor bulks made the heterogeneous enhancement patterns.
Visualizing the model activation areas could assist us to pay
more attention to these regions when suspecting a tumor of SFT/
HPC. In addition, postcontrast images that we used are more
trustworthy for clinical explanation and model understanding in
clinical practice.

Our study illustrates a classification model with an improved
performance. Yet, there are several limitations in our study. First
of all, only patients in one particular hospital were enrolled in the
study. Hence, to better extend the robustness of the model,
external validation datasets need to be applied to test the model
reliability. Second, DWI and SWI and even functional MRI are
reliable to predict tumor types that we need to explore and
excavate in future studies. Third, both kinds of tumors have
distinct subgroups that require different management strategies
and prognoses. Our model only reached a generalized
classification. More data such as age, gender, and laboratory
tests need to be combined for a more precise prediction. Lastly,
considering that tumor bulk is very important for both tumor
recognition, further biological and molecular characteristics
would be investigated in the future.

CONCLUSIONS

We proposed a deep learning model to classify preoperative MRI
of SFT/HPC and meningioma based on single T1C modal MRI
images. Our model shows high performance to distinguish the
two tumor types with an average accuracy of 0.899 and AUC of
0.91 in the validation set. The tumor bulks that represent the
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