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Treatment resistance is observed in all advanced cancers. Colorectal cancer (CRC)
presenting as colorectal adenocarcinoma (COAD) is the second leading cause of
cancer deaths worldwide. Multimodality treatment includes surgery, chemotherapy, and
targeted therapies with selective utilization of immunotherapy and radiation therapy.
Despite the early success of anti-epidermal growth factor receptor (anti-EGFR) therapy,
treatment resistance is common and often driven by mutations in APC, KRAS, RAF, and
PI3K/mTOR and positive feedback between activated KRAS and WNT effectors.
Challenges in the direct targeting of WNT regulators and KRAS have caused alternative
actionable targets to gain recent attention. Utilizing an unbiased drug screen, we identified
combinatorial targeting of DDR1/BCR-ABL signaling axis with small-molecule inhibitors of
EGFR-ERBB2 to be potentially cytotoxic against multicellular spheroids obtained from
WNT-activated and KRAS-mutant COAD lines (HCT116, DLD1, and SW480)
independent of their KRAS mutation type. Based on the data-driven approach using
available patient datasets (The Cancer Genome Atlas (TCGA)), we constructed
transcriptomic correlations between gene DDR1, with an expression of genes for
EGFR, ERBB2-4, mitogen-activated protein kinase (MAPK) pathway intermediates,
BCR, and ABL and genes for cancer stem cell reactivation, cell polarity, and adhesion;
we identified a positive association of DDR1 with EGFR, ERBB2, BRAF, SOX9, and
VANGL2 in Pan-Cancer. The evaluation of the pathway network using the STRING
database and Pathway Commons database revealed DDR1 protein to relay its signaling
via adaptor proteins (SHC1, GRB2, and SOS1) and BCR axis to contribute to the KRAS-
PI3K-AKT signaling cascade, which was confirmed by Western blotting. We further
confirmed the cytotoxic potential of our lead combination involving EGFR/ERBB2
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inhibitor (lapatinib) with DDR1/BCR-ABL inhibitor (nilotinib) in radioresistant spheroids of
HCT116 (COAD) and, in an additional devastating primary cancer model, glioblastoma
(GBM). GBMs overexpress DDR1 and share some common genomic features with COAD
like EGFR amplification and WNT activation. Moreover, genetic alterations in genes like
NF1 make GBMs have an intrinsically high KRAS activity. We show the combination of
nilotinib plus lapatinib to exhibit more potent cytotoxic efficacy than either of the drugs
administered alone in tumoroids of patient-derived recurrent GBMs. Collectively, our
findings suggest that combinatorial targeting of DDR1/BCR-ABL with EGFR-ERBB2
signaling may offer a therapeutic strategy against stem-like KRAS-driven
chemoradioresistant tumors of COAD and GBM, widening the window for its
applications in mainstream cancer therapeutics.
Keywords: KRAS, DDR1, BCR-ABL1, COAD, GBM, chemoradioresistance, EGFR-ERBB2, Wnt/b-catenin
1 INTRODUCTION

Chemoradioresistance is a multifaceted challenge in advanced
cancers (1). Despite several developments made to improve
patient outcomes, drivers of stemness and proliferation
continue to be the cause of tumor recurrence and fatality
(2, 3). High levels of nuclear b-catenin and activated KRAS are
considered the major drivers of cancer stem cell (CSC) expansion
and cancer dissemination, the leading cause of chemoradiation
therapy (CRT) resistance in various aggressive and recurrent
tumors like that of the colon and brain (4–23).

Colorectal cancer (CRC), observed as colorectal adenocarcinoma
(COAD), is the third most common cancer worldwide and the
second highest in cancer mortality. The 5-year survival rate is 15%
in advanced cases, which includes 25% of patients at the point of
diagnosis (24, 25). The primary management of CRC includes
surgery, chemoradiotherapy, and targeted therapies; however, these
treatment strategies continue to evolve due to the emergence of
acquired resistance and tumor progression to metastasis (26, 27).
Mutations in WNT regulators, such as loss-of-function mutations
in adenomatous polyposis coli (APC) gene, are the prime triggers
for CRC and activating mutations in KRAS (Kirsten’s rat sarcoma
virus oncogene), and its downstream effectors (like PI3K and
BRAF) serve as subtype-specific oncogenic drivers. KRAS
mutations account for almost 40% of genetic alterations in
COAD, and 95% of all KRAS mutant tumors are non-responsive
to current treatments (28, 29). Amplification in epidermal growth
factor receptor (EGFR) signaling is a common cause of pronounced
proliferation, survival, and metastasis in cancers and is one of the
prime activators of KRAS (30–32). Cetuximab (anti-EGFR) is used
in combination with chemotherapy in refractory CRC disease;
however, mutations in KRAS or BRAF lead to aberrant activation
of mitogen-activated protein kinase (MAPK) signaling, thereby
causing cetuximab resistance with limiting its clinical use to wild-
type RAS/RAF tumors (33, 34). Moreover, many metastatic CRC
patients harboring wild-type KRAS and BRAF are also non-
responders to therapy, highlighting the significance of pathway
shunts in acquired treatment resistance (35). Phase I/II trials are
ongoing to test the efficacy of small-molecule inhibitors of EGFR
2

with cetuximab in combination to obtain a better treatment
outcome (36).

A recent study showed cetuximab-resistant CRC tumors to
have mutational hotspots located in the genomic landscapes of
receptor tyrosine kinases (EGFR-ERBB2), RAS, and WNT
pathways, and ERBB2 (HER2 gene) amplifications are
observed in colon cancer (37–40). Activated WNT effectors
and KRAS positively collaborate to cause acquired cetuximab
resistance (41, 42), and high nuclear beta-catenin levels and
mutated KRAS are associated with radioresistance in advanced
tumors (15–23). Several WNT inhibitors are undergoing clinical
trials; however, an intrinsically high WNT activity in stem cells
and normal colon/rectum make direct WNT targeting a
challenge (43, 44). Additionally, limitations in the development
of KRAS mutation-specific inhibitors and the emergence of
complementary pathways have rendered KRAS-driven tumors
yet an unbeatable foe (45–50). Clinical trials on targeting
signaling intermediates downstream of KRAS in the MAPK
pathway (RAS-RAF-MEK-ERK) are underway and include
inhibition of BRAF and MEK (mitogen-activated protein/
extracellular signal-regulated kinase kinase enzymes MEK1/2).
However, these strategies have shown only moderate effects due
to the parallel survival pathways that divert the signaling from
KRAS-RAF-MEK to KRAS-PIK3, and the occurrence of
mutations in regulators of KRAS (51–56). Studies show the
potential of targeting phosphatases (such as PTPN11 (SHP2)
or downstream targets of PIK3/AKT like mTOR, and research to
identify novel action targets is increasingly gaining attention
(57–65). For instance, DDR1, discoidin domain receptor 1, a
receptor for collagens in the extracellular matrix (ECM) of
tumors has recently emerged as a potentially targetable gene
against KRAS-mutant lung adenocarcinoma, and DDR1
targeting has also been identified to be beneficial against
metastatic colon cancers (66–68). We here performed an
unbiased drug screen for signaling pathways documented to be
contributors to CRC (61–65), with an aim to identify novel drug
combinations with EGFR-small-molecule inhibitors that could
offer a therapeutic advantage against KRAS-driven cancers and
overcome acquired radioresistance and cetuximab resistance
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mediated by stem-like (WNT activated) and KRAS mutation
phenotype utilizing tumoroid models of COAD.

Glioblastoma (GBM) is a highly advanced brain cancer,
which is a WHO grade IV astrocytic tumor with a median
survival of 12–14 months and 5-year survival of ~5% (69). GBMs
exhibit a high degree of intrinsic stemness, and despite the best
available treatments, tumors invariably recur (21–23). While
KRAS mutations per se are less frequently observed (70, 71),
GBM shares some common genomic alterations with CRC, like
EGFR amplification and WNT activation, which contribute to
tumor progression in both primary and recurrent states (72, 73).
Additionally, mutations in genes that contribute to activated
KRAS signaling, like neurofibromin-1 (NF1), are observed,
which make KRAS signaling a potential target in GBM (22,
73). We here utilized GBM as a second tumor model to validate
the efficacy of our prime therapeutic combination identified
against highly resilient cancers.
2 MATERIALS AND METHODS

2.1 Selection of Small-Molecule
Inhibitor Panel
A total of 38 inhibitors were selected based on their ability to
target various signaling pathway intermediates (Excel sheet 1,
sub-sheet, S1.1, S1.2). A total of 33 inhibitors were used in the
initial screening, of which 10 inhibitors were registered as FDA-
approved drugs, 9 inhibitors were investigational drugs in
clinical trials, and 14 inhibitors were drugs under preclinical
testing, or tool compounds. The additional five inhibitors
incorporated in this study included three multi-tyrosine kinase
inhibitors of the BCR-ABL family, dasatinib, imatinib, and
nilotinib (FDA approved), a Src kinase inhibitor KB-SRC-4
(preclinical), and BCR-ABL-specific inhibitor GMB475
(PROTAC compound). All inhibitors were dissolved in sterile
dimethyl sulfoxide (DMSO) (Sigma-Aldrich, St. Louis, MO,
USA) and stored frozen at −20°C. A concentration of 0.1%
DMSO was used as a control.

2.2 Cell Culture
Human cell lines HCT116, DLD1, SW480, and CaCo2 (for
COAD) and U251 (for GBM) were purchased from the
Frontiers in Oncology | www.frontiersin.org 3
American Type Culture Collection (ATCC) or Sigma-Aldrich
and maintained in ATCC-recommended media as per standard
cell culture practices. Patient-derived GBM lines were obtained
from Quiñones Lab, Neurosurgery, Mayo Clinic (74, 75).

2.2.1 3D Multi-Spheroid Cultures
Multi-spheroid 3D cultures were established by seeding cells at
optimized densities between 4,000 and 7,000 cells/well in
standard 96-well flat-bottom plates having Nunclon delta
surface (167008, Thermo Fisher Scientific, Waltham, MA,
USA) in their respective culture media (Supplementary
Figure 1; Table 1). The spheroids were cultivated in media
having 1% penicillin/streptomycin (15140122, Gibco, Grand
Island, NY, USA), without 10% fetal bovine serum (FBS), and
having additional supplements: N2-Max (AR009, R&D Systems,
Minneapolis, MN, USA), N21-Max (AR008, R&D Systems),
recombinant human EGF (AF-100-15, PeproTech, Cranbury,
NJ, USA), recombinant human FGF2 (AF-100-18B, PeproTech),
and Insulin-Transferrin-Selenium-Ethanolamine (ITSx,
51500056, Gibco). COAD-spheroid culture media having N2-
Max with EGF and FGF2 were defined as N2EF media. Media
with N2-Max and N21-Max were defined as N2N21max media,
and media having N2-Max plus EGF, FGF2 ( ± N21max), and
ITSx were utilized for GBM-multi-spheroid cultures.

Spheroid growth was monitored utilizing Multi-Tumor
Spheroid module installed in IncuCyte® Live-Cell Imaging
System (IncuCyte SX3, Sartorius, Goettingen, Germany), which
can evaluate the label-free development of 3D spheroids in real
time. The images obtained were masked or pseudo-colored by
the built-in IncuCyte® image processing component. Changes in
spheroid total area, spheroid average area, and spheroid
eccentricity were plotted over time as measures of spheroid
development, growth, and circularity, to obtain a breadth of
information on the spheroid formation and health pre- or post-
drug treatments. Additionally, averaged spheroid size was
estimated in the bright field using Evos FL microscope at 40×
magnification (15 spheroids imaged per culture condition and
average diameter recorded). Metabolic activity as a measure of
spheroid cell viability over time was measured using the
luminescence-based cell ATP release assay CellTiter-Glo®

(G7572, Promega, Madison, WI, USA). Viable cells were
counted at the beginning of every experiment using a TC20
automated cell counter (Bio-Rad, Hercules, CA, USA).
TABLE 1 | Culture conditions used for multi-spheroid growth.

Tumor type Cell lines Media Medium supplements

FBS N2 N21max EGF FGF2 ITSx

COAD HCT116 DMEM F12 − + − + + −

DMEM F12 − + + − − −

COAD DLD1 RPMI − + + − − −

COAD SW480 DMEM F12 − + + − − −

GBM U251 DMEM F12 − + − + + +
GBM-PD GBM965 DMEM F12 − + + + + +
GBM-PD QNS108 DMEM F12 − + + + + +
May 2022 | Volu
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2.3 Irradiation
X-ray irradiation (IR) was administered on 24-h cultured multi-
spheroids utilizing X-RAD 160 X-Ray Biological Irradiator
(Precision X-Ray Inc., North Branford, CT, USA) at max
mA = 18.7, max kV = 160, and dose rate 403.8 cGy/min. After
IR treatment, the spheroids were continually cultured until two
time-points: 24 h post-IR and day 5 post-IR treatment. Spheroid
growth and health were evaluated based on the increase in ROS
levels (ROS-Glo™ H2O2 Assay, G8820, Promega), change in
spheroid cell viability (CellTiter-Glo®, G7572, Promega), and
induction of caspase 3/7 activity (Caspase-Glo® 3/7 Assay
System, G8090, Promega). All assays were performed as per
themanufacturer’s protocol (scheme, Supplementary Figure 1C).
To evaluate the effect of drugs on overcoming intrinsic
radioresistance and spheroid viability post-IR treatment,
HCT116 spheroids were cultured for 24 h, IR treated at doses of
4, 8, 12, 16, and 20 Gy; and the respective drugs were administered
24 h post-IR with DMSO as control. The spheroids were
continually cultured till day 5 post-IR, and spheroid health was
estimated by change in spheroid cell viability and induction of
caspase 3/7 activity.

2.4 Multi-Spheroid Drug Screens
2.4.1 Single Drug Testing
Exponentially growingHCT116multi-spheroids cultured inN2EF
media were administered with inhibitors serially diluted in
Dulbecco’s modified Eagle’s medium (DMEM) (no FBS) at doses
up to 25 µM in triplicates. After 2 days post-drug administration,
the spheroid viability was measured (CellTiter-Glo, G7572,
Promega). Single drug response curves were obtained similarly
for the other COAD lines investigated. For GBM line U251,
spheroids were obtained by day 6, drug treatments were
performed, and measurements were done by day 12. GBM-PD
lines GBM965 and QNS108 were evaluated for intrinsic
radiosensitivity (Supplementary Methods), and inhibitors were
administered as single agents or in combination, to monitor their
efficacy on spheroid development and growth. Data obtained for
each treatmentwere normalized toDMSOcontrol.Dose–response
curves were generated, and IC50 values were determined using
GraphPad Prism software (GraphPad, Inc., La Jolla, CA, USA).

2.4.2 Combinatorial Drug Testing at Single Dose
To evaluate the drug interactions in a single-dose assay, the drugs
identified to have IC50 ≤ 25 µM from single drug testing were
combined with small-molecule inhibitors for wild-type EGFR
(lapatinib, afatinib, and sapitinib), at a combination dose that is
less than or equal to their estimated IC50 using the experimental
scheme (Supplementary Figure 1C), unless specified. The
treatments were done for 2 days on COAD spheroids, 5 days
on GBM (U251) spheroids, and 6 days on GBM-PD lines, and
the combinatorial drug response was measured based on
spheroid viability assay (CellTiter-Glo, G7572, Promega). All
treatments were done in triplicates, and data were normalized to
that of DMSO control. Doses used for combination testing are in
Excel sheet 1, sub-sheet 1.2, 1.3.
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2.4.3 Drug Synergy Testing
To identify the interactions between two drugs and to estimate
whether the effect was additive, synergistic, or antagonistic, the
drugs were combined at 5 individual doses each. These 5 doses for
each drug were selected such that they equi-proportionally spread
across its estimated IC50 and follow the IC50 potency ratio as
describedbyGrapsa andSyrigos (49) andFan et al. (50). In amatrix
of 5 doses of drug 1 and 5 doses of drug 2, 5 (drug 1) × 5 (drug 2) =
25 different combinations were obtained and administered in
quintuplicates on exponentially growing multi-spheroid cultures
at conditions optimized for single-drug testing. For each drug, all 5
doseswere also administered as a single agent, alongwithDMSOas
untreated control. The spheroid viability was measured, and data
were computed into the MacSynergy-II software (76–78). Peak
synergy scorewas assessedbasedon the guidelines byMacSynergy-
II (at >95% confidence limit) where a synergy score of 0–25 units
indicates insignificant synergy; 25–50 units, minor but significant
synergy; 50–100 units, moderate synergy; and >100 units, strong
synergy. The volume of synergy was determined as per cumulative
synergy observed at the 99% confidence limit. Data obtained were
represented in the form of i) 3D surface plots, where contours
above the plane were indicative of synergy and depressions below
the plane indicated antagonism; ii) dot plots, where spheroid
viability for all doses of drug 1 and drug 2 was presented against
the 25 different combinations administered, with each dot
representing an individual treatment condition; and iii) bar
graphs, for spheroid viability measurements done at the
treatment dosage where synergy score was maximum.

2.5 Clonal Cell Proliferation Assay
HCT116 cells were plated at optimized seeding density (600
cells/well) in a standard 96-well plate (167008, Thermo Fisher
Scientific), in growth media McCoy’s 5A medium (16600082,
Gibco) with 10% FBS and 1% penicillin/streptomycin. Drugs
were administered after 24 h, and colony growth was monitored
over time utilizing IncuCyte’s built-in clonal dilution module.
Percent cell confluence was estimated as a measure of cell
proliferation, and automated pseudo-colored images of clonal
growth were acquired on day 0, day 3, and day 5 for all treatment
conditions. CaCo2 cultures were evaluated similarly for clonal
cell proliferation (Supplementary Figure 7B). To assess clonal
cell growth and proliferation over time in patient-derived GBM
lines (PD-GBM) GBM965 and QNS108, the cells were seeded at
a density of 1,000 cells/well in a standard 96-well plate in stem-
cell media (same as utilized for spheroid cultures, having
DMEM-F12, supplemented with N2-Max plus, N21max, EGF,
FGF2, and ITSx), with or without the presence of drug
combinations being tested. The cells were allowed to grow
for a week and then assessed for viability (CellTiter-Glo®,
G7572, Promega).

2.6 Cancer Genomics
i) Evaluation of percent genetic variations: COAD and GBM
datasets from The Cancer Genome Atlas (TCGA) combined with
all COAD or GBM studies deposited at the cBioPortal database
and Pan-Cancer Atlas were utilized to obtain percent genetic
May 2022 | Volume 12 | Article 840241
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alterations for the selected gene list (source: https://www.
cbioportal.org/). ii) Relative gene expression: The mRNA
expression of the selected genes was evaluated and compared
in two biological states: normal and tumor, for both COAD and
GBM, utilizing gene expression profiling interactive analysis,
GEPIA (http://gepia.cancer-pku.cn/), which links the datasets
from TCGA (for tumor) and GTEx (for normal). iii) Profiling of
genes co-expressed with DDR1 and KRAS: GEPIA was utilized to
perform a pairwise gene expression correlation analysis of genes
DDR1 and KRAS with selective genes through TCGA and GTEx
expression datasets using Pearson’s method. Additionally, the
Pan-Cancer Atlas datasets (c-Bioportal) were utilized to perform
a pairwise gene expression correlation analysis using Pearson’s
and Spearman’s methods. iv) Protein–protein interactions were
evaluated utilizing the BioGRID (https://thebiogrid.org/) and
STRING (https://string-db.org/) databases, and pathway
engagement was further assessed using Pathway Commons
(https://www.pathwaycommons.org/). v) IC50 correlations for
EGFR inhibitors and BCR-ABL1 inhibitors were obtained for
COREAD and Pan-Cancer cell line datasets using the Genomics
of Drug Sensitivity in Cancer (GDSC) database (https://www.
cancerrxgene.org/).

2.7 Western Blotting
Western blotting was performed as per standard protocol.
Antibodies used were purchased from Cell Signaling
Technology (Danvers, MA, USA). These include the following:
Phospho-Bcr (Tyr177) (#3901), BCR (#3902S), Phospho-Akt
(Ser473) (D9E) XP (#4060), Akt1 (D9R8K) (#75692),
Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (D13.14.4E)
XP (#4370), c-ABL1 (#2862S), DDR1 (D1G6) XP (#5583), b-
Catenin (D10A8) XP (#8480), a-Actinin (D6F6) XP (#6487),
and GAPDH (D16H11) XP (#5174). The secondary antibody
used was anti-rabbit IgG, horseradish peroxidase (HRP)-linked
(#7074). The primary antibodies used in Western blotting were
diluted in 1:1,000 or 1:2,000; the secondary antibody was diluted
in 1:5,000. All antibodies were previously validated and
documented in published literature.

2.8 Statistical Analysis
Data analysis was performed using GraphPad Prism, Student’s t-
test was utilized to compare sample means, and statistical
significance was indicated as *p < 0.05, **p < 0.01, ***p <
0.001, and ****p < 0.0001. All data are presented as the mean
of at least two independent experiments with error bars as SEM.
3 RESULTS

3.1 Growth and Expansion of
Multi-Spheroids in Defined Media
Multi-spheroid cultures for all cell lines utilized in this study were
optimized and established as described in theMethods section, and
culture conditions for each line are included in Table 1 and
Supplementary Figure 2. HCT116 multi-spheroid showed
comparable growth in both culture medium compositions tested,
Frontiers in Oncology | www.frontiersin.org 5
N2EF and N2N21max (Figure 1A; Supplementary Figure 2).
Thus, all experimentswere carriedout inN2EFmedia forHCT116,
unless otherwise indicated. DLD1 formed proliferative spheroids
only in N2N21max-supplemented media (Supplementary
Figure 2). The exponential growth of spheroids was observed
between day 1.5 and day 4.5 for both the lines [Supplementary
Figure 2C(ii)]. Therefore, all drug screens were performed within
this period. Spheroid culture parameters evaluated for SW480
showed a similar trend [Supplementary Figure 2C(iii)]. GBM
lines were slower in growth relative to COAD lines investigated.
Drug treatments in U251 cells were therefore performed between
day 6 and day 12. Spheroid cultures for PD-GBM lines GBM965
and QNS108 were established likewise, drugs were administered
on day 6, and viability was measured by day 8 in culture.

3.2 Treatment Resistance in
Multi-Spheroids of Colorectal
Adenocarcinoma
3.2.1 HCT116 Multi-Spheroids Exhibit Intrinsic
Resistance to Cetuximab and Irradiation Treatment
Cetuximab administered up to a final concentration of 250 µg/ml
onHCT116multi-spheroids showedno cytotoxic effect, indicating
anti-EGFR resistance in HCT116 (Figure 1A and Supplementary
Figure 2D). Studies have reported abrogation of RAS signaling as
one of the mechanisms to enhance radiosensitivity in HCT116,
indicating a certain degree of resistance to radiation treatment in
KRASmutant lines (79, 80).To evaluate the effect of IRon spheroid
survival and growth, HCT116 multi-spheroids were administered
with single-dose radiations of 0, 4, 8, 12, 16, and 20 Gy, and
spheroid viability was compared between two time-points, 24 h
and day 5 post-IR (scheme, Supplementary Figure 1C). Irradiated
spheroids showed a potential decline in spheroid growth from 0 to
20 Gy at both time-points, which was expected since 20 Gy is a
high-enough single dose to be administered in vitro. However, the
spheroids that were cultured till day 5 post-IR also showed
significantly more viability at all IR treatments as compared to
viability observed at each of these respective doses at 24 h post-IR.
This indicated that while single-dose treatments were sufficient to
kill a largenumberof cells in spheroid cultures, somecellswere able
to resist or recover from radiation-induced stress and led to the re-
establishment of spheroids by day 5. Increased spheroid viability at
day 5 post-IR as compared to 24 h post-IR is indicated (p-value <
0.0001) (Supplementary Figure 2D).

3.3 Small-Molecule Inhibitor-Based Drug
Screening in HCT116 Multi-Spheroids
3.3.1 21 out of 33 Inhibitors Showed Cytotoxicity
as Single Agent
A drug screen performed on multi-spheroids from HCT116
utilizing a panel of 33 small-molecule inhibitors (Excel Sheet
1_sub-sheet S1.1) revealed 21 effective inhibitors as single agents.
These included three small-molecule inhibitors of EGFR
(lapatinib, afatinib, sapitinib), and the rest of the 19 inhibitors
targeting various pathways, like WNT/b-catenin, PIK3/mTOR
dual kinase, epigenetic regulators, RAF/BRAF, multi-tyrosine
kinases, and NTRK (neurotrophic receptor tyrosine kinases).
May 2022 | Volume 12 | Article 840241
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Challenges to obtaining KRAS mutation-specific drugs led to a
poor response from direct KRAS targeting. Significant cytotoxicity
in response to targeting b-catenin or b-catenin/P300 complex
(using drugs BC2059 and PRI724) indicated constitutive
activation of downstream WNT effectors in HCT116 multi-
spheroids [Figure 1B(ii)]. A color-scaled tabulated comparison
of percent inhibition values observed for individual drug treatment
at doses 25, 10, and 1 µM reveals the relative potency of each of
these inhibitors. The inhibitors for which IC50 was not reached at a
concentration of 25 µM were excluded from the study [Figure 1B
(i)]. Dose–response curves are included in Figure 1B(ii) and
Frontiers in Oncology | www.frontiersin.org 6
Supplementary Figure 3. Inhibitory dose 50 (IC50) values
estimated are included in Excel Sheet 1, sub-sheet S1.2.

3.4 Combinatorial Drug Testing With
EGFR Inhibitors in Colorectal
Adenocarcinoma Multi-Spheroids
3.4.1 Top 5 Leads Identified From Combinatorial
Drug Testing at Single Dose
The 19 inhibitors that were identified to be effective as single
agents were evaluated for their efficacy in combination with
small-molecule inhibitors for wild-type EGFR (EGFRi: lapatinib,
A

B

FIGURE 1 | (A) Representative bright-field images of HCT116 spheroids cultured in media having nitrogen supplement (N2), plus EGF and FGF2 (N2EF), taken
at time-points indicated. (i) Spheroid viability in response to cetuximab (anti-EGFR) treatment on HCT116 multi-spheroids cultured in N2EF media. (B) (i) Drug
screening: inhibitors listed were administered as single agents on HCT116 (N2EF) multi-spheroids, and spheroid viability was estimated. Table includes percent
inhibition (%Inh.) observed for each drug when administered at concentrations of 25, 10, and 1 µM (dose–response curves are included in Supplementary
Figure 3). IC50 was not reached for drugs marked with a cross, which were excluded further from the study. (ii) Single-agent spheroid viability curves for WNT
pathway inhibitors and small-molecule inhibitors to EGFR/ERBB proteins on HCT116 multi-spheroids.
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afatinib, and sapitinib) on multi-spheroids of HCT116. This
revealed 9 inhibitors, which exhibited enhanced cytotoxicity in
combination, which were paxalisib, dactolisib, PLX8394,
bafetinib, ponatinib, TPX0005, DDR1 7rh, VU6015929, and
vorinostat (Supplementary Figure 4A). Sorafenib showed a
promising response only with lapatinib, and the remaining
inhibitors showed moderate-to-low effect in combination with
EGFRi (Supplementary Figure 4B). The prime 6 leads were
considered the combinations where percent inhibition obtained
with at least two out of three EGFRi was >70%. The top 5 leads
were identified based on two criteria: a) if % inhibition obtained
in combination with at least two out of three EGFRi was ≥50%
and b) if the fold change between drugs+EGFRi and drug alone
was ≥2. The drugs that met both these criteria were bafetinib,
ponatinib, VU6015929, DDR1 7rh, and PLX8394 (Figure 2A).
The overall combinatorial response for all 3 EGFRi was in the
order lapatinib > afatinib > sapitinib; therefore, sapitinib was
excluded from further validations (Figure 2A, Excel sheet 1, sub-
sheet S1.4). The top 5 candidates were further validated for their
efficacy in combination with EGFRi lapatinib and afatinib, when
administered on HCT116 multi-spheroids cultured in
N2N21max media; and the inhibition obtained was higher
with lapatinib (Figure 2B).

DLD1, a cell line classified to be stem-like and known to be
heterozygous KRASG13D mutation, was confirmed for its
intrinsically high WNT activity by its response to inhibition of
WNT effector, b-catenin (Figure 3A). The prime 6 leads when
administered in combination with EGFR inhibitors on DLD1
multi-spheroids showed a similar trend as observed for HCT116.
Percent inhibition obtained in combinations with lapatinib was
greater than afatinib (color-scaled table, Figure 3B). To test if these
observations were KRAS mutation-type independent, the
combinatorial efficacy of drugs ± EGFR inhibitor (lapatinib or
afatinib) was validated in spheroid cultures of SW480, a COAD cell
line homozygous for KRASG12V mutation (Figure 3C). The top 5
leads when administered in combination with EGFRi (lapatinib and
afatinib) showed ≥95% averaged percent inhibition for all three
COAD lines tested and had an overall fold change ≥2 (Figure 3D).
Bafetinib and ponatinib showed the best combinatorial response in
all 3 lines. Drug doses used for each of the combinatorial drug tests
are included in Excel sheet 1, sub-sheet S1.3.

3.4.2 Top 5 Combinatorial Leads Synergize With
EGFR Inhibitor, Lapatinib
Synergy was identified for the prime 5 leads (PLX8394, bafetinib,
ponatinib, VU6015929, DDR1 7rh) in combination with both
EGFRi lapatinib and afatinib (Figure 4, Table 2). When
administered in combination with lapatinib, drugs that
showed peak synergy score ≥100 (indicating strong synergy)
were bafetinib and PLX8394, and those within 50–100
(indicating moderate but significant synergy) were ponatinib,
DDR1 7rh, and VU6015929. When administered in
combination with afatinib, none of the drugs showed a peak
synergy score ≥100, and the only drugs that showed peak
synergy between 50 and 100 were ponatinib and PLX8394. A
widespread rise in 3D surface plot observed for lapatinib plus
Frontiers in Oncology | www.frontiersin.org 7
bafetinib indicated it to have the highest synergy volume
(1,123.4). Comparing the values of volume of synergy obtained
for all drugs, combinations with lapatinib showed an overall
higher synergy and in the order bafetinib > PLX8394 = ponatinib
> DDR1 7rh > VU6015929. Thus, EGFR/ERBB2 inhibitor
lapatinib was identified to be a more promising combinatorial
drug in COAD. The matrix showing synergy scores and percent
inhibitions obtained at each of the individual 25 combinations
administered per synergy evaluation for all 5 drugs (in
combination with lapatinib and afatinib) are included in
Supplementary Figures 5A, B (dot plots and bar graphs for
spheroid viability are in Supplementary Figure 5C).

3.4.3 DDR1, a Common Target Among Synergistic
Leads Identified
To address why these 5 inhibitors selectively emerged as
potential synergistic leads, we looked at their common targets.
These were found to be as follows: 1) DDR1 (discoidin domain
receptor 1), 2) BCR-ABL kinases, and 3) Src kinases (Src/Lyn)
(Figure 4B). Bafetinib and ponatinib belong to the BCR-ABL
family of multi-tyrosine kinase inhibitors, which also target
DDR1 (81, 82), and DDR1 was a common target among 4 out
of the top 5 combinatorial leads.

3.5 Cancer Genomics
To investigate the signaling cross-talks among targets of
combinatorial drugs (viz., PLX8394, bafetinib, ponatinib,
DDR1 7rh, VU6015929, lapatinib, and afatinib), we utilized a
genomics approach. A panel of 35 genes was selected
incorporating their direct or indirect targets, and related
biological processes (cell adhesion, proliferation, migration,
and stemness). Since DDR1 is the most prevalent target among
synergistic drugs identified and is known to be highly elevated in
tumors of the brain, we performed a parallel comparison of our
selected gene panel for percent genomic alterations, relative
mRNA expression, and transcriptional correlations in patient
datasets of COAD, GBM, and Pan-Cancer Atlas (source,
genomics portals: cBioPortal and GEPIA). Transcriptional
correlations were also made with KRAS to identify common
associations between DDR1 and KRAS signaling.

3.5.1 DDR1 Positively Correlates With BCR, EGFR,
ERBB2 in Pan-Cancer
Utilizing the patient datasets from Pan-Cancer (c-Bioportal), we
observed a significant positive correlation between DDR1
expression and expression of genes BCR, EGFR, and ERBB2
(Figure 5A). Additionally, correlation analysis was performed to
evaluate associations between the mRNA expression of a selected
panel of genes, with mRNA expression of DDR1 and KRAS in
patient datasets of COAD, GBM, and Pan-Cancer revealed i)
DDR1 to positively correlate with downstream mediators of
KRAS signaling (BRAF, PIK3CA, and MTOR) in both tumors
COAD and GBM and with EGFR, ERBB2, BRAF, BCR, SOX9,
VANGL2, and CDH1 in Pan-Cancer; and ii) KRAS to correlate
with genes BRAF, PIK3CA, APC, and CTNNB1 in Pan-Cancer
(Supplementary Figure 6A) (Excel sheet 2, sub-sheet S2.3–S2.5).
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A

B

FIGURE 2 | (A) Efficacy of the drugs in combination with EGFR small-molecule inhibitors (EGFRi). Drugs were administered on multi-spheroid of HCT116 (N2EF),
and spheroid viability was measured. Table indicates percent inhibition obtained for each of the drugs alone, or in combination with lapatinib, afatinib, or sapitinib.
Color scale of percent inhibition indicates overall combinatorial efficacy of lapatinib > afatinib > sapitinib. In columns on the right, averaged percent inhibition for each
drug when administered in combination with all three EGFRi, and fold change between drug+EGFRi and drug alone is mentioned. Inhibitors marked with a dagger (†)
are prime 6 combinatorial drugs identified, which showed >70% inhibition with at least two out of three EGFR inhibitors tested. Top 5 inhibitors (marked with
asterisk, *) had averaged percent inhibition ≥50 and fold change ≥2. Bar graphs indicate relative spheroid viability of HCT116 multi-spheroids when administered with
the prime 6 combinatorial leads identified. (B) Representative images of HCT116 multi-spheroids obtained by culturing in additional media supplemented with N2
and N21max. Top 5 combinatorial leads identified were validated in combination with EGFR inhibitors (lapatinib and afatinib) on HCT116 multi-spheroids cultured in
N2N21max. Bar graphs for combination treatments tested are represented on the right. ****p < 0.0001.
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FIGURE 3 | (A) Representative bright-field images of multi-spheroids obtained for DLD1 cultured in N2N21max media, at time-points indicated. Dose–
response curves (right) indicate the efficacy of WNT pathway inhibitors and EGFR small-molecule inhibitors (lapatinib, and afatinib) as single agents on DLD1
spheroid viability. (B) Combinatorial efficacy of the prime leads identified when administered on multi-spheroids from DLD1. Bar graphs indicate relative
spheroid viability of DLD1 when treated with respective drugs ± EGFR inhibitors (lapatinib and afatinib). Table on the right shows percent inhibition values
calculated for all 6 drugs alone, or in combination with EGFRi lapatinib and afatinib. Color scale indicates lapatinib to have higher combinatorial efficacy than
afatinib. (C) Combinatorial efficacy of lapatinib with prime 6 leads was validated in an additional line SW480, harboring KRAS G12V mutation. Representative
bright-field images (left) show multi-spheroids for SW480 cultured in N2N21max media at indicated time-points. Table lists KRAS mutations known for the
respective cell line SW480, having G12V, as opposed to G13D in HCT116 and DLD1. Bar graphs (right) indicate relative spheroid viability of SW480 when
administered with respective drugs ± EGFR inhibitor lapatinib. (D) Table (bottom) includes averaged percent inhibition obtained for each of the COAD cell lines
(HCT116, DLD1, and SW480) when administered with drugs ± EGFR inhibitor, lapatinib, and afatinib. Averaged percent inhibition for all three cell lines, and
fold change observed between drug administered in combination (+EGFRi) and drug alone is mentioned in columns on the right. Inhibitors marked with an
asterisk are the top 5 combinatorial inhibitors identified. *p < 0.05, **p < 0.01, ***p <0.001, and ****p < 0.0001.
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FIGURE 4 | (A) Synergy plots for EGFR inhibitors lapatinib (left) and afatinib (right), when administered in combination with drugs (top 5 combinatorial leads:
bafetinib, ponatinib, DDR1 7rh, VU6015929, and PLX8394) on HCT116 multi-spheroids cultured in N2EF media. 3D surface plot having a rise of the curve in positive
xy-axis indicates synergy. Peak synergy score and volume of synergy (cumulative synergy score) obtained for each of the combinations are indicated in the top right
corner of surface plot. Synergy plots were made at the 99% confidence limit. Table (bottom) shows comparison of cumulative synergy scores (volume of synergy),
obtained for drug 1 (EGFR inhibitors lapatinib, or afatinib) when combined with drug 2. Details on synergy or antagonism score obtained and dose at which peak
synergy score was observed for each of the combinations are tabulated in Supplementary Figure 5. A matrix for synergy score values and a matrix for percent
inhibition obtained for all 25 combination treatments were been created for each of the synergy experiments performed and included in Supplementary Figure 5.
(B) Table lists targets for top 5 combinatorial leads and targets common among them. DDR1, discoidin domain receptor 1 (neurotrophic receptor tyrosine kinase,
NTRK4), came up as the most prevalent target among the combinatorial leads.
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FIGURE 5 | (A) Genomic associations of DDR1 and EGFR/ERBB2: DDR1 gene positively correlates with genes BCR, EGFR, and ERBB2 in Pan-Cancer (source:
cBioportal). (B) Based on pathway commons database, the signaling relay from DDR1 to BCR and KRAS engages adaptor proteins SHC1, GRB2, and SOS1. The
protein interactome of DDR1, BCR, and ABL1 with selective proteins on the right shows physical interactions of DDR1 with ERBB2 and SHC1; physical and functional
interactions of BCR with EGFR, ERBB2, adaptors, KRAS, and ABL1; and functional interactions of ABL1 with SOS1 and CTNNB1. (C) Relative expression of DDR1
gene in datasets of tumor versus normal samples for various cancer subtypes revealed DDR1 to be maximally elevated in brain cancers, low-grade gliomas (LGG), and
glioblastoma (GBM). (D) Boxplots showing relative expression of genes DDR1, CTNNB1 (beta-catenin), EGFR, ERBB2, ERBB3, and ERBB4 in patient versus normal
datasets for COAD, LGG, and GBM. GBM tumors have elevated expression of DDR1, CTNNB1, EGFR, and ERBB2. (E) (i) Western blotting for DDR1 and beta-catenin
proteins in spheroid lysates from various cell lines of COAD and GBM show DDR1 to be highly expressed in COAD lines HCT116 and DLD1 and patient-derived GBM
line GBM965. Beta-catenin is highly expressed in COAD line SW480 and moderately expressed in GBM lines U251 and GBM965. (ii) An overall positive correlation
(R = 0.28) was observed between protein expression levels of DDR1 and beta-catenin (CTNNB1) in Pan-Cancer (source: c-Bioportal). (F) Percent genomic alterations of
selective genes in datasets of COAD and GBM reveal mutations in KRAS and APC to be prime drivers of COAD; and high prevalence of genomic alterations in EGFR
and NF1 genes makes KRAS a potential driver of GBM.
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BRAF, PIK3CA, MTOR, and ABL1 correlated with both DDR1
and KRAS in COAD, indicating the implications of the DDR1-
BCR axis in the activation of KRAS and PI3K/mTOR pathway.
All correlation coefficients (Pearson, Rp, or Spearman, Rs) >0.2
were significant. To further investigate the association of DDR1
with SRC/BCR-ABL signaling in COAD, we generated a
correlation matrix with selective genes. Significant correlations
were observed between the expression of DDR1, EGFR, and
SRC/BCR axis, indicating its active involvement in COAD
[source: GEPIA; datasets, TCGA (tumor), GTEx (Normal)]
(Supplementary Figure 6B).

3.5.2 DDR1 Signaling Relay to BCR and KRAS
To investigate the interconnections of DDR1, BCR, and ABL1
with KRAS signaling, SRC kinases (SRC/LYN), WNT effector
(CTNNB1), and EGFR signaling (EGFR, ERBB proteins), we
performed protein–protein interaction analysis using BioGRID,
STRING, and Pathway Commons databases. ERBB2 and CDH1
were found as close associates of DDR1 in BioGRID (Excel sheet
2, sub-sheet S2.6–S2.7). STRING protein interactome was
generated for known physical interactions between 32 proteins
(32 nodes and 112 edges) using MCL clustering (inflation
number 5), and 8 clusters were revealed with high confidence
(score >0.7) (Supplementary Figure 6C). The network obtained
showed i) the adaptor protein SHC1 interacts with DDR1, ii)
KRAS interacts with PI3K/AKT, iii) GRB2 and SOS1 connect
SHC1 with BCR and ABL1, and iv) BCR interacts with ABL1
(independent of gene fusions) and ABL1 complexes with
CTNNB1. This was confirmed by physical and functional
interactions identified based on the Pathway Commons
database, which also revealed signaling relay from BCR to
KRAS via protein adaptors GRB2 and SOS1 (Figure 5B).
Together, this indicates signaling relay from DDR1 (as
homodimer or heterodimer with EGFR/ERBB2) via SHC1,
GRB2, SOS1 to BCR-ABL1 complex, and from BCR-ABL1 to
KRAS and PI3K/AKT. The details of protein interactome are
included in Excel sheet 2 (sub-sheet S2.6–S2.8).

3.5.3 Elevated Expression of DDR1 in Colorectal
Adenocarcinoma and Glioblastoma
Comparing the expression of DDR1 gene in various tumor
models revealed DDR1 to be elevated in all tumors with
maximal expression in brain cancers, low-grade gliomas
(LGG), and GBM (Figure 5C) [source: GEPIA; datasets,
Frontiers in Oncology | www.frontiersin.org 12
TCGA (tumor), GTEx (Normal)]. Comparing the relative
expression of selective genes between COAD, LGG, and GBM,
we observed DDR1 and beta-catenin (CTNNB1) genes to be
elevated in all three tumor types. Moreover, genes EGFR and
ERBB2 were highly elevated in GBMs, making GBM a perfect
model for revalidation of our prime synergistic combination
(Figure 5D). Looking at the relative expression of DDR1 and
beta-catenin proteins in cell lines of COAD and GBM, we found
HCT116, DLD1, and GBM965 to be overexpressing DDR1
[Figure 5E(i)]. Moreover, an overall positive correlation (R =
0.28) was observed between protein expression levels of DDR1
and beta-catenin (CTNNB1) in Pan-Cancer (source: c-Bioportal)
(Figure 5E(ii), Supplementary Figure 6E).

3.5.4 KRAS, a Tumor Driver in Colorectal
Adenocarcinoma and Glioblastoma
Percent genomic alterations in COAD revealed a mutation
frequency of 63% in APC gene and 38% in KRAS, making it as
expected a highly WNT-activated and KRAS-driven cancer.
Moreover, high mutation frequencies in PIK3CA (18%) and
PTEN (7%) indicate targeting PI3K/AKT pathway as a potential
therapeutic approach. GBM on the other hand showed a very high
genomic alteration frequency in EGFR (46%) and negative
regulators of KRAS and PI3K, NF1 (8%), and PTEN (26%),
making KRAS and its downstream effector PI3K/AKT a
targetable driver of GBM (Figure 5F) (Excel Sheet 2, sub-sheet S2.1).

3.6 Targeting DDR1/BCR-ABL With
EGFR-ERBB2 in Multi-Spheroids of
Colorectal Adenocarcinoma and
Glioblastoma
3.6.1 Combinatorial Efficacy of DDR1/BCR-ABL1
Multi-Tyrosine Kinase Inhibitors With Lapatinib
To test whether the enhanced combinatorial efficacy observed
with bafetinib and ponatinib, when administered in combination
with EGFR inhibitor lapatinib, could be extrapolated to also
other members of the DDR1/BCR-ABL inhibitor family, we
incorporated the drugs dasatinib, imatinib, and nilotinib in our
evaluation. We observed nilotinib to be more potent than
dasatinib and imatinib as a single agent, and a significant
reduction in HCT116 spheroid viability was obtained with all
three inhibitors when administered in combination with
lapatinib (L) or afatinib (A) (Figure 6A). To identify whether
combinatorial targeting of EGFR-ERBB2/4 with Src-specific or
May 2022 | Volume 12 | Article 840241
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FIGURE 6 | (A) Combinatorial efficacy of DDR1/BCR-ABL1 multi-tyrosine kinase inhibitors (dasatinib, imatinib, and nilotinib) and compound drugs GMB475 and KB-
SRC4 when administered with EGFRi (lapatinib and afatinib) on multi-spheroids of HCT116. Representative images (left) and bar graphs (right) indicate spheroid viability
and relative caspase 3/7 activity (normalized to viability), with percent inhibition listed in the table at the bottom. (B) Clonal cell proliferation assay performed for HCT116
cells for drugs bafetinib and nilotinib in combination with lapatinib validated the combinatorial efficacy. Clonal cell growth was measured as percent confluence, using
IncuCyte. Representative images (right) for clonal cell proliferation obtained at time-points day 0, day 3, and day 5 are pseudo-colored utilizing IncuCyte’s inbuilt clonal
dilution module. (C) Western blotting for HCT116 spheroid-lysates prepared 48 h after administration of drugs indicated significant downregulation of phospho-BCR and
phospho-AKT levels in DDR1/BCR-ABL with EGFR/ERBB2 inhibitor combination treatment as compared with either of the drugs administered alone. Change in
phospho-ERK levels was minimal, indicating the prime signaling affected in combination treatments is BCR-AKT axis. (D) Efficacy of nilotinib in combination with lapatinib
validated on viability of multi-spheroids from SW480 (KRASG12V). (E) Representative bright-field images of U251 (GBM) spheroids treated with drugs lapatinib and nilotinib
at day 5 post-treatment. Graph (middle) shows reduction in spheroid total area over 5 days post-treatment. Bar graph (right) indicates loss of spheroid cell viability
measured on day 5. Statistical significance is indicated as *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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BCR-ABL1 specific inhibitors could have a similar outcome, two
compounds were tested, KB SRC-4 (Src inhibitor) and GMB475
(PROTAC degrader of BCR-ABL). Both compounds showed
enhanced response in combination, and BCR-ABL-specific
targeting showed better efficacy than Src targeting (Figure 6A).
Comparing the intrinsic caspase 3/7 activity elicited by drug
administration revealed much higher apoptosis induced in
combinations with lapatinib than afatinib, indicating EGFR/
ERBB2 targeting to be a more potent combination with DDR1/
BCR-ABL1, as compared to targeting EGFR/ERBB4 (Figure 6A).

3.6.2 Combinatorial Efficacy of Nilotinib
with Lapatinib
Since nilotinib exhibited a higher inhibitory effect as a single
agent and has comparable percent inhibition to other BCR-ABL
multi-tyrosine kinase inhibitors when administered in
combination with lapatinib, we studied it to see its efficacy in
clonal cell proliferation assays. We observed similar cytotoxic
effects of nilotinib and bafetinib when combined with lapatinib
in the clonal proliferation of HCT116, a COAD line harboring
KRASG13D mutation (Figure 6B), and nilotinib in combination
was also effective against proliferation of KRASWT COAD line
CaCo2 (Supplementary Figure 7B). To confirm the pathway
inhibition via administration of inhibitors DDR1 7rh and
nilotinib in combination with lapatinib, we administered these
drugs at sublethal doses on multi-spheroids of HCT116 and
performed Western blotting at 48 h posttreatment. Indeed, as
predicted by the signaling interactome, co-inhibition of DDR1/
BCR-ABL1 signaling with EGFR/ERBB2 decreased the phospho-
BCR and phosphor-AKT levels; however, ERK signaling was less
affected (Figure 6C). This indicates that DDR1 mediates its
signaling via the BCR-KRAS-PI3K/AKT axis, which became
more profoundly inhibited when lapatinib and DDR1
inhibitors were co-administered at doses of their observed
synergy. Inhibition of the BCR-ABL1 axis alone using
PROTAC inhibitor (GMB475) with lapatinib was used in
parallel to compare the inhibition of phospho-AKT
downstream of BCR. GMB475 is a degrader of ABL1 protein.
Western blotting for degradation of ABL1 and loss of phospho-
BCR levels upon administration of GMB475 are included in
Supplementary Figure 7A.

Nilotinib plus lapatinib administration impacted multi-
spheroid viability for both KRAS-mutant COAD lines HCT116
and SW480 (Figures 6A, D), and the synergy of these drugs was
confirmed in HCT116 multi-spheroids (Supplementary
Frontiers in Oncology | www.frontiersin.org 14
Figure 5D). Since nilotinib and lapatinib are brain penetrant,
investigating whether their combination can offer better
outcomes in GBM tumoroids cultured in vitro revealed loss of
spheroid viability in GBM line U251, and the two drugs
synerg ized in U251 mult i - sphero ids (Figures 6E ,
Supplementary Figure 5D). Since DDR1 is a common target
of all BCR-ABL multi-tyrosine kinase inhibitors (82), to
understand whether similar cytotoxicity could be obtained with
DDR1 specific inhibitor, we evaluated the effect of DDR1 7rh
plus lapatinib on clonal cell proliferation of HCT116 and on
spheroid viability of GBM (U251) line (Supplementary
Figure 7B; Figure 6E). We also confirmed the efficacy of
inhibiting DDR1/BCR signaling (using nilotinib) in
combination with lapatinib on oversized multi-spheroids of
COAD line HCT116 and GBM line U251 and found
significant loss of spheroid viability (Supplementary
Figure 7C). Additionally, a positive correlation was observed
between the IC50 value of lapatinib and nilotinib (Rp value >0.3)
in both the Pan-Cancer and COREAD cell line datasets (source:
GDSC database), indicating that these signaling cascades are
complementary (Excel sheet 3, sub-sheet S3.3, S3.4). Moreover,
resistance to lapatinib and nilotinib treatment alone was
associated with KRAS mutation phenotype in both COREAD
and Pan-Cancer (Excel sheet, sub-sheet 3.5), emphasizing the
value of combinatorial regime against KRAS mutant tumors.

3.7 Targeting DDR1/BCR-ABL With EGFR/
ERBB2 Against Radioresistance
The cytotoxic potential of the combination of drugs bafetinib
and nilotinib with or without lapatinib was evaluated by
administering the drugs on irradiated multi-spheroids from
HCT116 and measuring spheroid viability and Caspase 3/7
activity (apoptosis) at day 5 post-IR. Significant reduction in
spheroid viability and increase in apoptosis were observed in
combination treatments (bafetinib or nilotinib plus lapatinib) as
compared to control groups at all IR doses administered
(Figure 7A). The combinatorial effect of nilotinib plus
lapatinib was further confirmed on patient-derived GBM (PD-
GBM) lines GBM965 and QNS108 (intrinsically radioresistant),
and both the lines showed pronounced growth reduction in
combination treatment [Figure 7B(i)]. To evaluate the effect of
targeting the DDR1/BCR-ABL1 axis in combination with
lapatinib on multi-spheroid viability, the PD-GBMs were
cultured for 6 days, drugs were administered, and viability was
measured at day 2 posttreatment. A significant reduction in
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FIGURE 7 | (A) HCT116 multi-spheroids that recovered from radiation stress induced by administering IR doses from 0 up to 20 Gy were measured for (i) spheroid
viability and (ii) caspase 3/7 activity at day 5 post-IR. p-Values for combination treatment of drugs (bafetinib or nilotinib) with lapatinib are marked with asterisks at each of
the respective IR doses administered. (B) Combinatorial efficacy of nilotinib plus EGFR inhibitor lapatinib on spheroid formation and viability of patient-derived GBM (GBM-
PD) lines GBM965 and QNS108. The intrinsic radiosensitivity of these lines is included in the Supplementary Methods. (C) Proposed model illustrating the signaling
networks involving DDR1, SRC kinases, BCR-ABL-b-catenin, EGFR/ERBB2, KRAS, and PI3K/AKT proteins, and site of action of the leads identified. Illustration (left)
shows KRASWT cross-talks: activated DDR1 relays its effect via adaptor proteins SHC1/GRB2/SOS1, causing dissociation of BCR-ABL-b-catenin complex (inactive),
thereby activating BCR/ABL proteins. BCR and ABL proteins interact to cause activation of KRASWT and PIK3/AKT signaling axis. SRC kinase-activated downstream of
DDR1 can engage with KRAS in a positive feedback loop. Additionally, EGFR/ERBB2 receptor complex can activate KRAS-dependent MAPK signaling and PIK3/AKT
signaling; activated KRAS can also activate PI3K/AKT axis. Green arrows indicate input signals that activate KRASWT, and blue arrows indicate output signals from KRAS
to other signaling intermediates. Illustration (right) depicts these signaling interactions with KRASmut protein, which is nearly constitutively active, thus independent of input
signals. Targeting the network of hyperactivated KRAS or KRASmut comprises the following scheme: 1) combinatorial targeting of DDR1 and BCR-ABL1 by specific
inhibitors of DDR1 or DDR1/BCR-ABL by multi-tyrosine kinase inhibitors (bafetinib, ponatinib, and nilotinib) in combination with EGFR inhibitors lapatinib and afatinib.
Other potential combinations identified are represented as schemes (2) and (3): involving PI3K/mTOR inhibition by dactolisib, in combination with EGFR inhibitors lapatinib
and afatinib or KRAS/RAF axis inhibition by PLX8394 in combination with EGFR inhibitors lapatinib and afatinib. These combinatorial schemes can be harnessed to
overcome the treatment resistance observed in WNT-activated (stem-like) KRAS mutant tumors. Statistical significance is indicated as ****p < 0.0001.
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viability was observed for all three combinations (nilotinib,
DDR1 7rh, or GMB475) with lapatinib. GBM965 was
identified as a fast proliferative line as compared to QNS108
(data not shown). Relatively high percent inhibition values were
obtained for GBM965 when administered with any of the three
drugs as a single agent or in combination, which could be due to
cell line-specific intrinsic genomic or proteomic profiles that
account for its survival and growth. To evaluate this, we utilized
the gene expression dataset (GSE144610) available for GBM965
(Supplementary Figure 8). We observed significantly higher
reads (counts-normalized) for genes EGFR and ERBB2 as
compared to ERBB3/4 and high expression of BCR, ABL1,
KRAS, BRAF, and CTNNB1 (b-catenin). Positive regulators of
KRAS signaling (PTPN2 and PTPN11) had higher read counts
than the NF1 gene (a negative regulator of KRAS). Moreover,
PI3K/MTOR proteins had higher read counts as opposed to their
negative regulator protein PTEN. Being a proliferative line, and
with high intrinsic radioresistance (Supplementary Method 1),
it is likely to engage activated WNT and KRAS cross-talk, which
led to its observed sensitivity to combinatorial targeting of
DDR1/BCR-ABL and EGFR/ERBB2.
4 DISCUSSION

WNT/b-catenin and KRAS signaling co-operate in cancer
progression and are the leading cause of establishment of
treatment resistance and poor patient outcomes (17–19, 41,
42). WNT pathway is regulated at the receptor level by R-
spondin/Lgr5 and intracellularly by the b-catenin destruction
complex comprising the APC protein (83–85). KRAS is the main
downstream effector of EGFR-mediated MAPK signaling and is
one of the most prevalent oncogenic drivers in COAD. KRAS
activity is regulated at two levels: i) conversion of KRAS GDP-
bound form (inactive state) to KRAS GTP-bound form (active)
and ii) dephosphorylation of tyrosine residues by phosphatase
SHP2 (PTPN11) (55–60). The gain-of-function mutations at
G12 or G13 in KRAS render the protein independent of the
GTP-GDP on–off switch, making it nearly constitutively active
(5, 6). While drugs to directly target WNT and mutant KRAS are
in clinical trials, their moderate efficacy and potential
Frontiers in Oncology | www.frontiersin.org 16
cytotoxicity have drawn attention to identifying their targetable
regulators and signaling cross-talks (55–68). We approached this
challenge through an unbiased drug screen, targeting receptors
and signaling intermediates that relate to WNT and KRAS and
their downstream cellular processes like survival, proliferation,
CSC reactivation, adhesion, migration, and epigenetic
modulation with the aim to identify novel combinatorial leads
that could synergize with small-molecule inhibitors of wild-type
EGFR to combat treatment-resistant WNT-activated KRAS-
driven tumors. In our study, we utilized the potential of three-
dimensional (3D) multi-spheroid assays since increasing
evidence suggests 3D tumoroids recapitulate a more near-
physiological state retaining properties of its cell of origin and
can generate ECM for compaction and signaling, thus serving as
better model systems for evaluation of treatment resistance and
response (86–89).

In our drug screen, we identified 5 potential combinatorial
leads (PLX8394, bafetinib, ponatinib, VU6015929, and DDR1
7rh) with EGFR inhibitors (lapatinib and afatinib); bafetinib and
ponatinib showed the best response in all COAD lines,
independent of KRAS mutation type. PLX8394, a dimerization
inhibitor of BRAF investigated frequently against tumors
harboring mutant-BRAF (51) showed a better combinatorial
response with lapatinib since RAF proteins are prime
mediators of the KRAS-RAF-MEK-ERK signaling axis. The
overlapping targets among the remaining 4 drugs included the
following: i) discoidin domain receptor 1 (DDR1) protein, a
receptor tyrosine kinase involved in cell–cell and cell–matrix
adhesion and upregulated in several cancers (DDR1 was
identified as a common target among all 4 drugs, namely,
bafetinib, ponatinib, DDR1 7rh, and VU6015929); ii) Src
kinases (Lyn/Src); iii) breakpoint cluster region (BCR) protein,
an activator of GEF (Guanosine nucleotide exchange factor),
involved in oncogenic transformations; and iv) ABL1 kinase,
involved in growth, survival, and cytoskeletal remodeling. BCR-
ABL fusion is the key genomic aberration in chronic
myelogenous leukemia (CML). Independent of this genomic
alteration, BCR and ABL proteins co-operate to activate KRAS
signaling (90, 91). Cross-talk betweenWNT/b-catenin and BCR-
ABL has also been reported in CML, which contributes to
treatment resistance (92). A recent study showed DDR1 as a
therapeutic target in colon cancer, activating BCR signaling
May 2022 | Volume 12 | Article 840241

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Gupta et al. Co-Targeting DDR1-BCR and EGFR-ERBB2 Against Chemoradioresistance
downstream (68). SRC kinases are known to associate with
receptor tyrosine kinases (including EGFR and DDR1) and
regulate BCR activation (93–96). Together, this explains an
active signaling network involving KRAS, SRC, DDR1, BCR,
and ABL proteins.

We observed potential synergy between these 5 combinatorial
leads with EGFR/ERBB2 small-molecule inhibitor, lapatinib.
This is because cetuximab-resistant tumors are found to have
mutational hotspots in EGFR/ERBB2, and ERBB2 amplifications
contribute to the pathophysiology of advanced CRCs (37–40).
Moreover, a recent study in breast cancer reported DDR1 to be
an interacting partner of ERBB2, and upregulation of DDR1 is
one of the compensatory survival mechanisms in lapatinib-
resistant tumors (97, 98). Our genomic analysis revealed
ERBB2, DDR1, BCR, and LYN (Src kinase) genes for WNT
regulation (LGR5) were upregulated in COAD and DDR1 to
positively correlate with BCR, EGFR, and ERBB2 in Pan-Cancer,
all of which can emphasize the possible synergy of EGFR/ERBB2
inhibition with inhibitors of DDR1-BCR-ABL signaling.

GBM tumors are highly resistant to current therapies, and
increasing evidence shows the role of activated WNT/b-catenin,
PI3K/mTOR, and RAS signaling in GBM progression and
recurrence (99–102). EGFR amplification and NF1 inactivation
mutations are observed in GBMs in a subtype-dependent
manner (72, 73) and lead to activation of KRAS (103–105).
Moreover, activated KRAS is observed to contribute to tumor
stemness and invasiveness post-radiation therapy, making it a
potential therapeutic target in recurring GBMs (106). DDR1 was
identified as a neurotrophic receptor tyrosine kinase (NTRK4)
highly upregulated in cancers and is documented to have
therapeutic value in GBM (107–111). We observed DDR1
expression to be highly elevated in COAD lines (HCT116 and
DLD1) and patient-derived GBM line GBM965. We therefore
conducted a comparative investigation of targeting DDR1 in
combination with EGFR inhibitor (lapatinib), utilizing an
additional tumor model of GBM and including the brain
penetrable DDR1/BCR-ABL inhibitor nilotinib to evaluate its
combinatorial efficacy. Our data showed significant cytotoxicity
by nilotinib plus lapatinib treatment in multi-spheroids of
COAD and GBM lines, in primary patient-derived GBMs, and
in HCT116 multi-spheroids that recovered from radiation stress
induced by 20 Gy-IR, indicating DDR1/BCR-ABL axis with
Frontiers in Oncology | www.frontiersin.org 17
EGFR-ERBB2 targeting as treatment opportunity against
chemoradioresistant cancers.

At the genomic level, we observed transcriptional expression
of genes BRAF, PI3K, MTOR, BCR, and APC to positively
correlate with DDR1 in patient datasets of COAD and GBM.
Additionally, the expression of genes EGFR, ERBB2, ERBB4,
BCR, SOX9, VANGL2, and CDH1 correlated with DDR1 in Pan-
Cancer. BRAF, PI3K, and MTOR contribute to signaling
downstream of KRAS, and BCR activates KRAS signaling in
association with SRC and ABL kinases. SOX (SRY-Box
transcription Factor) proteins are upregulated in several
different tumors (112), and increasing evidence has shown its
potential in the induction of stemness and treatment resistance
in CRC (113–116). The transmembrane protein Vang-like 2
(VANGL2) is required for planar cell polarity and plays a role in
cell adhesion, directed cell migration, and metastasis (117–119).
We also observed a significant positive correlation between the
protein levels of DDR1 and beta-catenin in Pan-Cancer. The
positive association between the expression of DDR1 with genes
SOX9, CTNNB1, or VANGL2 emphasizes its role in stemness
and tumor aggressivity. Positive correlation in expression of
genes DDR1, BCR, EGFR, and ERBB2 further points to the
wide applicability of targeting the DDR1/BCR axis with EGFR/
ERBB2 in precision medicine. Investigating the protein
interactome of DDR1 with adaptor proteins (SHC1, GRB2,
and SOS1) to understand how these interconnect DDR1, BCR,
ABL, KRAS, and PI3K signaling revealed involvement of BCR-
ABL and KRAS-PI3K-AKT axis downstream of DDR1, which
was confirmed by Western blotting. Taken together, our work
shows that targeting DDR1, BCR-ABL, or DDR1/BCR-ABL with
EGFR-ERBB2 could offer a potential therapeutic strategy against
WNT-activated (stem-like) and KRAS-mutant COAD, with
translatable applications in stem-like refractory cancers such
as GBMs.

5 CONCLUSION

We identified the signaling pathways that could be targeted in
combination with small-molecule inhibitors of wild-type EGFR
to overcome the stem-like KRAS mutant phenotype in
tumoroids of COAD. These involved three combinatorial
strategies: i) targeting DDR1, BCR-ABL, and EGFR-ERBB2/4;
TABLE 2 | Synergy scores obtained in HCT116 multi-spheroid viability assay.

Drug 1 Drug 2 Cumulative scores obtained Max. synergy obtained at

Synergy score Antagonism Drug 1 Drug 2 Synergy score

Lapatinib Bafetinib 1,123.4 0 7µM 6.5µM 101.45
Ponatinib 928.87 0 7µM 3µM 93.3
DDR1 7rh 561.5 0 2.4µM 3µM 93.2
VU6015929 458.13 −12.44 10µM 6µM 78.78
PLX8394 910.15 0 15µM 6µM 100.3

Afatinib Bafetinib 119.18 −0.29 4.8µM 13µM 27.13
Ponatinib 308.25 −0.02 2.4µM 3µM 64.04
DDR1 7rh 143.69 0 2.4µM 3µM 30
VU6015929 46.05 0 10µM 6µM 10.43
PLX8394 439.98 0 5µM 3µM 61.06
Ma
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ii) targeting Pan-RAF/BRAF with EGFR-ERBB2/4; and iii)
targeting PI3K, MTOR, and EGFR-ERBB2/4 (schemes
illustrated in Figure 7C). Among these three approaches, we
emphasized targeting of DDR1/BCR axis with EGFR-ERBB2
since DDR1 was the most prevalent target among all the
combinatorial leads we identified. We found inhibition of
DDR1/BCR signaling with EGFR/ERBB2 to be effective
independent of KRAS mutation type and status in COAD and
additional primary tumor model of GBM. Independent groups
have reported DDR1 as a potential therapeutic candidate in
KRAS-driven tumors (66, 66, 120), and combinatorial targeting
of DDR1 has also been shown to be efficacious in KRAS-mutant
tumors, lung adenocarcinoma (67), and recently pancreatic
adenocarcinoma (121). We show for the first time a
comprehensive investigation on identifying targeted therapies
against cetuximab-resistant stem-like KRAS-driven tumors by
exploring the inhibitors against a wide spectrum of signaling
pathways and revealing the complementation of DDR1/BCR-
ABL axis with EGFR-ERBB2, which could be harnessed to
combat chemoradioresistance mediated by high b-catenin and
activated KRAS. Underpinning the mechanisms of how DDR1/
BCR-ABL targeting works against KRAS-mutant tumors
requires further investigation may involve limiting the stimuli
for cell adhesion, survival, anti-apoptotic, and proliferation
factors, all of which may co-operate with mutant KRAS to
exhibit tumor aggressivity. A recent study showed targeting
DDR1 as a therapeutic strategy against resistance to BRAF and
MEK inhibitors (81), further confirming the significance of our
findings, which suggest an unprecedented role of the interactome
of DDR1, BCR, and ABL1 proteins with EGFR-ERBB2-4
signaling in tumor progression. The only FDA-approved drugs
currently available for DDR1 and BCR/ABL proteins are the
BCR-ABL family of multi-tyrosine kinase inhibitors; however,
DDR1- and BCR-ABL-specific compounds are constantly being
developed (82, 122), and a combination of DDR1-, BCR-ABL1-,
and EGFR/ERBB2-4-specific drugs could co-operate, synergize,
and open a new paradigm for future cancer therapeutics.
6 FUTURE PERSPECTIVES

KRAS is one of the oldest and most potent oncogenes identified,
along with MYC and ABL1 (123, 124). Its role as a signaling
effector downstream of MAPK signaling and in cell cycle
progression has been well established across species (125, 126).
While efforts have been made in the direct targeting of KRAS
mutant isoforms, the necessity to identify the granularities of
KRAS signaling interactome has become imperious, and efforts are
being made to decipher new combinatorial targeted therapies to
combat the highly resilient phenotype of RAS pathophysiology.

Our study demonstrates a strong synergy between drugs
targeting DDR1/BCR signaling and EGFR/ERBB2, and we
show here a consistently favorable outcome with combination
therapy engaging proteins DDR1, BCR, ABL1, and EGFR/
ERBB2 in multiple lines of COAD independent of their KRAS
mutation type specificity, as well as in a second tumor model of
recurrent GBM. However, there are a few limitations of this
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work: i) our findings are based on in vitro 3D tumoroid models;
therefore, it is necessary to evaluate their pharmacokinetics and
response in vivo. ii) The study limits itself to evaluating synergy
between two drugs in every combination; however, identifying
the interactions between multiple drugs in a combination
treatment regime and extrapolating these studies to a large
cohort of patient samples require high-throughput automated
equipment, and accurately predicting the outcome of
combination therapy in a clinical setting is a multidisciplinary
effort (127–129). Despite these challenges, combination therapies
offer great advantages over monotherapy, and their applications
in cancer treatment continue to grow (130–134). This study
points to the significance of complementary cascades and
pathway shunts that play a role in augmenting treatment
resistance, highlighting the significance of combination
therapies in recurrent tumors. DDR1 is a receptor for ECM
proteins, collagens, which became overexpressed as tumors
progress, and plays a central role in angiogenesis, tumor cell
migration, and invasion (135–137). Stromal expression of DDR1
has also been shown to promote the growth of tumors harboring
WNT-activated phenotype (138), and collagens have been widely
documented as prognostic markers in colon cancer progression
to metastasis (139–146). ECM deposition poses a challenge to
immune cell infiltration in tumors and impairs treatment
efficacy, and ECM signaling has emerged as a potential target
for cancer therapy (147–151). Moreover, the effects of
conventional radiotherapy (RT) on tumor stroma and ECM
composition with exacerbating tumor-promoting phenotype in
a KRAS-dependent manner in GBM has been documented and
reviewed (106, 152). Intense research is therefore ongoing in the
field of high-precision RT to improve patient outcomes (153–
157). If upregulation of signaling pathways engaging RTKs like
EGFR, ERBB2, and DDR1 and proteins like BCR and ABL1 can
collectively contribute to aggressivity and poor response in
KRAS-driven tumors, there may be an opportunity to harness
insights from this study to further their combinatorial potential
with other targeted inhibitors and advanced treatment
modalities, like immunotherapy and precision radiation
therapy to enhance efficacy in a clinical setting and to widen
their scope in personalized medicine.
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150. Raavé R, van Kuppevelt TH, Daamen WF. Chemotherapeutic Drug Delivery
by Tumoral Extracellular Matrix Targeting. J Control Release (2018) 274:1–8.
doi: 10.1016/j.jconrel.2018.01.029

151. Ray SK, Mukherjee S. Consequences of Extracellular Matrix Remodeling in
Headway and Metastasis of Cancer Along With Novel Immunotherapies: A
Great Promise for Future Endeavor. Anticancer Agents Med Chem (2021) 22
(7):1257–71. doi: 10.2174/1871520621666210712090017

152. Gupta K. Chapter 13 - The Molecular and Cellular Effects of Radiotherapy-
Induced Microenvironment Changes on Potential Chemoresistance in
Glioblastoma. In: R Paulmurugan and TF Massoud, editors. Glioblastoma
Resistance to Chemotherapy: Molecular Mechanisms and Innovative Reversal
Strategies, vol. 15. Academic Press (2021). 335–64. doi 10.1016/B978-0-12-
821567-8.00035-X

153. Ebner DK, Malouff TD, Lehrer EJ, Trifiletti DM, Krishnan S. Meta-Analysis of
Definitive Photon and Particle Irradiation for Locally Advanced Pancreatic Cancer.
Int J Radiat Oncol Biol Phys (2021) 111(3S):e56. doi: 10.1016/j.ijrobp.2021.07.397

154. Eley JG, Chadha AS, Quini C, Vichaya EG, Zhang C, Davis J, et al. Pilot
Study of Neurologic Toxicity in Mice After Proton Minibeam Therapy. Sci
Rep (2020) 10(1):11368. doi: 10.1038/s41598-020-68015-0

155. Lee HJJr, Zeng J, Rengan R. Proton Beam Therapy and Immunotherapy: An
Emerging Partnership for Immune Activation in Non-Small Cell Lung
Frontiers in Oncology | www.frontiersin.org 23
Cancer. Transl Lung Cancer Res (2018) 7(2):180–8. doi: 10.21037/
tlcr.2018.03.28

156. Kumari S, Mukherjee S, Sinha D, Abdisalaam S, Krishnan S, Asaithamby A.
Immunomodulatory Effects of Radiotherapy. Int J Mol Sci (2020) 21
(21):8151. doi: 10.3390/ijms21218151

157. Mirjolet C, Nicol A, Limagne E, Mura C, Richard C, Morgand V, et al.
Impact of Proton Therapy on Antitumor Immune Response. Sci Rep (2021)
11(1):13444. doi: 10.1038/s41598-021-92942-1
Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Gupta, Jones, Farias, Mackeyev, Singh, Quiñones-Hinojosa and
Krishnan. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) and the copyright owner(s) are
credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.
May 2022 | Volume 12 | Article 840241

https://doi.org/10.3390/cancers12113331
https://doi.org/10.3390/cancers12113331
https://doi.org/10.1038/s41392-021-00544-0
https://doi.org/10.1016/j.jconrel.2018.01.029
https://doi.org/10.2174/1871520621666210712090017
https://doi.org/10.1016/B978-0-12-821567-8.00035-X
https://doi.org/10.1016/B978-0-12-821567-8.00035-X
https://doi.org/10.1016/j.ijrobp.2021.07.397
https://doi.org/10.1038/s41598-020-68015-0
https://doi.org/10.21037/tlcr.2018.03.28
https://doi.org/10.21037/tlcr.2018.03.28
https://doi.org/10.3390/ijms21218151
https://doi.org/10.1038/s41598-021-92942-1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Gupta et al. Co-Targeting DDR1-BCR and EGFR-ERBB2 Against Chemoradioresistance
GLOSSARY
CRC colorectal cancer
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COAD/COREAD colorectal adenocarcinoma
GBM glioblastoma multiforme
GBM-PD GBM patient-derived cell lines
WNT wingless-type MMTV integration site family
APC adenomatous polyposis coli
CTNNA1 catenin-Alpha1 gene
CTNNB1 catenin-Beta1 gene
EGF epidermal growth factor
FGF2 fibroblast growth factor 2
EGFR epidermal growth factor receptor
ERBB2/3/4 V-Erb-B2 erythroblastic leukemia viral

oncogene homolog 2/3/4
MAPK mitogen-activated protein kinase
KRAS K i r s t e n R a t S a r c o m a V i r a l

Oncogene Homolog
NRAS neu rob l a s t oma RAS Vi r a l (V-Ra s )

oncogene homolog
WT-KRAS wild-type KRAS
KRASmut mutant KRAS
PI3K phosphatidylinositol-4,5-bisphosphate

3-kinase
PIK3CA phosphatidylinositol-4,5-bisphosphate 3-

kinase catalytic subunit-a
AKT V-Akt (Ak strain transforming) murine

thymoma viral oncogene
MTOR mammalian target of rapamycin kinase
RAF V-Raf murine leukemia viral oncogene-

like protein
BRAF V-Raf murine sarcoma viral oncogene

homolog B1
TGFb transforming growth factor-beta
SRC V-Src avian sarcoma (Schmidy-Ruppin A-2)

viral oncogene homolog
LYN Lck/Yes related novel protein tyrosine kinase
CDH1 cadherin-1
DDR1 discoidin domain receptor 1
NTRK neurotrophic receptor tyrosine kinase
CAK cell adhesion kinase
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RTK receptor tyrosine kinase
MTK multi-tyrosine kinase
BCR breakpoint cluster region
ABL/ABL1 Abelson Murine Leukemia Viral Oncogene

Homolog 1
LGR5 leucine-rich repeat containing G-protein-

coupled receptor-5
SHC1 SHC (Src-homology 2 domain containing)

transforming protein 1
GRB2 growth factor receptor bound protein 2
SOS1 Son of Sevenless Homolog 1
SOX SRY-Box transcription Factor
VANGL2 Van Gogh-Like Planar cell polarity protein 2
PTPN11 protein tyrosine phosphatase non-receptor

type 11
ECM extracellular matrix
NF1 neurofibromin-1
PTEN phosphatase and tensin homolog deleted on

chromosome 10
ATP adenosine nucleotide triphosphate
GTP guanosine nucleotide triphosphate
GDP guanosine nucleotide diphosphate
RT radiation therapy
CRT chemoradiation therapy
IR irradiation
ROS reactive oxygen species
Gy Gray
mut (superscript) mutant
WT (Superscript) wild-type
i (suffix) Inhibitor
EGFRi EGFR inhibitor
N2EF N2N21max, N2+EGF+FGF, N2+N21max
TCGA The Cancer Genome Atlas
GTEx Genotype Tissue Expression
GEPIA gene expression profiling interactive analysis
GDSC Genomics of Drug Sensitivity in Cancer
IC50 inhibitory dose 50
Rs/Rp Spearman’s/Pearson’s correlation coefficients
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