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Background: Pancreatic ductal adenocarcinoma (PDAC) is characterized by intensive
stromal involvement and heterogeneity. Pancreatic cancer cells interact with the
surrounding tumor microenvironment (TME), leading to tumor development, unfavorable
prognosis, and therapy resistance. Herein, we aim to clarify a gene network indicative of
TME features and find a vulnerability for combating pancreatic cancer.

Methods: Single-cell RNA sequencing data processed by the Seurat package were used
to retrieve cell component marker genes (CCMGs). The correlation networks/modules of
CCMGs were determined by WGCNA. Neural network and risk score models were
constructed for prognosis prediction. Cell–cell communication analysis was achieved by
NATMI software. The effect of the ITGA2 inhibitor was evaluated in vivo by using a
KrasG12D-driven murine pancreatic cancer model.

Results: WGCNA categorized CCMGs into eight gene coexpression networks. TME
genes derived from the significant networks were able to stratify PDAC samples into two
main TME subclasses with diverse prognoses. Furthermore, we generated a neural
network model and risk score model that robustly predicted the prognosis and
therapeutic outcomes. A functional enrichment analysis of hub genes governing gene
networks revealed a crucial role of cell junction molecule–mediated intercellular
communication in PDAC malignancy. The pharmacological inhibition of ITGA2
counteracts the cancer-promoting microenvironment and ameliorates pancreatic
lesions in vivo.
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Conclusion: By utilizing single-cell data and WGCNA to deconvolute the bulk
transcriptome, we exploited novel PDAC prognosis–predicting strategies. Targeting the
hub gene ITGA2 attenuated tumor development in a PDAC mouse model. These findings
may provide novel insights into PDAC therapy.
Keywords: PDAC, tumor microenvironment, cell–cell communication, integrin, prognostic signature
INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is one of the most
aggressive and fatal diseases and accounts for almost 95% of
pancreatic malignant cancers. Over the last decade, intense
efforts to improve survival rates have failed. Effective treatment
for PDAC patients is largely limited by a low early diagnosis rate,
high relapse probability, and the therapy-refractory nature of
PDAC; as a result, it has the lowest 5-year survival rate among
cancer types (1, 2). PDAC is predicted to become the second
leading cause of cancer-related death by 2030 (3). Facilitated by
advances in high-throughput technologies, understanding the
molecular landscape may be beneficial for solving PDAC.

The molecular classification of PDAC based on genome and
transcriptome data is helpful to identify clinically relevant gene
signatures, actionable genetic variations, and/or prognostic
biomarkers (4–8). However, conventional molecular analyses
may be inefficient in fully dissecting microenvironment
dynamics. One hallmark of PDAC is extensive inclusion of the
stroma. The high heterogeneity of cell components within the
PDAC stroma makes it difficult to map distinguishable changes
into specific microenvironmental components.

One way to resolve this challenge is to apply deconvolution
algorithms, which evaluate the relative abundance of well-known
cell types (9, 10). The emergence of single-cell RNA sequencing
technology enables the assessment of expression profiles at the
single-cell level and the discovery of individual cell type–specific
gene profiles. Moreover, according to known ligand–receptor
pairs, some bioinformatic tools can be used to estimate a possible
crosstalk between different cell populations using scRNA-seq
data (11, 12). Thus, this technology informs how different cell
types cooperate with each other. Nevertheless, the application of
this technology is restricted by its high costs. Moreover, in public
PDAC single-cell datasets, limited samples have been included
(13, 14).

To take advantage of both single-cell and bulk transcriptome
assays in PDAC classification, we utilized scRNA-seq data to
deconvolute the bulk transcriptome, which resulted in TME-
related gene networks. Based on the coexpressed TME genes, we
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generated outcome predictors based on neural networks and risk
scores. Then, by using a cell–cell communication algorithm, an
intercellular connection network was determined in the single-
cell transcriptome, which could also be extended to bulk gene
expression data for prognostic analyses. Ultimately, the factors
involved in the cell–cell communication network were tested for
the in vivo druggable value, emphasizing a tumor-promoting role
of the key integrin in PDAC.
MATERIALS AND METHODS

Data Acquisition and Processing
A single-cell RNA sequencing (scRNA-seq) dataset of pancreatic
adenocarcinoma samples was obtained from the Genome
Sequence Archive (GSA) database under the accession code
CRA001160 (13). The count matrix was directly downloaded
from the website. Low-quality cells were removed according to
the results of the ‘calculateQCMetrics’ function in the ‘Scater’
package. Three PDAC bulk sequencing transcriptome assays,
GSE28735 (15), GSE62452 (16), and GSE71729 (17), were
obtained from the Gene Expression Omnibus (GEO) database
using the R package ‘GEOquery’. The raw data of the PDAC
RNA-seq dataset GSE79668 (18) and two single-cell sequencing
repositories GSE155698 (19) and GSE156405 (20) were
downloaded from the supplementary file on the GEO website.
In The Cancer Genome Atlas (TCGA) database, the
transcriptome data, genetic copy number variation data, simple
nucleotide variation data, and clinical features of pancreatic
adenocarcinoma samples were downloaded and integrated
through the ‘TCGAbiolinks ’ package (21). From the
International Cancer Genome Consortium (ICGC) database
(22), we downloaded the RNA-seq data of PACA-AU and
PACA-CA and array-based gene expression profiling data
(exp_array) together with clinical information. To construct a
training set, we integrated three RNA-seq datasets PACA-AU,
PACA-CA, and GSE79668 into a combined PDAC dataset using
the ‘combat’ R package. The samples lacking prognostic
information were excluded from the combined PDAC dataset.

Re-Analysis of Single-Cell RNA-seq Data
The single-cell RNA-seq data were analyzed by the ‘Seurat’
package (23). Firstly, gene counts were converted to log2(TPM
+1) values. Then, the top 2,000 variable features were selected to
perform PCA dimension reduction, followed by dimension
reduction through Uniform Manifold Approximation and
Projection (UMAP). Finally, the Seurat clusters were
determined by ‘FindNeighbors’ and ‘FindClusters’ functions in
June 2022 | Volume 12 | Article 840474
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the Seurat package. The cellular identity of each cluster was
identified by the expression of cell type–specific genes: epithelial
cells [EPCAM (24), KRT19 (25)], pancreatic islet [INS (26)],
pancreatic acinar cells [CPA1 (27)], immune cells [PTPRC/
CD45 (28)], B cells [MS4A1/CD20 (29), CD79A (30)], T cells
[CD3E (29)], myeloid cells [ITGAX/CD11C (31)], endothelial
cells [CDH5 (32)], and fibroblasts [COL1A2 (33)].

The highly expressed genes in each cell type were calculated
by the ‘FindConservedMarkers’ function. Cell component
marker genes (CCMGs) were defined as the genes with a fold
change >2 and P-value <0.05, and the genes that were assigned
with more than one identity were excluded. The TME marker
genes (MEMGs) were defined by the CCMGs representing the B
cell, T cell, myeloid cell, endothelial cell, and fibroblast.

Weighted Correlation Network Analysis
Weighted correlation network analysis (WGCNA) was
performed through the ‘WGCNA’ R package. CCMGs were
used as input genes for WGCNA. Input genes and samples
were filtered by the good genes sample test via the
‘goodSamplesGenes’ function. The soft thresholding power b
was chosen as the lowest power when the scale-free fit R (2) nears
0.85. In this study, b = 5 was selected to construct the scale-free
network, generating eight non-gray gene modules. The eigengene
values of the gene modules were calculated by the
‘moduleEigengenes’ function.

The prognostic significance of each module was determined
by univariate cox regression analyses and Kaplan–Meier analyses
using ‘survival’ and ‘survminer’ packages, respectively. The
optimal cutoff values were estimated by the R package
‘maxstat’. The hub genes in each module were determined
using both intramodular connectivity (kWithin) and module
membership (kME) scores. The functional enrichment of hub
genes was performed by the ‘enricher’ function within the
‘ClusterProfiler’ package, using gene sets in the Reactome
database (msigdbr, version 7.1.1).

Unsupervised Transcriptome Clustering
A consensus clustering of PDAC transcriptome data was
performed via the R package ‘CancerSubtypes’ (34), based on
the expression of the MEMGs in blue and green modules, under
the parameters clusterAlg=“km”, distance=“euclidean”. The
samples in each TME cluster were further filtered by the
silhouette score calculated by the ‘silhouette_SimilarityMatrix’
function. Gene expression in TME clusters was visualized by the
‘ComplexHeatmap’ package. In the TCGA-PAAD dataset,
genetic variations in TME clusters were summarized and
visualized by the ‘oncoplot’ function in the ‘maftools’ package.

Estimation of Tumor-Microenvironmental-
Infiltrating Cells
To quantify the abundance of immune cells and other TME cells,
we used the R package ‘quanTIseq’ to deconvolute the RNA-seq
data of PDAC samples (10). The tumor immune dysfunction and
exclusion (TIDE) algorithm was used to calculate tumor sample–
infiltrating myeloid-derived suppressor cells (MDSCs) and
predict immunotherapy responsiveness in PDAC patients (35).
Frontiers in Oncology | www.frontiersin.org 3
The python script tidepy-1.3.7 was used to perform the
TIDE program.

Neural Network Model and Risk
Score Construction
To construct a prognosis-predicting model, we employed
PyTorch to build a five-layer deep neural network (DNN)
model (36) based on the expression of MEMGs. To train the
DNN model, a randomly selected 2/3 subset of combined PDAC
samples was used as a training set. The batch normalization was
conducted in each layer. The Relu function was used as the
activation function, and the sigmoid function was applied in the
output layer. The trained model was applied in the other 1/3
subset of combined PDAC samples for internal testing and also
subjected to external testing in other PDAC datasets. The
probability value generated by the DNN program was also
used in prognostic analyses. Alternatively, another MEMG-
based risk model was defined as weighted average expression
of MEMGs. The Cox coefficient was used as the weight for each
gene. The risk score was established in a combined PDAC dataset
and tested in other datasets. Meta-analysis was performed in R
using the ‘metafor’ package (37) with the DL (DerSimonian and
Laird) model.

Cell–Cell Communication Analysis
The intercellular cell–cell communication network in single-cell
RNA-seq data was constructed by the Network Analysis Toolkit
for the Multicellular Interactions (NATMI) (11). The ligand–
receptor pairs were restricted to the cell junction molecules
within WGCNA hub genes and extracted from a published
ligand–receptor interaction list connectomeDB2020 (38). The
cell–cell communication score in bulk RNA-seq data was defined
as the geometric mean of (TPMLigand/TPMLigand_reference) and
(TPMReceptor/TPMReceptor_reference). The genes used as a reference
for each cell type were as follows: tumor cells (EPCAM),
endothelial cells (CDH5), fibroblasts (COL1A2), myeloid cells
(ITGAM), pancreatic acinar cells (CPA1), pancreatic islet
(NEUROD1), B cells (MS4A1), and cytotoxic cells (CD3E).

Tissue Samples and
Immunohistochemistry
A set of tissue microarrays (TMAs) containing 66 PDAC samples
purchased from Shanghai Outdo Biotech Co., Ltd. were used for
immunohistochemistry (IHC) staining. Patients and their
clinical characteristics are shown in Supplementary Table 1.
This study has been approved by the Ethics Committee of Renji
Hospital, Shanghai Jiao Tong University School of Medicine. For
IHC analysis, the slide was rehydrated and then immersed in a
3% hydrogen peroxide solution for 15 min. The slide was
pretreated by microwave for 25 min in 0.01 mol/L citrate
buffer, pH 6.0, at 95°C; and naturally cooled to room
temperature. Between each incubation step, the slide was
washed with Phosphate Buffered Saline (PBS), pH 7.4. Then,
the tissues were incubated overnight at 4°C with a diluted anti-
ITGA2 antibody (Abcam, Ab133557). After washing with PBS,
the section was visualized using the VECTASTAIN® Elite ABC-
June 2022 | Volume 12 | Article 840474
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HRP Kit, Peroxidase (Vectorlabs, PK-6104) as per the
manufacturer’s instructions.

Immunofluorescence
Sections were deparaffinized and rehydrated in xylene (2 × 15
min) and gradient alcohol (85% and 70%; 5 min each) and rinsed
for 5 min in distilled water. Pretreatment occurred in a sodium
citrate antigen retrieval solution (pH 6.0) at a sub-boiling
temperature for 10 min, standing for 10 min, and then followed
by another sub-boiling temperature for 7 min. After cooling to
room temperature, the slides were washed in PBS (pH 7.4) for
three times (5 min each). The sections were then immersed in 3%
H2O2 and incubated at room temperature for 15 min in a dark
place. After washing three times with PBS in a rocker device, the
sections were blocked with 3% BSA for 30 min at room
temperature and then incubated at 4°C overnight with primary
antibodies against ITGA2 (Abcam, Ab133557, 1:2,500). After
being washed with PBS for three times, the tissues were
incubated with a secondary antibody (Servicebio, GB23303,
1:500) at room temperature for 50 min in a dark condition.
Slides were incubated with a TSA-CY3 solution (appropriately
diluted with TBST) for 10 min in a dark condition and then
washed three times with TBST. After antigen retrieval again, the
slides were treated with an FN1 (Servicebio GB13091, 1:300) and
its secondary antibody (Servicebio, GB25303, 1:400). Then, the
slides were incubated with a spontaneous fluorescence quenching
reagent for 5 min and washed under flowing water for 20 min.
Nuclei were stained with 4′, 6-diamidino-2-phenylindole (DAPI)
at room temperature for 10 min and treated with an anti-fade
mounting medium after washing with PBS.

Mice and Treatment
The Pdx1-Cre mice were crossed with Kras(LSL-G12D) mice
(Shanghai Model Organisms Center, Inc., Shanghai, China) to
generate mice with the genotype Pdx1-Cre+, KrasG12D (KC). The
12–16-week-old mice were orally treated with E7820 (100 mg/kg
bodyweight) once a day, for 15 consecutive days. The mice were
sacrificed after management. The pancreas was fixed and
subjected to hematoxylin and eosin (H&E) staining. The
tumoral lesions within the pancreas were diagnosed and
statistically analyzed. The fixed mice pancreas specimens were
also subjected to immunohistochemical staining with primary
antibodies, including anti-CK19 (Servicebio, GB12197), anti-
Ki67 (Servicebio, GB111141), anti-aSMA (Servicebio,
GB13044), anti-CD31 (Servicebio, GB113151), and anti- Gr1
(Servicebio, GB11229). The Alcian blue staining was performed
using the Alcian blue staining kit (Servicebio, GP1040). All
animal experiments were approved by the Institutional Animal
Care and Use Committee at the Renji Hospital, Shanghai Jiao
Tong University School of Medicine.

Cell Culture and Viability Assay
The PDAC cell lines SW1990 and PANC1 were acquired from the
American Type Culture Collection [American Type Culture
Collection (ATCC), Manassas, VA, United States], and were
maintained at 37°C in 5% CO2 in Dulbecco’s modified Eagle
medium supplemented with 10% fetal bovine serum. Cells were
Frontiers in Oncology | www.frontiersin.org 4
seeded at 1,000 cells in 200 µl of DMEM per well in 96-well plates.
At the indicated time points, 20 µl of the Cell Counting Kit-8
reagent (Beyotime, C0039) was added to each well and incubated at
37°C for 3 h. The absorbance wasmeasured by a spectrophotometer
at 450 nm with a reference wavelength of 600 nm.

Western Blot
Cells were lysed by Radioimmunoprecipitation assay (RIPA) buffer
(Thermo Fisher Scientific Inc., 89901) with a protease inhibitor
cocktail (F. Hoffmann-La Roche Ltd., 05892970001) and
phosphatase inhibitor cocktail (F. Hoffmann-La Roche Ltd.,
04906845001). The lysates were clarified by centrifugation at 12
000 g for 20 min at 4°C. Protein concentrations were measured by
the BCA protein assay kit (Thermo Fisher Scientific Inc., 23225)
and the samples were boiled with loading buffer. Protein samples
(50–150 mg) were separated through SDS-PAGE and then
transferred to a nitrocellulose filter membrane (Pall Corporation)
blocked and incubated with the primary antibodies. After washing
with TBST three times, the blots were incubated with the IRDye
800CW Secondary Antibody (licor, 926-32211) and visualized by
the Odyssey Sa Infrared Imaging System (LI-COR).

Real-Time PCR
Total RNA from cells were extracted through the RNAiso Plus
kit (Takara Bio Inc., Beijing, China). The cDNA preparation was
finished through the primeScript RT Master kit (Takara Bio Inc.,
Beijing, China). Real-time PCR was performed by the SYBR
Green quantitative PCR kit (Life Technology) using the 7500
Real-Time PCR System or ViiA7 System (AB Applied
Biosystems, Shanghai, China). The primers include human
ITGA2-F: GGCTGGCCCAGAGTTTACAT, human ITGA2-R:
ATCGCCCCCTCTCCTAACTT, human GAPDH-F: CATGAG
AAGTATGACAACAGCCT, and human GAPDH-R: AGTCC
TTCCACGATACCAAAGT.
RESULTS

Weighted Gene Coexpression
Network Analysis Yielded Eight
Cell-Marker-Gene Modules
PDAC is dominated by intricate TME cells. To evaluate the
prognostic importance of TME variations and key molecular
events underlying tumor cell–TME interactions, a set of cell
cluster marker genes was defined based on PDAC single-cell
RNA-sequencing data. Then, the cell cluster marker genes were
used to gauge the TME status in bulk sequencing data to mine
prognostic prediction systems in PDAC patients (Figure 1A). A
single-cell RNA-seq dataset CRA001160 was analyzed by Seurat
software, and the dimensions were reduced by UMAP methods
to obtain consensus clusters (Figure 1B). According to the
expression of a handful of well-documented cell type–specific
genes (Supplementary Figure 1A), we distinguished the cellular
identity of each cluster and integrated them into eight major
components, including B cells, cytotoxic cells, endothelial cells,
fibroblasts, myeloid cells, acinar cells, islet cells, and tumor cells
(Figure 1C; Supplementary Figure 1B). CCMGs were defined as
June 2022 | Volume 12 | Article 840474

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wu et al. Microenvironmental Heterogeneity in PDAC
A B

D E F

G H

C

FIGURE 1 | Weighted gene coexpression network analysis (WGCNA) classifies cell component marker genes into eight gene modules in pancreatic cancer. (A) The
workflow diagram summarizes the study design in this work. (B, C) Uniform Manifold Approximation and Projection (UMAP) visualization of pancreatic ductal adenocarcinoma
(PDAC) single-cell sequencing data exhibits the cell clusters discovered by Seurat analysis (B) and the cellular identity of each cluster (C). The cell type of each cluster
was distinguished through the expression of well-documented markers (shown in Supplementary Figure 1A) and grouped into eight major components. (D) Cell
component marker genes found in PDAC single-cell dataset were subjected to WGCNA in a combined PDAC bulk RNA-sequencing dataset. In this process, eight gene-
network modules were detected. (E) Stacked barplots show the cell origins of the genes constituting each module. (F) Distribution of different cell component marker
genes in the gene modules. (G, H) Barplots show the prognostic significant genes in every gene module (G) and each cell type (H). The prognosis significance was
determined by Cox regression analysis.
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nonoverlapping genes with Fold Change >2 and P-value<0.05
(Supplementary Table 2; Supplementary Figure 1C). The
universality of the defined cell markers was validated by two
external scRNA-seq datasets (Supplementary Figure 2A). The
genes representing B cells, T cells, myeloid cells, endothelial cells,
and fibroblasts were then selected and defined as TME marker
genes (MEMGs).

To generate a training set for deciphering links between the
TME status and prognosis, we merged three cohorts of PDAC
bulk RNA-sequencing datasets (PACA-CA, PACA-AU and
GSE79668) into one combined PDAC RNA-seq dataset
(Supplementary Table 3). The ‘Combat’ function was used to
eliminate batch effects (Supplementary Figure 3A). The
CCMGs derived from single-cell data were used as input genes
for WGCNA in the combined PDAC dataset under a soft
threshold of 0.85, resulting in eight nongrayed gene modules
(Figure 1D; Supplementary Figures 3B, C). When tracing each
gene in every module back to its represented cell type, it is clear
that all gene modules contained genes from more than one cell
type (Figure 1E), and the cell type constitution of gene modules
was also highly heterogeneous (Figure 1F). Tumor cell-derived
marker genes were enriched and dominant in the blue and green
models, while the turquoise model was mainly composed of
endothelial cells and fibroblast-derived genes. CCMGs were
tested for their prognostic potential by Cox regression analyses.
According to Cox regression results, the CCMGs were classified
into good (HR<1, p<0.05) and poor (HR>1, p<0.05) outcome-
associated genes (Supplementary Table 4). Prognostically
significant genes existed in every gene module (Figure 1G) and
all cell types (Figure 1H). The genes indicating good survival
were dominant in all modules except the green and red modules.

MEMGs Classify PDAC Samples Into
Prognosis-Related Subtypes
To understand the prognostic impacts of gene coexpression
networks, the module eigengene (ME) values were calculated for
Cox regression analysis of each module (Supplementary Table 5).
Cox regression and Kaplan–Meier analyses under optimal cutoff
values revealed that high MEgreen values and low MEblue values
inferred unfavorable outcomes (Figures 2A, B). In these two
modules, the genes with high module membership (MM) values
and intramodular connectivity values (MM>0.5 and
connectivity>0.5) were defined as hub genes (Supplementary
Table 6). All 63 hub genes, excluding 2 endothelial genes, in the
two modules were derived from tumor cells (Figure 2C), which is
in agreement with the notion that tumor cells provide the driving
force in shaping the TME.

To categorize PDAC patients with respect to TME
heterogeneity, we used MEMGs in the green and blue modules
to classify the PDAC patients. After filtering samples by
silhouette score (silhouette width>0), the remaining samples
were assigned to three TME classes (Figure 2D). The vast
majority of patients fell into the C1 and C2 classes. Most poor-
prognostic MEMGs and green module–derived MEMGs were
highly expressed in the TME C2 class. For the hub genes, those in
the blue module were upregulated in the TME C1 class, while the
Frontiers in Oncology | www.frontiersin.org 6
green genes were highly expressed in the TME C2 class
(Figure 2E). Importantly, the patients in the C1 and C2 classes
were divergent in overall survival rates (Figure 2F). To test this
finding in the external cohort, the same consensus clustering
method was applied in the TCGA-PAAD dataset, resulting in a
similar result (Supplementary Figure 4A). These results
demonstrated that distinct TME statuses were related to
patient outcomes. To compare TME components between the
main TME classes, we used the ‘quanTIseq’ and ‘TIDE’
deconvolution methods to estimate the abundance of some
crucial tumor-infiltrating cells. The results showed that the C1
class was infiltrated by more cytotoxic cells, such as NK cells and
CD8+ T cells. In contrast, the C2 class was enriched in cancer-
associated fibroblasts (CAFs) and immunosuppressive MDSCs
(Figure 2G). To assess the genetic mutations of the TME classes,
the gene variation landscape was mapped. The results showed
that the incidence of the recurrent mutations Kras and TP53 was
higher in the C2 class (Figure 2H).

Establishment of a Neural Network and
Risk Score Model for Predicting Overall
Survival and Chemoresponsiveness
To utilize the prognosis-significant gene modules in predicting
the overall survival of PDAC patients, a deep neural network
(DNN) model was constructed based on the PyTorch platform
(36). The DNN model contained five layers and used the blue/
green module-derived MEMGs as input (Figure 3A). First, the
DNN model was trained using 2/3 randomly selected samples in
the combined PDAC dataset. Then, the remaining 1/3 of the
samples were used as the internal testing set. Since the median
survival time is close to 1 year, we applied this model to predict
1-year survival. Consequently, we obtained an AUC=0.88 in the
training set and an AUC=0.9 in the testing set (Figure 3B).
Kaplan–Meier survival analysis of the DNN predictor–derived
probability score revealed that the patients with higher scores
had shorter survival times (Figure 3C). In an external testing set,
the TCGA-PAAD dataset, the DNNmodel was also successful in
predicting patient outcomes (AUC=0.81; Kaplan–Meier survival
analysis, p<0.0001) (Figures 3D, E). Furthermore, meta-analysis
was performed to review the prognostic efficiency of the DNN
probability score in independent datasets. The results showed
that the DNN score was associated with poor prognosis in all
tested PDAC datasets. Meta-analysis through the DL model
resulted in a positive hazard ratio (HR=3.076, p<0.00001),
demonstrating a general prognostic effect of DNN scores
(Figure 3F). We also utilized the DNN model to predict the
chemosensitivity of PDAC patients. In an ICGC subdataset, 68
PDAC patients who underwent chemotherapy were selected for
DNNmodel training, and the trained model accurately predicted
the chemoresponsiveness of patients (Figures 3G, H;
Supplementary Table 7). Concurrently, the DNN probability
score stratified PDAC patients who received chemotherapy into
two groups with distinct survival (Figure 3I).

In addition to the DNN model, we also adopted a MEMG-
based risk score model in prognosis prediction. The risk score
was defined as the weighted average expression of MEMGs. The
June 2022 | Volume 12 | Article 840474
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FIGURE 2 | Tumor microenvironment marker genes (MEMGs) stratify PDAC patients into subtypes with distinct outcomes. (A) The eigengene (ME) values for the gene
modules were calculated in PDAC samples using the transcriptome data; then, the Cox regression analyses were performed to estimate the hazard ratio (HR). Forest plot
shows the HR and and 95% confidence interval (95% CI). The optimal cutoff value in each module was estimated by the maxstat function. (B) Kaplan–Meier curves
indicate that the eigengene values of green and blue modules are correlated with poor and favorite prognosis, respectively, P-values were evaluated by a log-rank tests.
(C) MEMGs and hub genes in the prognosis-related modules (blue and green modules) were defined by the expression in cell components, module membership, and
intramodular connectivity. (D) MEMGs stratify PDAC patients into three TME classes by a consensus cluster algorithm. Different expressed MEMGs among subclasses
were shown by a heatmap. (E) The heatmap shows the expression pattern of hub genes in different TME classes. (F) Kaplan–Meier curves show the variations of survival
rates among TME classes. Statistical analysis was taken by the log-rank test. (G) Relative abundance and differentiations of tumor environmental cells in two major TME
classes. The abundance of these cells was estimated by the quanTIseq algorithm or tumor immune dysfunction and exclusion (TIDE) methods. Differences were tested by
Student’s t-test, ****P < 0.0001, *P < 0.05, ns: not significant. (H) The waterflow plot displays recurrent genetic variations in each TME class.
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FIGURE 3 | A deep neural network (DNN) model predicts outcomes of PDAC patients based on the expression of MEMGs. (A) The framework of the deep neural
network (DNN) containing five layers. (B) The samples in a combined PDAC dataset were randomly divided into training groups (2/3) and internal testing groups
(1/3). The DNN model was trained in training samples by 400 iterations and tested by internal testing samples and all samples. ROC curves show the 1-year survival
predicting accuracies in each group. The area under the curve (AUC) values were shown. (C) The DNN probability score generated by DNN predictor in the all-
sample-testing process was correlated with overall survival of patients. The Kaplan–Meier plot shows the survival rates, and statistical significance was tested by log-
rank test. (D, E) The prognostic capability of DNN model was examined in the external testing set. The ROC curve (D) and Kaplan–Meier plot stratified by DNN
scores (E) were shown. (F) Systematical cox analyses estimate the HR of DNN scores in multiple PDAC datasets from TCGA, ICGC, or GEO databases. The meta-
analysis was performed using DL (DerSimonian and Laird) model to estimate the general prognostic effect of DNN score in pancreatic cancer patients. (G) The DNN
framework was also trained to be a chemotherapy response predictor using a cohort of PDAC patients undergone chemotherapy. ROC curves show the AUC
values using a DNN model to predict chemotherapeutic responsiveness in training, testing or all samples. (H) A confusion matrix demonstrates the accuracy of DNN
model in predicting chemo-response. (I) DNN score correlates with patient’s survival after chemotherapy. The survival rates were shown in Kaplan–Meier plot. The
differentiation was tested by log-rank test.
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Cox coefficient was used as the weight (Supplementary Table 8).
In multiple independent PDAC datasets, a high risk score
positively correlated with an unfavorable prognosis
(Figure 4A). Cox regression analyses and meta-analysis
showed that higher risk scores inferred poor outcomes in most
Frontiers in Oncology | www.frontiersin.org 9
individual datasets or pooled effects (Figure 4B). Again, the risk
score was related to outcomes after chemotherapy (Figure 4C).
Dimidiated by the maxstat-derived cutoff value, the risk score
showed a strong correlation with actual chemoresponses
(Fisher’s exact test, P=0.017) (Figure 4D). We also found that
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FIGURE 4 | MEMG-based risk score infers therapy efficiencies in pancreatic cancer patients. (A) A risk score algorithm based on the expression pattern of MEMGs
was established in a combined PDAC (training) dataset and tested for its prognostic relationship in the multiple testing sets. (B) The HRs of risk scores in different
PDAC datasets were shown, and a meta-analysis with the DL model was performed to estimate the overall effect. (C) A Kaplan–Meier plot shows the correlation of
the risk score with PDAC patients’ survival after chemotherapy, tested by the log-rank test. (D) Correlation between risk score levels and actual responses. The
significance was tested by Fisher’s exact test. (E) Scatterplots show the correlation of risk score with the TIDE-calculating MDSC abundance and dysfunction level.
Correlations were analyzed by the Spearman method. (F) Associations of the risk score with TIDE-estimating immune checkpoint blockage therapy effectiveness.
The significance was tested by Fisher’s exact test.
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the MEMG-based risk score positively correlated with MDSC
infiltration but negatively correlated with the dysfunction score
(Figure 4E). Importantly, the risk score level was related to the
TIDE-estimated immune checkpoint blockage response (Fisher’s
exact test, P=0.007) (Figure 4F).

Cell Junction Molecule-Mediated Cell–Cell
Communications Govern the Prognosis-
Related Gene Network
To understand the molecular basis of prognosis-related gene
networks, we performed functional enrichment analysis of hub
genes using the gene signatures from the REACTOME database.
“Cell junction” and “Cell communication” were at the top of the
list of enriched molecular function terms (Figure 5A;
Supplementary Table 9). Therefore, the hub genes with cell
junction functions that overlapped with either ligands or
receptors mediating cellular communication were selected for
further analysis (Figure 5B). The selected hub genes orchestrated
a gene correlation network with convoluted tumor cell–tumor
cell or tumor cell–TME connections (Figure 5C). The physical
ligand–receptor pairs formed by these hub genes were isolated
from the connectomeDB2020 database (Figure 5D) and
subjected to cell–cell communication assays in scRNA-seq
datasets. The preliminary results showed that one ligand–
receptor pair may modulate more than one cell pair
(Figure 5E; Supplementary Figure 5A). The cell pair with the
largest average expression value was considered the top cell–cell
connection for each ligand–receptor pair (Supplementary
Table 10). By matching the ligands/receptors to sending cell
types and target cell types according to the top connections, we
obtained cell-ligand–receptor–target alluvial plots in which
molecules were weighted by average expression and cell types
were weighted by summing the average expression of
contributing molecules. The networks showed that tumor cells,
fibroblasts, and endothelial cells were the most vital cell types
engaged in cell–cell communication in pancreatic cancers
(Figure 5F, Supplementary Figure 5B).

Integrins are Key Mediators Critical for
Tumor Cell–TME Communications
To interrogate the prognostic effect of cell–cell communication
linked by a particular ligand–receptor pair, we calculated the
cell–cell communication score in bulk RNA-seq data for Cox
regression analyses in the combined PDAC and TCGA-PAAD
cohorts (Figure 6A). Most ligand–receptor-induced cell–cell
connections were markedly correlated with poor prognosis
(HR>1, P<0.05). Notably, integrin-mediated tumor cell-
fibroblast communication and tumor cell-endothelial cell
communication were prioritized in the HR rank. In addition,
the majority of cell–cell communication scores were correlated
with the DNN model-generated probability score (correlation
coefficient > 0, P<0.05) (Figure 6B). By integrating the cell–cell
communication networks in both the combined PDAC dataset
and the TCGA-PAAD dataset, we found that tumor cells,
fibroblasts, and endothelial cells were the most significant
cellular components. Meanwhile, integrins such as ITGA2 and
Frontiers in Oncology | www.frontiersin.org 10
ITGA6 were the main contributing molecules (Figure 6C;
Supplementary Figure 6A). The scRNA-seq data showed that
ITGA2 was mainly expressed in tumor cells, while its ligands
COL1A1, COL1A2, COL8A1, FN1, and HSPG2 were expressed
in fibroblasts and endothelial cells (Supplementary Figure 6B).
ITGA2 interacted with COL1A1, COL1A2, COL8A1, FN1, and
HSPG2, mediating the tumor cell–fibroblast and tumor cell–
endothelial cell connection. In contrast, another hub, ITGA6,
was predominant ly expressed in endothe l ia l ce l l s
(Supplementary Figure 6C). ITGA6 and its ligands mediate
the interactions between endothelial cells and tumor cells and
other environmental cells. Correlation analyses showed that the
mean expression levels of integrins in hub genes were largely in
parallel with the cell–cell communication score, DNN
probability score, and risk score (Figure 6D; Supplementary
Figures 7A, B). Additionally, PDAC samples highly expressing
hub integrins accumulated in the TME C1 class and harbored
more driver genetic variations (Figure 6E). These results
indicated that integrins may be the key mediators in the tumor
cell–TME interactions.

Pharmacological Blockade of ITGA2
Orchestrates Microenvironmental
Changes and Limits PDAC Initiation
Intrigued by the pivotal roles of integrins in the intercellular
network, we sought to choose the most significant tumor cell–
expressed integrin, ITGA2, for protein expression and druggable
potential testing. In a tissue microarray containing 66 PDAC
samples, we performed a immunohistochemical analysis of
ITGA2. ITGA2 was shown to be clearly expressed on the
membranes of tumor cells (Figure 7A). In accordance with
the bioinformatics analyses, PDAC patients highly expressing
ITGA2 had inferior outcomes (Figure 7B). By using an
immunofluorescence assay, we detected the colocalization of
tumor cell–expressed ITGA2 and fibroblast-expressed FN1,
indicating a role of ITGA2 and its ligand in regulating tumor
cell–fibroblast interactions (Supplementary Figure 8A). To
explore whether and to what extent targeting ITGA2 influences
PDAC development, we employed Pdx1-Cre+, KrasG12D (KC)
mice for in vivo inhibitor management. The mice were orally
treated with the ITGA2 inhibitor E7820 (39), and the affected
pancreas area was quantified. It appeared that E7820 essentially
diminished pancreatic lesions without profoundly influencing
body weights (Figure 7C; Supplementary Figure 9A). The
efficiency of E7820 treatment was also revealed by the detection
of the ductal biomarker CK19, mucin content (Alcian blue
staining), and proliferation marker Ki67 (Figure 7D). In
cultured PDAC cells, E7820 suppressed the mRNA and protein
expression of ITGA2 (Supplementary Figures 9B, C), in
accordance with the molecular mechanism of this inhibitor (40).
Importantly, E7820 did not significantly alter the proliferation rate
of PDAC cells in vitro (Supplementary Figure 9D), suggesting
that the effects of this compound may depend on the
microenvironment. Furthermore, in the mouse model, the
pancreatic lesion area of treated mice contained fewer aSMA-
positive fibroblasts, CD31-positive microvessels, and Gr1-positive
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MDSCs (Figure 7E). Collectively, our in vivo pharmacology
experiment revealed that targeting the key molecule in the cell
communication network reshaped the tumor-promoting
microenvironment and led to growth defects in PDAC.
Frontiers in Oncology | www.frontiersin.org 11
DISCUSSION

In high-throughput transcriptome assays, separating gene
signatures by different cellular compartments is always an
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FIGURE 5 | Cell junction molecule–mediating tumor cell–TME communications dominate the prognosis-related gene network. (A) Functional enrichment analysis
was performed using gene signatures from the Reactome database to unveil the dominant molecular function of hub genes constituting prognosis-related networks.
(B) Hub genes functioning as cell junction molecules to modulate external cellular communication (ligands/receptors) were selected for the following study. (C) A
gene correlation network shows the links between the gene pairs initiated from central cell–cell communication mediators (named in the graph) to their closely
connected (R > 0.5) genes within modules. Colored edges represent the links involving MEMGs. (D) The hub gene–related ligand–receptor pairs were extracted from
the connectomeDB2020 database for cell–cell communication prediction in a PDAC single-cell dataset. (E) The cell–cell communications mediated by each ligand–
receptor pair were determined using Network Analysis Toolkit for the Multicellular Interactions (NATMI) software. The top cell–cell communication pattern bridged by
each ligand–receptor pair was noted. (F) Alluvial diagram represents the hub gene–associated ligand-receptor pairs engaged in tumor cell–TME communications.
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FIGURE 6 | Integrins are key mediators critical for tumor cell-fibroblast and tumor cell-endothelial cell communications. (A) The HRs of cell–cell communication scores
of PDAC patients in both the combined PDAC dataset and TCGA dataset, analyzed by the Cox regression model. (B) Correlation of the cell–cell communication score
with DNN scores in both combined PDAC and TCGA datasets. Forest plots show the correlation coefficients together with the 95% confidence intervals. (C) A sending
cell–ligand–receptor–target cell network shows the key contributors within it. The notes and edges are weighted by the integrated HR in combined PDAC and TCGA
datasets. The result indicates that integrin-mediated tumor cell–fibroblast and tumor cell–endothelial cell communications are dominant in the network. (D) Three-
dimensional plot shows the relationships with the cell–cell communication score, DNN score, risk score, and expression levels of integrins. (E) Waterflow plot indicates
the enrichment of genetic variations in pancreatic cancers with high levels of cell–cell communications.
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important issue (41). It becomes more challenging in the bulk
expression assays of PDAC tissues since pancreatic cancer includes
extremely high levels of noncancerous cells. To address this issue,
previous studies have developed bioinformatics approaches for the
deconvolution of bulk PDAC samples. For example, Moffitt et al.
used a method called virtual microdissection to digitally separate
PDAC tissue signatures into tumor cell and stromal compartments
and stratified samples into tumor cell–based or stroma-based
clusters (17). In recent years, the emergence of single-cell RNA
sequencing technology may solve the above concern. However, the
wide application of this method is restricted by costs. Public access
to scRNA-seq data is also limited. Therefore, it is difficult to perform
Frontiers in Oncology | www.frontiersin.org 13
large-scale data mining through scRNA-seq data. To extend the
usage of single-cell transcriptome data, in this work, we first
extracted cell type-specific information by generating gene sets
representing each cellular component. In the second step, the cell-
type marker genes were grouped by the WGCNA algorithm for
constructing gene coexpression networks. Unlike previous
methodologies, our pipeline used WGCNA-derived networks for
further classification and prognostic model construction.

After the WGCNA of the CCMGs, we obtained eight nongray
gene modules, representing eight gene coexpression networks.
Every single module/network was constituted by the genes
derived from several cell types, indicating that coexpression
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FIGURE 7 | Inhibition of ITGA2 prevents PDAC growth. (A) Immunohistochemical analyses of ITGA2 expression in PDAC samples. The representative images of
high and low ITGA2 staining in PDAC specimens were shown. (B) Kaplan–Meier plots show the overall survival of PDAC patients expressing high and low levels of
ITGA2 protein. (C–E) Pdx1-Cre+, KrasG12D(KC) mice were orally treated with E7820 (100 mg/kg bodyweight) once a day, for 14 consecutive days. (C) The H&E
staining of mice pancreatic lesions. The percentage of the lesion area was statistically compared between vehicle and E7820 treatment groups, t test, ***P < 0.001,
n=6 fields. (D) Alcian blue staining of pancreas tissues. The representative images and statistically analysis results of CK19 and Ki67 immunohistochemical staining
slides, t test, ***P < 0.001, ****P < 0.0001, n=6 fields. (E) Immunohistochemistry analyses of pancreas tissues from vehicle and E7820-treated KC mice by anti-
aSMA, anti-CD31, and anti-Gr1 antibodies, t test, **P < 0.01, ***P < 0.001, n=6 fields. Bar=200 mm.
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could occur between genes expressed in separated cellular
components. Therefore, a gene coexpression network may
contain information regarding regulatory events across cell
types. Here, we mainly focused on the two prognosis-related
gene networks, green and blue (Figures 2A, B). According to the
concepts of WGCNA, the hub genes within the coexpression
network may play central roles in the functional group (15).
Therefore, it is reasonable for us to assume that the hub genes of
these two networks are responsible for the clinical behaviors of
PDAC. Because the majority of hub genes could be traced back to
tumor cells (Figure 2C), our findings reinforce the notion that
intrinsic tumor genes shape the microenvironment and regulate
tumor development and therapeutic responses (42–44).

In the context of pancreatic cancer, increasing evidence
suggests that intrinsic tumor factors may contribute to stromal
remodeling (45, 46). One excellent work demonstrated that
distinct clones of cancer cells give rise to heterogenous TMEs
(47). To screen the key cancer cell–intrinsic molecules, we
performed functional enrichment analysis in the hub genes,
confirming a strong accumulation of cellular communication
and/or cell junction molecules (Figures 5A, B). These molecules
form a ligand–receptor web, guiding the crosstalk between cancer
cells and nontumoral cells (Figures 5D, E). Unlike other single-cell
studies in pancreatic cancer that analyze general ligand–receptor–
directed cell interactions (19, 48, 49), we focused on intercellular
crosstalk directed by the hub genes within coexpression networks.
Under this prerequisite, the main participators in the network were
fibroblasts and endothelial cells, which are frequently connected
to tumor cells. The other feature was that we utilized the
communication score to analyze the bulk transcriptome and
weighted each communication event by the HR. The results
highlighted a group of integrins governing the fibroblast–tumor
cell or endothelial cell–tumor cell communications that were
prioritized in the significant risk factors (Figure 6A).

Integrins belong to a family of transmembrane receptors that
mediate cell–cell adhesion and cell-to-extracellular matrix (ECM)
interactions. On the cell surface, integrins, composed of one a
subunit and one b subunit, recognize ECMon one side while linking
the cell skeleton and/or intercellular signaling pathways on the other
side (50, 51). By attaching to the ECM, integrins respond to these
microenvironmental components, transmitting outer signals to the
inner compartment. Certain integrins can bind to distinct ECM
molecules and vice versa. Therefore, the integrin–ECM interactome
is capable of mediating cell–cell communications through either the
“one-to-many” or “many-to-one” model (Figure 5D ;
Supplementary Figure 6A). For instance, ITGA2 interacts with
multiple fibroblast-produced ECM molecules, such as collagens,
fibronectins, or laminins (COL1A2, COL1A1, COL8A1, FN1, and
LAMA1) (52). These ligand–receptor pairs may be functionally
redundant to direct fibroblast–tumor cell interactions. Intriguingly,
our finding is consistent with a previous report that also emphasized
ECM–integrin-mediated fibroblast–epithelial cell interactions (20).

In this work, the data mining of PDAC scRNA-seq data
revealed that ITGA2, ITGA3, ITGB4, and ITGB6 were
dominantly expressed in tumor cells. ITGA6, one of the two
nontumoral cell–derived hub genes, was mainly expressed in
endothelial cells (Figure 5C). ITGB1 was overwhelmingly
Frontiers in Oncology | www.frontiersin.org 14
localized in fibroblasts. Some of these integrins have been
implicated in the tumorigenesis of PDAC (53–55). The main
contributing cell types of some integrins have also been approved
by previous work (56, 57). In the hub gene–associated ligand–
receptor pairs, ITGA2 was partnered with the greatest number of
ligands and was weighted by the highest HR value. Therefore, it
is much more likely that ITGA2 is an Achilles’ heel in the cell–
cell communication network. Some comprehensive works have
shown that cell–cell communication is a potential therapeutic
target in pancreatic cancer (56, 58). Targeting ITGA2 may also
be an attractive way to inhibit PDAC.

To determine a clinically feasible way to target ITGA2, the
ITGA2 inhibitor E7820, which has been used in clinical trials (39,
59–61), was chosen for testing. In PDAC, the effect of E7820 is
unclear. To preclinically mimic the in vivo performance of this
reagent, we used an oncogene-driven spontaneous pancreatic
tumor model, in which the oral delivery of E7820 substantially
alleviates pancreatic lesions. This in vivo pharmacological
experiment highlighted the efficiency of the ITGA2 inhibitor.
The ITGA2 inhibitor E7820 was initially used as an angiogenesis
antagonist that attenuates the tube formation ability of
endothelial cells (40). Here, we clearly show that ITGA2 is
basically expressed in tumor cells, which was demonstrated by
both single-cell transcriptome data and immunohistochemistry
detection. Hence, the primary target of E7820 in PDAC was
tumor cells rather than endothelial cells. In vitro assays showed
that similar to cultured endothelial cells, E7820 also reduced the
mRNA expression of ITGA2 in PDAC cells, whereas the
suppressive effects on cell growth were slight, disproportionate
with the inhibitory effect on the tumors in situ. Moreover, E7820
considerably reduced the fibroblasts and microvessels around
tumor foci. These observations suggested that E7820 shrinks
pancreatic tumors in a microenvironment-dependent manner.
Targeting ITGA2 may be a prospective strategy to cure PDAC.
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