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Histopathology image analysis is widely accepted as a gold standard for cancer diagnosis.
The Cancer Genome Atlas (TCGA) contains large repositories of histopathology whole
slide images spanning several organs and subtypes. However, not much work has gone
into analyzing all the organs and subtypes and their similarities. Our work attempts to
bridge this gap by training deep learning models to classify cancer vs. normal patches for
11 subtypes spanning seven organs (9,792 tissue slides) to achieve high classification
performance. We used these models to investigate their performances in the test set of
other organs (cross-organ inference). We found that every model had a good cross-organ
inference accuracy when tested on breast, colorectal, and liver cancers. Further, high
accuracy is observed between models trained on the cancer subtypes originating from the
same organ (kidney and lung). We also validated these performances by showing the
separability of cancer and normal samples in a high-dimensional feature space. We further
hypothesized that the high cross-organ inferences are due to shared tumor morphologies
among organs. We validated the hypothesis by showing the overlap in the Gradient-
weighted Class Activation Mapping (GradCAM) visualizations and similarities in the
distributions of nuclei features present within the high-attention regions.

Keywords: TCGA, cross-organ inference, tissue morphology, class activation map (CAM), histopathology, deep
learning, cancer classification
1 INTRODUCTION

Cancers originating from different organs and cell types are known, with the most common ones
being breast, lung, colorectal, prostate, and stomach. The most common causes of cancer deaths are
lung, colorectal, and liver (1). Pan-cancer omics studies have revealed commonalities in driver
mutations, altered pathways, and immune signatures (2, 3). Molecular profiling helps to cluster and
distinguish different cancers and their subtypes by different computational methods (4–7). Given
the diverse nature of different cancers and their origin, it will also be interesting to examine the
morphological patterns that are unique and shared across different cancers from the
histopathological standpoint. Histopathology continues to play a crucial role in cancer
diagnostics. Digitization of tissue samples as whole slide images (WSIs) enables computer-based
diagnosis and analysis. The deep learning approaches can be used to analyze the cancerous and non-
cancerous patterns present in these tissues.
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Deep learning has significantly improved the accuracy of a
wide variety of computer vision tasks. The success of
convolutional neural networks (CNNs) in the ImageNet Large
Scale Visual Recognition Competition (8) resulted in a widespread
adoption of CNNs for the task of image recognition, object
detection, and image retrieval in several fields. Different studies
show the effectiveness of CNNs and the utility of models with
ImageNet pretrained weights in analyzing the tissue (9–14).
Coudary et al. (12) extracted 512 × 512 non-overlapping patches
of whole slide tissue images as input image patches for the WSI.
The method rejected all the background and noisy patches with a
mean intensity of half of the pixels greater than a set threshold. An
ImageNet pretrained Inception-v3 (15) network was finetuned for
the classification of cancerous and non-cancerous lung tissue
slides. Tabibu et al. (11) extended the same idea to the renal cell
carcinomas and performed cancer vs. normal classification and
subtype classification by finetuning the entire ResNet-18,34 (16)
networks and reported both slide-wise and patch-wise results.
Wang et al. (13) adopted a threshold-based segmentation for
background region detection by operating on the Hue Saturation
Value (HSV) color space to get the required mask for patch
filtering and identified the regions of metastatic breast cancer
using ImageNet pretrained GoogLeNet (17). Xu et al. (10)
performed classification and segmentation tasks on brain and
colon pathological images using CNNs for feature extraction and
training using a fully connected network (FCN). There are also few
attempts to perform pan-cancer analysis using a deep learning
approach. Fu et al. (18) have used features frommodels trained for
cancer vs. normal classification task to predict genomic, molecular,
and prognostic associations across organs. Cheerla et al. (19) have
used multimodal learning to predict survival from genetic data as
well as histopathology images across organs. Noorbakhsh et al.
(20) have reported the correlation of organs based on the slide-
wise area under the receiver operating characteristic curve (ROC-
AUC). In this work, training is performed at the patch level, and
inference is made at the slide level using a threshold for the
fraction of patches in a slide predicted as cancerous. They used
inception v3 (15) by using the CNN as a feature extractor and
finetuning the last fully connected layer. They also performed
hierarchical clustering of slide-wise ROC-AUC scores across
organs and showed correlations of logits of the models of
specific organs to suggest shared tumor morphology. We took
this a step further to analyze cross-organ correlations
quantitatively as well as qualitatively.

The contribution of this work is three-fold:

• Analyze each slide at the patch level and report high patch-
level cancer vs. normal accuracies to set high benchmarks.

• Reveal tumor similarities between certain groups of organs/
subtypes using patch-level analysis of WSIs from a deep
learning perspective.

• Demonstrate the consistencies of these correlations both
qualitatively and quantitatively, which is the first of its kind
to our knowledge.

We reported the self organ classification results with AUC, F1
score, and accuracies for 11 cancer subtypes and the best and
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worst cross-organ inference results for each of these
trained models.

In the cross-organ inference, the trained models are used for
inference on the images of the other organs. The t-distributed
stochastic neighbor embedding (t-SNE) (21) plot of embeddings
obtained from each trained model shows the separability of
cancer and normal features across organs. The GradCAM
visualization of each trained model tested on the patches of
other organs supports the cross-organ performance between a
specific pair of organs, indicating the presence of common
morphological patterns. We showed that the distributions of
the nucleus features present in the high-attention regions for
pairs with good cross-organ performance are well aligned
compared to those with poor cross-organ performance. A
uniform workflow which performs satisfactorily across organs
is established. This includes patch extraction from tissue-rich
regions of WSI based on intensity values and connected
components present in its binarized format, hyperparameter
tuning (using Bayesian optimization) to decide on the
model architecture.
2 METHOD

2.1 Dataset and Preprocessing
We used the publicly available data set of WSIs from TCGA
project (22) across multiple organs. Experiments were performed
using the formalin-fixed paraffin-embedded (FFPE) slides. As
pointed out by (23), the FFPE sections reveal useful cellular
details of the tissue. These slides can confirm the diagnosis, in
contrast to the frozen slides that can affect the morphological
features of the tissue. 9,792 whole slide images spanning seven
organs, namely, breast, colorectal, kidney, liver, lung, prostate,
and stomach, were used. Some of these organs have multiple
subtypes: lung [lung adenocarcinoma (LUAD) and lung
squamous cell carcinoma (LUSC)], kidney [kidney renal clear
cell carcinoma (KIRC), kidney renal papillary cell carcinoma
(KIRP), and kidney chromophobe (KICH)], and colorectal
[colon adenocarcinoma (COAD) and rectum adenocarcinoma
(READ)]. We also considered cancer images specific to breast
[breast invasive carcinoma (BRCA)], stomach [stomach
adenocarcinoma (STAD)], liver [liver hepatocellular carcinoma
(LIHC)], and prostate [prostate adenocarcinoma (PRAD)]. The
number of slides and images considered in this study are shown
in Figure 1.

H&E-stained WSI contains several cells and comprises as
many as tens of billions of pixels, which is computationally
infeasible for training neural networks. Resizing the entire image
to a smaller size would hamper the cellular-level details, resulting
in lower classification performance (24). Therefore, the entire
WSI is commonly divided into partial patches or tiles analyzed
independently. We adopted the strategy mentioned in Coudary
et al. (12), by extracting 512 × 512-sized patches with no overlap
at a ×20 magnification. The patch-filtering method of (11) was
used to filter out background and noisy patches. We also added
another patch-filtering step to avoid patches with a fractal
March 2022 | Volume 12 | Article 842759
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structure by considering only those patches with ten or more
connected components present in its binarized format. Since
patch-wise labels were not available for TCGA dataset, the slide
label was assigned to patches as shown to be effective by (11, 12).
A train-validation-test split of 70–20–10 was performed before
training the models. Data augmentation techniques such as
random horizontal flip and random crop were used to improve
generalizability. The images were normalized using the mean
and standard deviation across all the three (RGB) channels
calculated on the training set.

2.2 Cancer vs. Normal Classification
We trained one model for each of the eleven subtypes (eleven
models in total) using a ResNet-18 architecture pretrained on the
ImageNet dataset. The ResNet style of architecture has
performed well compared to other computer vision models on
Frontiers in Oncology | www.frontiersin.org 3
the ImageNet dataset (16). ResNet-18 was chosen over other
models (ResNet-34,50,101) since 18 layers were found sufficient
to yield superior performance in the classification tasks across
most cancers, and a further increase in the number of layers led
to a marginal increase in performance at the expense of a large
increase in the number of trainable parameters. The schematic
flow diagram is shown in Figure 2 for the classification task. We
replaced the last layer of ResNet-18 which provided the logits for
the thousand classes of the ImageNet classification task with a
fully connected network (FCN). The size of the last layer of this
FCN was fixed at two since the task was a binary classification.

The entire network parameters were optimized to minimize
the cross-entropy loss on the train data via backpropagation. The
optimizer, learning rate, number of FCN layers, number of
neurons in each layer, and dropout probabilities for each FCN
layer were chosen by a hyperparameter search using Bayesian
FIGURE 2 | Overview of architecture used in our work: patch extraction (left): red shows rejected background patches, and green shows patches used for the
training model, ResNet-18 architecture (middle) and Fully connected network (right).
FIGURE 1 | The number of slides (top) and patches (bottom) used in the study. Numbers of patches belonging to both classes (left bar represents cancer samples
and right bar represents normal samples) are shown in the form of two rectangular bar plots.
March 2022 | Volume 12 | Article 842759
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optimization. The batch size was set to 256. Owing to the class
imbalance in the cancer and normal samples across organs,
weighted cross entropy was used as the loss function. We also
employed a stratified sampling technique to maintain the ratio of
positives and negatives.

2.3 Hyperparameter Search
We used Optuna framework (25) for hyperparameter tuning
with the search space of the optimizer sampled from a categorical
distribution of optimizers (Adam, RMSProp, SGD), learning rate
sampled from a log-uniform distribution of values ranging
[1e−05, 1e−01], dropout sampled from a uniform distribution
of values from [0.2, 0.5], number of layers of FCN uniformly
sampled from values [1, 3], and number of neurons per layer
uniformly sampled from values ranging [4, 128]. We ran 20 trials
for hyperparameter search, and in each trial we trained the
model for 20 epochs. Finally, the optimal hyperparameters that
had the maximum validation accuracy across all trials were used
to train the model for 50 epochs. We tested the usefulness of
hyperparameter tuning on four organs and found a significant
improvement in the performance (accuracy, AUC, F1 score).
Hence, we adopted the same strategy for all the other organs
during the training. The contour plot indicating the
hyperparameter tuning is shown in Supplementary Figure S1.

2.4 GradCAM Analysis
We used the GradCAM (26) visualization technique to support
the cross-organ inference results. We obtained a thresholded
GradCAM heatmap and a bounding box over the high-attention
region for each of the patches under study. Thresholding of the
high-attention regions (green) of the heatmap was done by
converting the image to the HSV color space, since the hue
channel models the color type and is helpful in segmenting
regions based on a specific color criteria. To obtain the bounding
box containing the segmented region, we applied canny edge
Frontiers in Oncology | www.frontiersin.org 4
detection to the thresholded image. For each of the obtained
contours, we applied closed-polygon approximation followed by
finding a rectangular bounding box. We explored through these
thresholded and bounding box outputs whether the regions of
high saliency have overlap across models trained on different
organs. We quantified the overlap by using IoU (intersection
over union) of the bounding box representations, with IoU = 1
representing a perfect overlap and IoU = 0 representing no
overlap. We also reported the Jaccard index to quantify the
overlap using the thresholded pixel maps.

2.5 Nucleus Feature Extraction
Different studies have demonstrated the association of nucleus
features to the clinical outcome and molecular data (11, 27–29).
We hypothesized that the shared regions between cancers might
show similar nucleus shapes and density features due to the
similarity in the tumor microenvironment. We used the
GradCAM high-attention regions to analyze the geometrical
features of the nuclei such as eccentricity, convex area, region
solidity, diameter, major axis, and minor axis and graphical
features such as Voronoi diagram, Delaunay triangulation,
minimum spanning tree, and nucleus density that characterize
the arrangement of nuclei. We compared the distributions of
these features to comment on the shared tumor morphology. The
steps involved are shown in Figure 3.

• Region extraction: for the patches under study, we first
extracted the high-attention regions corresponding to the
model trained using that organ and the high-attention
regions of the model trained on the other organ. We
extracted three regions, the overlapped area of intersection
and areas specific to each of the models. The overlap region
was obtained by performing a logical AND operation between
the thresholded GradCAM images. Specific regions were
obtained by subtracting the overlapped regions from the
thresholded GradCAM images.
A

B C D E H

G

F

FIGURE 3 | Nucleus segmentation workflow involved in segmenting nuclei from the specific regions of a sample patch: (A) COAD sample patch, (B) GradCAM
outputs of BRCA model (top) and COAD model (bottom), (C) thresholded GradCAM mask, (D) BRCA-specific mask (top), overlapping mask (middle), and COAD-
specific mask (bottom), (E) masked regions of BRCA-specific (top), overlap (middle), and COAD-specific (bottom), (F) nucleus segmented regions of BRCA-specific
(top), overlap (middle), and COAD-specific (bottom), (G) obtaining the nucleus shape and graphical features for each region, and (H) distributions of these features.
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• Nucleus segmentation: for each of the extracted regions, we
performed the nucleus segmentation using a hierarchical
multilevel thresholding approach (30).

• Nucleus features: we extracted geometrical shape features
from the nucleus segmented images using the connected
component analysis (11). Inter-nucleus architecture-based
features were obtained by using graph-based techniques (31).
3 RESULTS AND DISCUSSION

3.1 Quantitative Analysis
We performed two sets of experiments for the overall analysis.
The first experiment was to come up with a trained model for the
cancer vs. normal classification task in each of the mentioned
organs/subtypes. A high classification performance was observed
for most models (Figure 4). The second experiment was the
cross-organ inference by testing each of these trained models on
the held-out test of all the other organs. We report similarities
between specific organ pairs based on performance (accuracy >
0.9) (Figure 5). Best and worst performances (AUC, F1) for the
cross-organ inference are indicated in Table 1. The ROC curve
for the cross-organ inference is shown in Figure S2.
Frontiers in Oncology | www.frontiersin.org 5
3.2 Cross-Organ Similarities
We found that most models show a good cross-organ inference
accuracy when tested on BRCA, LIHC, COAD, and READ
(Figure 5), which suggests that these cancers may have shared
tumor morphologies. Colorectal subtypes (READ and COAD)
show similarities with each other along with BRCA and LIHC.
These observations on COAD, READ, and BRCA are consistent
with the clustering of pan-gynecological and pan-
gastrointestinal observed by (20). In contrast, most of the
models perform poorly when tested on the kidney (KIRC,
KIRP, and KICH) and lung subtypes (LUAD and LUSC). This
suggests that kidney and lung cancer subtypes have morphology
features localized relative to the organ of origin. The unique
characteristics of kidney cancers are also seen with respect to
their gene expression pattern as observed in our previous work
(32). Interestingly, within cancer subtypes, we also observed that
the performance of KICH and KIRP models on KIRC as a test
set does not yield comparable performance. This suggests that
KIRC has more subtype-specific features that are not present in
other subtypes. Although READ and STAD are gastrointestinal
cancers, the cross-organ inference is not high using the READ
model. We observed that the cross-organ performance is not
uniform within adenocarcinomas (LUAD, COAD, PRAD,
READ, and STAD).
FIGURE 4 | Self-organ inference showing the performance obtained using models trained on each cancer and tested on a held-out test set of the same cancer.
March 2022 | Volume 12 | Article 842759
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The t-SNE embedding was obtained for different model-
organ pairs. Figure 6 shows t-SNE plots for KICH, LUSC,
PRAD, and READ. The t-SNE plots of other model-organ
pairs are shown in the supplementary section (Figure S3).

The embeddings show that the models are able to exhibit
separability in feature space between cancer and normal patches
for the subtype that it was trained on as well as for subtypes/
organs with cross inference accuracy >90%. However, the t-SNE
embeddings also indicate that few of the normal and cancer
samples are at close proximities after projection to the 2D space.
Frontiers in Oncology | www.frontiersin.org 6
This could possibly be attributed to the models not being fully
accurate, the 2D projection error, or the assumption that all
patches in a cancer slide are cancerous.

3.3 Cross-Organ GradCAM Visualization
A further qualitative analysis was done comparing the GradCAM
outputs of the model-organ pairs, with cross-organ inference
accuracy >90% as well as cross-organ inference accuracy < 80%.
Figure 7 shows the quantitative results of the degree of overlap
between GradCAM outputs using the IoU and Jaccard index.
FIGURE 5 | Cross-organ inference results: accuracies obtained using models trained on the organs along the rows and tested on the organs along the column are shown.
TABLE 1 | Cross-organ inference indicating the quantitative results of best and worst inferences of individually trained models when tested on other unseen organs.

Model F1 score AUC

Best Worst Best Worst

BRCA READ 0.9443 KICH 0.6600 READ 0.9837 KIRC 0.7815
COAD READ 0.9799 KIRC 0.5287 READ 0.9981 KIRC 0.6246
KICH COAD 0.9294 STAD 0.7519 KIRP 0.9783 STAD 0.8163
KIRC KIRP 0.9423 PRAD 0.7678 KICH 0.9881 PRAD 0.8069
KIRP KICH 0.9490 PRAD 0.6893 READ 0.9840 PRAD 0.6692
LIHC READ 0.9442 KIRC 0.6157 READ 0.9893 KICH 0.7203
LUAD LUSC 0.9381 KIRC 0.5675 LUSC 0.9831 KIRC 0.6256
LUSC BRCA 0.9251 KIRC 0.5769 LUAD 0.9683 KIRC 0.5998
PRAD BRCA 0.9422 KICH 0.5632 LIHC 0.9453 KICH 0.5481
READ COAD 0.9680 KIRC 0.4987 LIHC 0.9507 KIRC 0.5246
STAD READ 0.9410 KICH 0.6921 BRCA 0.9822 KICH 0.8062
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FIGURE 6 | t-SNE embeddings of the trained models (mentioned in the title of each figure) helping to visualize the separability of cancer and normal embeddings of
organs unseen by the trained models.
FIGURE 7 | Cross-organ GradCAM results showing the IoU and Jaccard index of high-attention regions. The model used for visualization is indicated on the title of
each plot, and the subtypes used are indicated on the x-axis.
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Figure 8 shows the visualization using the BRCA model on
COAD, LIHC, and READ subtypes. The visualization for other
cross-organ inferences are provided in the supplementary section
(Figures S4, S5). The visualization outputs in green indicate
regions with high attention, those in red indicate regions with
moderate attention, and those in blue indicate no attention
during the classification task. Ground-truth visualizations for
the patch of an organ are obtained by using the model trained on
the same organ. We compared the degree of overlap of the
visualization outputs to comment on the shared tumor
morphology. We observed a positive correlation between the
observed cross-organ inference accuracy, i.e., the IoU and the
Frontiers in Oncology | www.frontiersin.org 8
Jaccard index are high for model-organ pairs with high cross-
organ inference accuracy and low for model-organ pairs with low
cross-organ inference accuracy. For example, the BRCA model
has the highest cross-organ accuracy, highest IoU, and Jaccard
index on COAD. The same trend is observed in the models of
other organs.

3.4 Cross-Organ Similarities Seen in the
Distribution of Nucleus Features
To further strengthen the hypothesis about cross-organ
similarities, we observed the distribution of shape features of
the nuclei present in the high-attention regions. We considered
FIGURE 8 | Cross-organ GradCAM visualization of the BRCA model on COAD and KICH cancer patches. Columns show the input patch, GradCAM output,
GradCAM thresholded, and GradCAM with bounding box, respectively. Top 2 rows show COAD input patches and visualization using the BRCA model (1st row)
and COAD model (2nd row). Bottom 2 rows show KICH input patches and visualization using the BRCA model (3rd row) and KICH model (4th row).
March 2022 | Volume 12 | Article 842759

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Menon et al. Histological Similarities Across Cancers
two groups that showed good (BRCA and COAD) and another
that showed poor (BRCA and KICH) performances in cross-
organ inferences to characterize the nucleus morphological
characteristics. We considered the high-probability patches [P
(cancer) > 0.98] of COAD and KICH for the analysis. The
distributions of some of the geometrical features of nuclei
(main region extent and solidity) present in the regions
focused by BRCA and COAD models on COAD patches are
similar and correlated in contrast to the distributions seen with
BRCA and KICH model on KICH patches (Figure 9).

We found that eight nucleus shape features and three inter-
nucleus density features are significantly (p-value greater than
0.05) associated with the similarities observed between tumor
morphologies (Table 2). Some of the significant nucleus shape
features include total area (p-value = 0.0736), main extent (p-
value = 0.1002), main region solidity (p-value = 0.0583), and
some of the significant nucleus density features include neighbor
count within a radius of 10, 20, and 30 pixels (p-value = 0.5974,
0.6044, 0.1945). We observe from the cross-organ performance
table and the cross-organ GradCAM results that the BRCA
model performs well on COAD patches and poorly on KICH
patches and a similar behavior is seen in the distribution of
nucleus geometrical features observed between the pairs of two
groups (BRCA-COAD and BRCA-KICH).
Frontiers in Oncology | www.frontiersin.org 9
4 CONCLUSION

In this work, we explored tumor features and morphology across
multiple organs from a deep learning perspective. This has not
been extensively studied compared to the pan-cancer studies
based on molecular profiling. We report similarities based on
very high performance obtained with models trained on one
cancer and tested directly on another. This level of performance
can be achieved only if the learnt features are general or common
between cancers. Our observations span not only cancers
originating from the same organ but also different organs,
which are interesting. We observed that good cross-organ
performance is also reflected in the separability of normal and
cancerous patches in feature space when visualized using the t-
SNE plot.

We also explored GradCAM techniques to establish that the
models with high cross inference accuracy had a significant
overlap in their attention regions. This suggests that the deep
learning model is able to pick up shared morphological features
that span across organs during classification. We further showed
similarity at the nucleus level by analyzing the distribution of
geometrical and graphical features of nuclei present in the
overlapping and non-overlapping regions. Overall, our study
presents the proof-of-principle experiment that deep learning
FIGURE 9 | Graph showing nuclei shape distribution of BRCA and COAD models inferred on COAD patches (left) and BRCA and KICH models inferred on KICH
patches (right). The x-axis represents value of the feature, and the y-axis represents the PDF. In each subplot, “Total” is the overall high-attention region of the
corresponding model, “overlap” is the common region of high attention for the two models, and “specific” is the “total” region excluding the “overlap”.
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and computational approaches can be adopted to explore the
shared morphology across different cancers. There is a need for
further characterization at the experimental level, which will be
taken up as future work. We made publicly available the model
checkpoints, the source code, and the best model architectures
for most common cancers using TCGA data. All the resources
can be accessed from the project page at https://bhasha.iiit.ac.in/
tcga_cross_organ_project.
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