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Objectives: This study aims to build radiomics model of Breast Imaging Reporting and
Data System (BI-RADS) category 4 and 5 mammographic masses extracted from digital
mammography (DM) for mammographic masses characterization by using a sensitivity
threshold similar to that of biopsy.

Materials and Methods: This retrospective study included 288 female patients (age,
52.41 ± 10.31) who had BI-RADS category 4 or 5 mammographic masses with an
indication for biopsy. The patients were divided into two temporal set (training set, 82
malignancies and 110 benign lesions; independent test set, 48 malignancies and 48
benign lesions). A total of 188 radiomics features were extracted from mammographic
masses on the combination of craniocaudal (CC) position images and mediolateral
oblique (MLO) position images. For the training set, Pearson’s correlation and the least
absolute shrinkage and selection operator (LASSO) were used to select non-redundant
radiomics features and useful radiomics features, respectively, and support vector
machine (SVM) was applied to construct a radiomics model. The receiver operating
characteristic curve (ROC) analysis was used to evaluate the classification performance of
the radiomics model and to determine a threshold value with a sensitivity higher than 98%
to predict the mammographic masses malignancy. For independent test set, identical
threshold value was used to validate the classification performance of the radiomics
model. The stability of the radiomics model was evaluated by using a fivefold cross-
validation method, and two breast radiologists assessed the diagnostic agreement of the
radiomics model.

Results: In the training set, the radiomics model obtained an area under the receiver
operating characteristic curve (AUC) of 0.934 [95% confidence intervals (95% CI), 0.898–
0.971], a sensitivity of 98.8% (81/82), a threshold of 0.22, and a specificity of 60% (66/
110). In the test set, the radiomics model obtained an AUC of 0.901 (95% CI, 0.835–
0.961), a sensitivity of 95.8% (46/48), and a specificity of 66.7% (32/48). The radiomics
model had relatively stable sensitivities in fivefold cross-validation (training set, 97.39% ±
3.9%; test set, 98.7% ± 4%).
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Conclusion: The radiomics method based on DM may help reduce the temporarily
unnecessary invasive biopsies for benign mammographic masses over-classified in BI-
RADS category 4 and 5 while providing similar diagnostic performance for malignant
mammographic masses as biopsies.
Keywords: breast (diagnostic), breast cancer, Mammografy, Radiomic analysis, BI-RADS (Breast imaging reporting
and data system)
INTRODUCTION

In 2020, female breast cancer (BC) became the most common
type of cancer with an estimated 2.3 million new cases (11.7%),
followed by lung cancer (11.4%) (1). Treatment of BC relies on
conducting an accurate diagnosis, including histological,
molecular, and clinical phenotypes. Non-invasive imaging
techniques such as mammography, ultrasound, and magnetic
resonance (MR) are available for qualitative and quantitative
analysis of BC in clinical practice. The American College of
Radiology Breast Imaging Reporting and Data System (BI-
RADS) is a standardized assessment structure that enables
radiologists to clearly and concisely communicate results of
breast imaging to referring physicians (2). In the fifth edition
of the BI-RADS atlas (3), category 4 and 5 breast lesions are
defined as suspicious cancerous lesions, and a biopsy is
recommended for further diagnosis. Recent studies have shown
that a large number of benign lesions are present in category 4
and 5 breast lesions, particularly in the mammography reporting
system, exposing these patients to invasive biopsies (4–6).
Depending on the technique, the sensitivity values of biopsy
results ranged from 87% to >97% (7–9).

Radiomics is a high-throughput image mining technique that
aims to enhance the predictive power of medical images by
quantifying the morphology, intensity distribution, and texture
patterns of lesions. Recent investigators have examined the role
of mammography, ultrasound, and MR radiomics in the
prediction of molecular subtypes (10–12), lymph node
metastasis (13–15), response to neoadjuvant chemotherapy
(16–18), recurrence risk (19, 20), and disease-free survival (21,
22) of BC. However, with the initiative of precision medicine
(23–25), the reduction in overdiagnosis and overtreatment of
breast lesions through non-invasive radiomics method is also a
topic worth investigating.

There are four main findings of breast lesions on diagnostic
mammography images: masses, calcifications, architectural
distortion, and asymmetries. One large sample study (26)
showed that BC most often presented as mass at 56%, followed
by calcifications at 29%, asymmetry at 12%, and architectural
deformities at 4%, and another small sample study (27) suggest
that approximately 50% of breast lesions presenting as a mass
were ultimately confirmed benign lesions. In addition, mass may
be the only finding or one of the combined findings of breast
lesions in mammography (we defined these masses as
mammographic masses). Although experienced radiologists
have a high diagnostic accuracy in identifying benign and
malignant mammographic masses, less experienced radiologists
2

sometimes make excess errors (28) such as benign
mammographic masses are over-classified as BIRADS category
4 or even 5.

A previous study has shown that combining both
craniocaudal (CC) and mediolateral oblique (MLO) positions
radiomics data had good classification performance between
HER2-enriched BC and non-HER2-enriched BC (11). Here, we
combined both CC and MLO positions radiomics data aimed to
explore a model with a sensitivity more than 98% for the
characterization of BI-RADS category 4 and 5 mammographic
masses, thereby achieving a reduction in biopsies of benign
lesions at a very low rate of missed malignant lesions.
MATERIALS AND METHODS

Patients
This retrospective study was granted approval by the local
institutional board, and written informed consent was waived.
A total of 288 patients’ clinical and mammographic images data
were included in this study from December 2018 to February
2021. The inclusion criteria were as follows: (a) patients who had
suspected breast tumor accepted mammography and (b) patients
with mass as defined by BI-RADS mammography lexicon
(occupancy structures with protrude outward in contour on
both CC and MLO position images) and classified in category
4 or 5. The exclusion criteria were as follows: (a) patients without
a clear benign or malignant pathological result; (b) patients who
had multifocal or bilateral mammographic masses; (c) patients
accepted biopsy before mammography examination; (d) patients
underwent any treatment before mammography screening,
including surgery, chemotherapy or radiotherapy, and anti-
HER2 therapy.

Imaging and Saving Acquisition
All patients were examined with a GE Senographe Essential (GE
Medical Systems, Waukesha, WI), and all mammographic
images were saved at 12-bit quantization level and 100-mm
pixel size. The mammographic images were not further
processed or normalized (29, 30).

Radiomics Analysis of
Mammographic Masses
Both CC and MLO position images of all patients were used to
conduct mammographic mass masking, and the CC radiomics
features and MLO radiomics features were extracted as separate
features. Two breast radiologists (radiologist 1, 4 years’
April 2022 | Volume 12 | Article 843436
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experience; radiologist 2, 10 years’ experience) who were blinded
to the pathological results manually masked the masses in
3Dslicer 4.10.2 (www.slicer.org) (Figure 1). A total of 188
radiomics features were extracted from mammographic masses
by using the Pyradiomics python package, including 4 shape
features, 34 density features, and 150 texture features. Shape
features were used to quantify the size and regularity of the
mammographic masses, including maximum two-dimensional
(2D) diameter and perimeter to surface ratio, with a lower value
of perimeter-to-surface ratio indicating a more regular
mammographic mass . First-order features refer to
radiologically relevant information about the density of
mammographic masses such as mean value and kurtosis.
Texture features were calculated based on gray-level co-
occurrence matrix, gray-level dependence matrix, gray-level
run-length matrix, gray-level size zone matrix, and
neighborhood gray-tone difference matrix, which were used to
quantify the randomness, correlations, variation, homogeneity,
and heterogeneity of mammographic masses. The detailed
formulae for the calculation of the radiomics features can be
found here (31), and the data from radiologist 1 were used to
build a radiomics model.

Patients Grouping and Feature Selection
The patients were divided into two temporal sets based on the
order in which they accepted their mammography examinations.
The training set consisted of the first two-thirds of patients, and
the independent test set comprised the last one-third of patients.
In order to avoid some potential bias such as model over-fitting,
we applied Pearson’s correlation and the least absolute shrinkage
and selection operator (LASSO) regression to screen out non-
redundant and useful radiomics features in the training set,
Frontiers in Oncology | www.frontiersin.org 3
respectively. For the Pearson’s correlation method, each
radiomics feature generated 187 correlation coefficients and 1
corresponding mean absolute correlation coefficient. If two
radiomics features had a coefficient exceeding 0.8, the radiomics
feature with the larger mean absolute correlation coefficient was
deleted. This was implemented in R software version 4.0.1 with
package “caret.” For the LASSO regression (alpha=1, no elastic
net), a 10-fold cross-validation method with 1 standard error of
the minimum mean-square error criteria was used to select
radiomics features (32), and corresponding l values were also be
calculated. In this study, the radiomics features with non-zero
coefficient at the suitable value of parameter l were determined as
useful radiomics features. This was implemented in R software
version 4.0.1 with “glmnet” package.

Radiomics Model Construction
and Testing
The malignant mammographic masses were coded as 1, and the
benign mammographic masses were coded as 0. The support
vector machines (SVMs) with linear kernel (output predicted
probability and other parameters are default parameters) were
used to construct a radiomics model in this study because of
popularity and efficiency in BC (33). This was done in R software
version 4.0.1 with “e1071” package. The useful radiomics features
were used to construct a radiomics model in the training set for
distinguishing between benign and malignant mammographic
masses. The receiver operating characteristic curve (ROC)
analysis was used to evaluate the classification performance of
the radiomics model, including the area under the receiver
operating characteristic curve (AUC), the probability threshold
value (cut-point) of higher than 98% sensitivity, and
corresponding specificity (5). The independent test set was
FIGURE 1 | Examples of mammographic masses masking on digital mammography images. (A, C) Craniocaudal (CC) position images and mediolateral oblique
position (MLO) images, respectively. (B, D) Manually drawn areas of mammographic masses masking on CC and MLO images, respectively.
April 2022 | Volume 12 | Article 843436
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used to test the results of the training set by using the “predict”
function, and the probability threshold value was also tested. The
ROC analysis was implemented in R software version 4.0.1 with
package “pROC.” The workflow of this study is reported
in Figure 2.

Relative Importance of Useful
Radiomics Features
The magnitude of the coefficients in the LASSO algorithm were
used to measure the relative weight of useful features as
previously described (34, 35). Furthermore, the useful features
were grouped by category, such as shape feature group, first-
order feature group, and texture feature group, which were added
sequentially to the final SVM model, and the AUC of each
addition was calculated to assess whether all three groups of
useful features contributed to the model.

Radiomics Model Stability
In this study, a fivefold cross-validation method was used to
evaluate the stability of radiomics model. In order not to break
the concealment of the test set data, a fivefold cross-validation
method was performed separately in the training and test sets.
Specifically, the training and test sets were divided into 10 subsets
each by fivefold cross-validation method. The “predict” function
of R was used to test the diagnostic performance of the radiomics
model in these subsets, and the mean and standard deviation of
AUCs, sensitivities, and specificities were calculated to measure
the stability of the radiomics model. The fivefold cross-validation
method was performed in R software version 4.0.1 with
package “caret.”

Reproducibility Assessment
The intra-class correlation coefficients (ICCs) of interobserver
(radiologist 1 vs. radiologist 2) were calculated to evaluate the
reproducibility of the radiomics features extraction. All data
from radiologists 1 and 2 were used as separate test sets so that
a kappa value for both radiologists could be calculated to assess
the diagnostic reproducibility of the radiomics model.
Frontiers in Oncology | www.frontiersin.org 4
Statistical Analysis
All statistical analyses were performed in R software version 4.0.1.
All ROC analysis were based on package “pROC,” and the
differences of AUC were calculated on Delong’s test. All
confidence intervals (CI) were derived from 1,000 bootstrap
replicates. All statistical tests were two-sided, and the
Bonferroni’s method was used to adjust for multiple comparisons.
RESULTS

Clinical Data of Patients
This study included 288 female patients (age, 52.41± 10.31) with
solitary BI-RADS category 4 or 5 mammographic masses,
including 130 cases of malignant mammographic masses and
158 cases of benign mammographic masses. The malignant
mammographic masses include invasive ductal carcinoma
(n=51), invasive lobular carcinoma (n=37), mucinous
carcinoma (n=22), and ductal carcinoma in situ (n=20), while
benign mammographic masses include fibroadenomas (n=87),
adenosis (n=38), and hyperplasia (n=33).

Patients Grouping and Feature Selection
The training set included 82 malignant and 110 benign
mammographic masses; the independent test set consisted of
48 malignant and 48 benign mammographic masses. Baseline
characteristics of study population in training and test sets are
reported in Table 1, including age, mass size, mass shape, mass
margin, breast density, and BI-RADS category. The Pearson’s
correlation method screened out 32 non-redundant radiomics
features (Supplementary Figure S1), and the LASSO method
further selected 14 useful radiomics features (Figures 3A, B).

Radiomics Model Construction
and Testing
In the training set, the radiomics model obtained an AUC of 0.934
(95% CI, 0.898–0.971), a threshold of 0.22, a sensitivity of 98.8%
[81/82], and a specificity of 60% [66/110]. In the test set, the
FIGURE 2 | Workflows of this study.
April 2022 | Volume 12 | Article 843436
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TABLE 1 | Baseline characteristics of study population in training and test sets.

Characters Training set Test set

Malignant(n= 82) Benign(n= 110) p-value Malignant(n= 48) Benign(n= 48) p-value

Age (mean ± SD, years) 54.2 ± 10.94 50.38 ± 9.71 0.013 56.66 ± 10.33 49.75 ± 8.76 <0.001
Size (mean ± SD, cm) 1.5 ± 0.51 1.34 ± 0.42 0.021 1.69 ± 0.58 1.3 ± 0.42 <0.001
Shape 0.002 <0.001
Round or oval 10 (12.2%) 34 (30.9%) 5 (10.4%) 20 (41.7%)
Irregular 72 (87.8%) 76 (69.1%) 43 (89.6%) 28 (58.3%)

Margin <0.001 <0.001
Circumscribed 5 (6.1%) 16 (14.5%) 3 (6.3%) 12 (25%)
Ill-defined 26 (31.7%) 82 (74.5%) 22 (45.8%) 33 (68.8%)
Spiculated 51 (62.2%) 12 (10.9%) 23 (47.9%) 3 (6.3%)

Breast density 0.169 0.094
Entirely fatty 7 (8.5%) 15 (13.6%) 4 (8.3%) 7 (14.6%)
Scattered fibroglandular 37 (45.1%) 58 (52.7%) 22 (45.8%) 29 (60.4%)
Heterogeneously dense 38 (46.3%) 37 (33.6%) 22 (45.8%) 12 (25%)
Extremely dense … …

BI-RADS category <0.001 0.031
4 64 (78%) 105 (95.5%) 38 (79.2%) 46 (95.8%)
5 18 (22%) 5 (4.5%) 10 (20.8%) 2 (4.2%)
Frontiers in Oncology | www.frontie
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Student’s t-test for normally distributed continuous variable (age and size); Pearson’s chi-square test for categorical variables (shape, margin, breast density, BI-RADS categories, and
pathological results).
SD, standard deviation; BI-RADS, breast imaging reporting and data system.
A B

DC

FIGURE 3 | Least absolute shrinkage and selection operator (LASSO) selection process, absolute values of weights, and receiver operating characteristic curves
(ROC) of 14 useful radiomics features in training set. (A) LASSO coefficient profiles of the 32 non-redundant features. The y-axis represents coefficient of each
feature. The optimal value of l was 0.0345, and the optimal log(l) was −3.37, resulting in 14 non-zero coefficients. (B) Mean square error path using tenfold cross-
validation. (C) Absolute value of weights generated by the LASSO algorithms for the optimal log(l) value. (D) The ROC curves for a combination of shape feature,
first order features, and texture features.
843436
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radiomics model obtained an AUC of 0.901 (95% CI, 0.835–0.961),
a sensitivity of 95.8% [46/48], and a specificity of 66.7% [32/
48] (Figure 4A).

Relative Importance of Useful
Radiomics Features
For the useful single radiomics feature, perimeter-to-surface ratio
from shape features had the largest absolute weight value of
1.234, followed by coarseness from texture features of 0.4 and
mean from first-order features of 0.389 (Figure 3C, details in
Table 2). For useful single-category radiomics features, texture
feature group obtained the largest absolute weight value of 1.435,
followed by shape feature group of 1.234, and lastly by first-order
feature group of 0.96 (Figure 3C, details in Table 2). When
shape feature group, first-order feature group, and texture
feature group were added sequentially to the final SVM model,
ROC analysis showed a significant increase in AUC for each
addition (shape feature group, AUC=0.613; shape feature group
plus first-order feature group, AUC=0.835; first-order feature
group plus and first-order feature group plus texture feature
group, AUC=0.934; p<0.001 for each addition) (Figure 3D,
details in Table 3).

Radiomics Model Stability
In the training set, the average AUC was 0.9 ± 0.038, average
sensitivity was 97.39% ± 3.9%, and average specificity was 50% ±
12.5%. In the test set, the average AUC was 0.915 ± 0.062,
average sensitivity was 98.7% ± 4%, and average specificity was
36.7% ± 8.6% (Figure 4B, details in Table 4 and Supplementary
Figure S2).

Reproducibility Assessment
Of the 188 extracted radiomics feature, more than 95% [180/188]
radiomics features obtained good reproducibility (ICC>0.75)
between radiologist 1 and radiologist 2. The radiomics model
Frontiers in Oncology | www.frontiersin.org 6
obtained good agreement between radiologist 1 and radiologist 2
(Cohen’s kappa=0.748; 95% CI, 0.67–0.825; p<0.001).
DISCUSSION

In this study, we built a radiomics model with similar sensitivity
to biopsy for predicting malignancy of BI-RADS category 4 and 5
mammographic masses by using the combination of CC and
MLO position images from DM. In both training and test sets, the
radiomics model obtained specificity by over 60% while
preserving sensitivity more than 95.8%. Both AUC and
sensitivity were relatively stable, while the specificity was not so
stable. These experimental results suggest that the non-invasive
A B

FIGURE 4 | Receiver operating characteristic curves and boxplots in training and test sets. (A) Receiver operating characteristic curves (ROC) in training and test
sets, with black dots representing threshold=0.22. (B) Boxplots of area under the curves (AUCs), sensitivities, and specificities generated by fivefold cross-validation
in training and test sets, respectively.
TABLE 2 | Absolute value of weights of selected useful radiomics features in
training set.

Feature
category

Feature name Absolute
weights

Shape MLO/Sphericity 1.234
FirstOrder CC/Mean 0.389

MLO/Uniformity 0.366
CC/Skewness 0.156
MLO/Mean 0.079

Texture MLO/NGTDM Coarseness 0.4
MLO/GLSZM GrayLevelNonUniformity 0.325
CC/GLDM
SmallDependenceHighGrayLevelEmphasis

0.324

MLO/GLDM
LargeDependenceLowGrayLevelEmphasis

0.167

CC/NGTDM Coarseness 0.12
CC/NGTDM Busyness 0.05
MLO/GLCM InverseDifferenceNormalized 0.036
CC/GLSZM ZoneVariance 0.012
CC/GLCM ClusterProminence 0.001
April 2022 | Volume 12
CC, craniocaudal; MLO, mediolateral oblique; NGTDM, neighborhood gray-tone
difference matrix; GLSZM, gray-level size zone matrix; GLDM, gray-level dependence
matrix; GLCM, gray-level co-occurrence matrix.
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imaging radiomics method could achieve similar sensitivity to
biopsy while avoiding some benign mammographic masses to
undergo unnecessary invasive biopsy.

We are aware of several papers that use mammographic
radiomics data to differentiate between benign and malignant
breast lesions (30, 36–38), and we are aware that several of these
papers incorporated morphological features (36, 37), and several
that did not (30, 38). However, most breast lesions that present
alone as calcification, architectural distortion, or asymmetries tend
to lack distinct grayscale contrast boundaries, which compromises
the masking of tumors. Besides, non-invasive imaging techniques
with similar biopsy sensitivity are important for differentiating
between benign and malignant BI-RADS category 4 and 5 breast
lesions for which invasive biopsy was already indicated. To the
best of our knowledge, this is the first study to use mammographic
radiomics data to predict the malignancy of BI-RADS category 4
and 5 mammographic masses with a sensitivity similar to that of a
biopsy, and we believe that the radiomics model is more limited
but more relevant.
Frontiers in Oncology | www.frontiersin.org 7
When using radiomics data to predict the malignancy of
breast lesions, commonly used mammography images include
CC position alone (37, 39), mixed CC and MLO position (30,
36), and combination of CC position and MLO position (40, 41).
Gupta et al. demonstrated that the corresponding first-order and
texture features of mammographic masses between CC position
and MLO position were not strongly correlated (42), suggesting
that the inclusion of first-order and texture features from
multiple mammographic positions may impact the accuracy of
diagnosis of mammographic masses. Ma et al. has shown that by
combining both CC and MLO position, radiomics data had
higher classification performance between HER2-enriched BC
and non-HER2-enriched BC than using CC position alone and
MLO position alone (11). Hence, we applied both CC and MLO
position radiomics data to predict the malignancy of
mammographic masses suspicious for cancer, and the results
showed that this method had good classification performance.

Recent studies have shown that the use of a single random
training–test set split may lead to unreliable results in small
TABLE 3 | Classification performance of selected shape feature, first order features, and texture features in classifying malignancies and benign lesions in the training set.

Features AUC* p-value†

Shape 0.613 (0.528, 0.695) …

Shape+FirstOrder 0.835 (0.774, 0.888) …

Shape+FirstOrder+Texture 0.934 (0.898, 0.968) …

Shape vs (Shape+FirstOrder) … <0.001 (0.017)
Shape vs (Shape+FirstOrder+Texture) … <0.001 (0.017)
(Shape+FirstOrder) vs (Shape+FirstOrder+Texture) … <0.001 (0.017)
April 2022 | Volume 12 |
*Numbers in parentheses are 95% confidence intervals.
†Numbers in parentheses are the significance level.
AUC, area under the receiver operating characteristic curve.
TABLE 4 | Classification performance of radiomics model in fivefold cross-validation.

Data set Fivefold CV Pathology results AUC Sensitivity (%) Specificity (%)

Malignant Benign p

Training set –Fold 1 67 87 0.653 0.941 (0.898, 0.977) 98.5 [66/67] 50.6 [44/87]
Fold 1 15 23 0.910 (0.806, 0.997) 100 [15/15] 39.1 [9/23]
–Fold 2 65 88 0.901 0.927 (0.881, 0.965) 100 [65/65] 30.7 [27/88]
Fold 2 17 22 0.912 (0.786, 1) 100 [17/17] 27.2 [6/22]
–Fold 3 62 91 0.302 0.926 (0.878, 0.967) 95.2 [59/62] 58.2 [53/91]
Fold 3 20 19 0.856 (0.713, 0.966) 95 [19/20] 63.2 [12/19]
–Fold 4 67 87 0.653 0.920 (0.871, 0.962) 98.5 [66/67] 63.2 [55/87]
Fold 4 15 23 0.826 (0.672, 0.954) 100 [15/15] 43.5 [10/23]
–Fold 5 67 87 0.653 0.919 (0.872, 0.960) 100 [67/67] 49.4 [43/87]
Fold 5 15 23 0.864 (0.742, 0.965) 86.7 [13/15] 60.9 [14/23]
Mean± SD … … 0.9 ± 0.038 97.39 ± 3.9 50 ± 12.5

Test set –Fold 1 38 39 0.798 0.919 (0.846, 0.976) 97.4 [37/38] 33.3 [13/39]
Fold 1 10 9 0.967 (0.867, 1) 100 [10/10] 44.4 [4/9]
–Fold 2 38 38 1 0.912 (0.837, 0.968) 100 [38/38] 23.7 [9/38]
Fold 2 10 10 0.980 (0.920, 1) 100 [10/10] 20 [2/10]
–Fold 3 39 38 0.798 0.947 (0.883, 0.994) 97.4 [38/39] 44.7 [17/38]
Fold 3 9 10 0.856 (0.667, 1) 100 [9/9] 40 [4/10]
–Fold 4 39 38 0.798 0.937 (0.879, 0.981) 100 [39/39] 26.3 [10/38]
Fold 4 9 10 0.911 (0.688, 1) 88.9 [8/9] 40 [4/10]
–Fold 5 38 39 0.798 0.949 (0.887, 0.993) 97.4 [37/38] 43.6 [17/39]
Fold 5 10 9 0.767 (0.500, 1) 90 [9/10] 33.3 [3/9]
Mean± SD … … 0.915 ± 0.062 98.7 ± 4 36.7 ± 8.6
CV, cross validation; AUC, area under the receiver operating characteristic curve; SD, standard deviation.
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sample radiomics machine learning studies (43). In our study, we
divided the training and test sets based on the chronological
order in which patients underwent mammography
examinations, and we performed random fivefold cross-
validation in training and test sets, respectively, to assess the
stability of the radiomics model. Although the specificity gives a
large error (12.5%, 8.6%), the AUC (0.038, 0.062) and sensitivity
(3.9%, 4%) were relatively stable. This is consistent with previous
findings that cross-validation may lead to large error bars for
small sample sizes (44).

Of the 188 mammographic radiomics features, the feature
selection method screened out 14 useful features in the training
set (n=192, ratio 14:1). As suggested by Gillies et al., each
radiomics feature requires at least 10 samples to support in a
classifier (45). Previous publication has shown that maximum
2D diameter is a useful feature for predicting BC (37). In this
study, we found a significant positive correlation between
maximum 2D diameter and gray-level size zone matrix-based
gray level non-uniformity in the CC position images (r=0.82,
p<0.001) and MLO position images (r=0.924, p<0.001) of the
training set (Figure 5). Thus, the maximum 2D diameter feature
was removed when filtering features in the Pearson’s correlation
analysis. It is worth noting that although the size feature was not
included in our radiomics model, we do not consider it
unimportant in predicting malignancy of mammographic
masses suspicious for cancer.

Of the 14 useful mammographic radiomics features,
perimeter-to-surface ratio had the greatest weight value of
1.234, suggesting that morphological features remain
important in identifying benign lesions or malignancies for
mammographic masses suspicious for cancer. The mean
density obtained moderate weight values of 0.389 and 0.079,
which was higher in the malignant group than in the benign
group, indicating that the malignant mammographic masses
tend to be higher density than benign mammographic masses.
In addition, the malignant group had higher value for inverse
difference normalized, zone variance, gray level non-uniformity,
and busyness, and lower value for uniformity, skewness,
Frontiers in Oncology | www.frontiersin.org 8
coarseness, small-dependence high gray-level emphasis, and
large-dependence low-gray level emphasis, indicating more
heterogeneity of malignant mammographic masses in the
density and texture patterns (31) (Figure 6). This experimental
result is consistent with the pathological fact that malignant
tumors tend to be heterogeneous, while benign lesions tend to be
homogeneous (46).

Admittedly, our study has several limitations. First,
mammographic radiomics data for this study were collected
from a single center with a limited number of participants, and
further multicenter testing is needed. Second, the mammographic
masses were masked by manual method; however, good inter-
observer reproducibility was obtained in feature extraction and
model diagnosis. Some publications indicate that semi-automatic
A B

FIGURE 5 | Correlation analysis of maximum two-dimensional diameter and gray level non-uniformity (gray-level size zone matrix based) in training set.
(A) Craniocaudal (CC) position images; (B) mediolateral oblique (MLO) position images. 2D, two-dimensional; GLSZM, gray-level size zone matrix.
FIGURE 6 | Dumbbell diagram of the mean value of 14 useful radiomics
features between the malignant and benign groups in the training set.
SDHGLE, small-dependence high gray-level emphasis; LDLGLE, large-
dependence low gray-level emphasis.
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segmentation method had higher inter-observer reproducibility
(47, 48). Further work is needed to construct a semi-automatic
segmentation method for mammographic masses. Finally, the
radiomics model was constructed by 2D images, which may lose
some important information of mammographic masses. However,
some publications showed that 2D radiomics features had higher
classification performance than 3D radiomics features in lung
cancer (47, 48).

In conclusion, a mammographic radiomics model combining
both CC and MLO position images had excellent sensitivity and
moderate specificity in differentiating malignancies and benign
lesions for BI-RADS category 4 and 5 mammographic masses. It
may help reduce the temporarily unnecessary invasive biopsies for
benign mammographic masses while providing similar diagnostic
performance for malignant mammographic masses as biopsies.
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