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Objectives: Metachronous liver metastasis (LM) significantly impacts the prognosis of
stage I-III colorectal cancer (CRC) patients. An effective biomarker to predict LM after
surgery is urgently needed. We aimed to develop deep learning-based models to assist in
predicting LM in stage I-III CRC patients using digital pathological images.

Methods: Six-hundred eleven patients were retrospectively included in the study and
randomly divided into training (428 patients) and validation (183 patients) cohorts
according to the 7:3 ratio. Digital HE images from training cohort patients were used to
construct the LM risk score based on a 50-layer residual convolutional neural network
(ResNet-50). An LM prediction model was established by multivariable Cox analysis and
confirmed in the validation cohort. The performance of the integrated nomogram was
assessed with respect to its calibration, discrimination, and clinical application value.

Results: Patients were divided into low- and high-LM risk score groups according to the
cutoff value and significant differences were observed in the LM of the different risk score
groups in the training and validation cohorts (P<0.001). Multivariable analysis revealed that
the LM risk score, VELIPI, pT stage and pN stage were independent predictors of LM.
Then, the prediction model was developed and presented as a nomogram to predict the
1-, 2-, and 3-year probability of LM. The integrated nomogram achieved satisfactory
discrimination, with C-indexes of 0.807 (95% CI: 0.787, 0.827) and 0.812 (95% CI: 0.773,
0.850) and AUCs of 0.840 (95% CI: 0.795, 0.885) and 0.848 (95% CI: 0.766, 0.931) in the
training and validation cohorts, respectively. Favorable calibration of the nomogram was
confirmed in the training and validation cohorts. Integrated discrimination improvement
and net reclassification index indicated that the integrated nomogram was superior to the
traditional clinicopathological model. Decision curve analysis confirmed that the
nomogram has clinical application value.
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Conclusions: The LM risk score based on ResNet-50 and digital HE images was
significantly associated with LM. The integrated nomogram could identify stage I-III CRC
patients at high risk of LM after primary colectomy, so it may serve as a potential tool to
choose the appropriate treatment to improve the prognosis of stage I-III CRC patients.
Keywords: deep learning, colorectal cancer, metachronous liver metastasis, prediction model, nomogram
INTRODUCTION

Colorectal cancer (CRC) is the third most common malignant
cause of morbidity and mortality (1). Although the development
of treatment strategies and multidisciplinary treatment has
effectively reduced the recurrence rate, distant metastasis is still
the main cause of the poor prognosis of patients with CRC (2, 3).
Liver metastasis (LM) is the most common site for distant
metastases because it is anatomically related to the portal
circulation (4). Approximately 20%-40% of patients with CRC
will develop metachronous LM after the initial surgery (5–7).
Compared with other treatment methods, radical surgery is the
main treatment scheme for LM detected early, which shows a
better prognosis, providing these patients with a chance of cure
(8, 9). However, a considerable number of patients with LM miss
the opportunity for surgery when LM is discovered. Hence, it is
important to screen patients at high-risk of developing LM and
to detect LM early to improve the prognosis of stage I–III CRC
patients. Currently, the management of CRC patients is mainly
dependent on the tumor-node-metastasis (TNM) staging system,
that is, the depth of tumor wall invasion (T), lymph node
involvement (N), and distant metastasis (M). However, the
traditional TNM staging system cannot effectively predict LM
(10). Therefore, there is an urgent need for an effective biomarker
to predict LM after surgery.

Recently, digital pathological images have attracted increased
attention; they are scanned and collected by a fully automatic
microscope or optical magnification system to obtain high-
resolution digital images, and then a computer is used to
automatically perform high-precision multifield seamless
stitching and processing on the obtained images (11, 12).
Moreover, digital pathological images provide a platform for
deep learning that generally acknowledges that digital
hematoxylin and eosin (HE) images contain valuable
diagnostic and prognostic information (13–15). Since 2015,
deep learning has become a powerful method that can
automatically acquire the representation of essential disease
features directly from images, thereby eliminating the process
of manual feature engineering in traditional methods (16–19).
Deep learning models have achieved human expert-level
performance in multiple diagnostic applications involving
medical image interpretation (16, 18). Importantly, deep
learning has also shown good performance in predicting tumor
prognosis (20, 21).

In this study, we aimed to construct an LM risk score based
on digital HE images and deep learning to predict postoperative
LM in stage I–III CRC patients who undergo radical resection.
In addition, we developed and validated a nomogram that
2

combined the LM risk score and clinicopathological predictors
for the individual postoperative prediction of LM in stage I–III
CRC patients.
MATERIALS AND METHODS

Patients and Data Acquisition
We conducted a retrospective study on patients who underwent
radical colorectal resection in Hunan Provincial People’s
Hospital and Chenzhou No. 1 People’s Hospital from January
2016 to December 2017. Patients with stage I-III CRC who
underwent radical resection were included in the study. The
exclusion criteria included multiple primary cancers;
preoperative neoadjuvant treatment; history of hepatectomy;
and missing clinical data. Finally, 611 patients were included in
the study. The patients were randomly divided into a training
cohort (428 patients) and a validation cohort (183 patients) at a
7:3 ratio (Figure 1). This study was approved by the Institutional
Review Boards of Hunan Provincial People’s Hospital and
Chenzhou No. 1 People’s Hospital. Written informed consent
was obtained from all patients. All procedures involving human
participants were in accordance with the Declaration of Helsinki.

Patient baseline information, including age, sex, primary
tumor location, preoperative carcinoembryonic antigen (CEA)
level, preoperative cancer antigen 19-9 (CA 19-9) level, vascular
emboli or lymphatic invasion or perineurial invasion (VELIPI),
tumor differentiation, KRAS, BRAF, BRAS, PIK3CA, pT stage,
pN stage, pTNM stage, and follow-up data (follow-up duration
and survival status), was collected. TNM stage was reclassified
according to the eighth edition of the American Joint Committee
on Cancer (AJCC) Cancer Staging Manual.

All patients underwent the following follow-up examinations
in the first 3 years after surgery: digital rectal and CEA
examination every 3 months, liver ultrasound examination
every six months, and colonoscopy and full abdominal
computed tomography (CT) every year. The follow-up
duration was measured from the time of surgery to the last
follow-up date, and the survival status at the last follow-up
was recorded.

Digital Pathological Image Acquisition and
Region of Interest Selection
All patient specimens were prepared with formalin-fixed
paraffin-embedded tissue. The size of the specimen varied
among subjects and thus, the size of the scanned images also
varied. These specimens were stained with HE and scanned using
April 2022 | Volume 12 | Article 844067
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an Aperio ImageScope (Lycra Biosystems, California, USA) at
20x magnification. After obtaining the patient’s digital HE image,
a pathologist with 10 years of experience in the pathological
diagnosis of CRC confirmed the tumor region as the region of
interest (ROI) for the deep learning model, which was trained
using the supervised learning method.

Image Preprocessing
The ROI of each patient was split into patches of 1024 × 1024 mm
in the training and validation cohorts. However, since the ROIs
ranged from 1 to 2 GB, after screening patches with obvious
interference factors (including bleeding, creases, necrosis, and
blurred areas), the number of patches extracted from each
patient was between 5,000 and 20,000. To save calculation
time, we randomly selected 100 patches from each patient.
Finally, after random cutting, random horizontal flipping,
random affine transformation, center cropping, and
normalization preprocessing, the patch was input into the deep
learning model based on a residual convolutional neural
network (ResNet).
Frontiers in Oncology | www.frontiersin.org 3
Transfer Learning of the 50-Layer Residual
Neural Network
ResNet, as a branch of convolutional neural networks (CNNs), is
currently one of the popular deep learning methods in the field of
artificial intelligence (22). It uses feature transmission to prevent
the gradient from disappearing to build a deeper neural network.
Transfer learning is an effective method for applying these
pretrained models to medical image analysis; thus, for LM
prediction, we use the original network architecture of the
ResNet-50 model, which divides 14 million labeled images
from the ImageNet database into 1,000 object categories. First,
all the patches were resized to 224 x 224 pixels for ResNet-50.
Then, we fine-tuned the network, and all convolutional layers
were fixed, which can significantly speed up network training
and prevent overfitting to new medical data sets. The ResNet-50
network training was optimized using an Adam optimizer with
100 epochs and a learning rate of 0.0001 to ensure that the entire
data set was covered for efficient training. The loss function was
determined to be binary cross-entropy. We used the sigmoid
function to calculate the probability before the output layer.
FIGURE 1 | The overall process of this study.
April 2022 | Volume 12 | Article 844067
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Each patch would eventually produce a probability value
between 0 and 1, and the average value of the 100 input
patches as the LM risk score. The patches of the training
cohort were trained through the pretrained ResNet-50 and
verified with the patches of the validation cohort.

The ResNet-50 model was implemented with open-source
Python (version 3.9.0) and TensorFlow (version 2.6.0-GPU) and
was trained on a workstation equipped with a Core(TM) i5-
10400F CPU@ 2.90 GHz (Intel; Santa Clara, CA) and one Nvidia
GTX 1080 Ti GPU (Nvidia; Santa Clara, CA). The code that
supports the findings of this study is available from the
corresponding author upon reasonable request.

Association of LM Risk Score With LM
and Prognosis
The patients were classified into high- and low-LM risk score
subgroups according to the optimal cutoff value, which was
defined by the “survminer” R package (23) in the training
cohort, and the same cutoff value was applied to the validation
cohort. Kaplan–Meier survival analyses were conducted to assess
the impacts of the LM risk score on LM, disease-free survival
(DFS), and overall survival (OS). The “survminer” and “survival”
packages were used to perform the survival analyses. DFS was
defined as the time from surgery to recurrence at any site or all-
cause death, whichever came first. OS was defined as the interval
between surgery and death from any cause.

Development and Validation of the
Integrated Nomogram
The primary endpoint of the analysis was the time to postoperative
LM. Univariate Cox regression analysis was conducted to assess
the potential association of clinicopathological characteristics and
the LM risk score with LM in the training cohort, and the hazard
ratio (HR) with the corresponding 95% confidence interval (CI)
was calculated. Variables with P < 0.05 in the univariate analyses
were selected for the multivariate analysis. Finally, an integrated
nomogram was developed based on the multivariate analysis
results. A clinicopathological model containing only
clinicopathological predictors was also constructed for
comparison. Nomogram development was performed by the
“rms” and “survival” packages.

The discrimination of the nomogram was measured by
Harrell’s concordance index (C-index) (24, 25) and the time-
dependent receiver operating characteristic (ROC) curve (26).
The calibration curve was plotted to assess the agreement
between the predicted and actual probabilities of LM. Decision
curve analysis (DCA) was used to quantitatively analyze the
clinical application value of the integrated nomogram (27). In
addition, prediction errors over time (28, 29), net reclassification
improvement (NRI), and integrated discrimination
improvement (IDI) (30, 31) were calculated to compare the
performance of the nomogram and the clinicopathological
model. The ROC curves were plotted using the “timeROC”
and “survival” packages. DCA was performed with the “dca.R”
function. The prediction errors over time were assessed using the
prediction error curves function of the “pec” package with the
Frontiers in Oncology | www.frontiersin.org 4
“Boot- 632plus” split method with 1000 iterations. The
“survIDINRI” package was used for the calculation of NRI
and IDI.

Statistical Analysis
R software version 3.6.0 (https://www.r-project.org/) and SPSS
software (version 22.0) were used for statistical analysis.
Continuity variables were analyzed by t test, while categorical
variables were analyzed by the c2 test or Fisher’s exact test.
Survival curves were generated by using Kaplan–Meier survival
analysis, and the differences in survival distributions were tested
using the log-rank test. Cox proportional risk regression models
were used for univariate analysis and multivariate analysis. All
tests were two-tailed, and a P value < 0.050 was determined to be
statistically significant.
RESULTS

Patient Demographics
Our study sample comprised 611 patients (392 males and
219 females) who underwent colectomy for stage I-III
CRC. The mean patient age was 56.51 ± 12.00 years. The
clinicopathological characteristics of the training cohort (n =
428) and validation cohort (n = 183) are listed in Table 1. The
clinicopathological characteristics between the two cohorts were
similar, which justifies the use of these cohorts as a training
cohort and a validation cohort.

The median follow-up duration (IQR) was 39 (32–38) and 40
(32–38) months in the training and validation cohorts,
respectively. The 3-year DFS and OS rates were 73.9% and
82.5% (Supplementary Figures S1A, B), respectively, in the
training cohort, and 92 (21.5%) patients had LM after initial
surgery (Figure 2). In the validation cohort, the 3-year DFS and
OS rates were 73.8% and 83.1% (Supplementary Figures S1C,
D), respectively, and 36 (19.7%) patients had LM (Figure 2).

Training and Validation of the Deep
Learning Model
The workflow of this study is displayed in Figure 3. All the
patches were augmented and trained in the training cohort via
the ResNet-50 model to increase the robustness (Supplementary
Figure S2). There was no significant difference in the LM risk
score (mean ± SD) between the training (0.404 ± 0.101) and
validation cohorts (0.415 ± 0.100) [P = 0.224] (Table 1). The
ResNet-50 activation maps for high and low LM risk scores,
which reflect the weights corresponding to the LM risk, were
obtained from the digital HE images (Supplementary
Figure S3).

The best cutoff value generated by the “survival” R package
was 0.49 (Figure 4) in the training cohort, and all patients were
divided into high- and low-LM risk score subgroups. The LM
risk scores of patients in the training and validation cohorts were
calculated and are shown in Supplementary Figure S4. The
clinicopathological characteristics according to the high- and
April 2022 | Volume 12 | Article 844067
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low-LM risk score groups in the training and validation cohorts
are presented in Supplementary Table S1.

There was a significantly higher 3-year cumulative LM rate in
patients with a high LM risk score than in those with a low LM
risk score in the training cohort (48.1% vs. 9.5%; log-rank
P<0.001) and the validation cohort (41.3% vs. 8.3%; log-rank
P<0.001) (Figure 5). Multivariate Cox regression analysis
showed that the LM risk score was an independent predictor
of LM, with an HR of 0.190 (95% CI: 0.121, 0.302; P<0.001) in
the training cohort (Table 2). The time-dependent ROC curves
Frontiers in Oncology | www.frontiersin.org 5
indicated that the LM risk score had good discrimination in the
training and validation cohorts (Figure 6).

Furthermore, patients with a low LM risk score had a
significantly better 3-year DFS (83.6% vs. 51.9%; log-rank P <
0.001) and OS (91.2% vs. 63.2%; log-rank P < 0.001) than patients
with a high LM risk score (Supplementary Figures S5A, B), and
the HRs were 0.254 (95% CI: 0.174, 0.030) for DFS and 0.263 (95%
CI: 0.167, 0.415) for OS. Similarly, this result was also presented in
the validation cohort (Supplementary Figures S5C, D), and the
corresponding HRs were 0.272 (95% CI: 0.159, 0.466) and 0.228
(95% CI: 0.114, 0.457) for DFS and OS, respectively.

Development and Validation of
the Nomogram
Univariate Cox analysis revealed that the LM risk score, preoperative
CEA level, VELIPI, PIK3CA, pT stage, and pN stage were potential
predictors of LM (P<0.010). The LM risk score, VELIPI, pT stage,
and pN stage were identified as independent risk factors for LM
according to the multivariate Cox analysis. Then, an integrated
nomogram was developed based on the four variables
(Figure 7A). The calibration curve showed good agreement
between the predicted and actual probabilities of LM in the
training cohort (Figure 7B) and the validation cohort (Figure 7C).
The integrated nomogram achieved satisfactory discrimination, with
a C-index of 0.807 (95% CI: 0.787, 0.827) and an area under the
curve (AUC) of 0.840 (95% CI: 0.795, 0.885) at 3 years (Figure 8A)
for predicting LM in the training cohort. In the validation cohort, the
C-index was 0.812 (95% CI: 0.773, 0.850) and the AUC was 0.848
(95% CI: 0.766, 0.931) at 3 years (Figure 8B).

Comparison With the Traditional Model
To assess the advantage of the integrated nomogram over the
traditional model, we excluded the LM risk score and
constructed a clinicopathological model based on VELIPI, pT
stage, and pN stage (Supplementary Table S2). The
clinicopathological model generated C-indexes of 0.716 (95%
CI: 0.690, 0.743) and 0.741 (95% CI: 0.697, 0.785) in the training
and validation cohorts, respectively. The integrated nomogram
exhibited a higher C-index to predict LM than the
clinicopathological model, TNM stage, and LM risk score
alone in the two cohorts (all P<0.05) (Table 3). Moreover, the
integrated nomogram also had a higher AUC at 3 years than
the other models (Table 4 and Figure 8). Furthermore, the
integrated nomogram comprised of the clinicopathological
model demonstrated an NRI of 0.480 (95% CI: 0.377, 0.582;
P<0.001) and an IDI of 0.141 (95% CI: 0.075, 0.230; P<0.001) in
the training cohort and an NRI of 0.504 (95%CI: 0.274, 0.648; P =
0.010) and an IDI of 0.135 (95%CI: 0.035, 0.249; P<0.001) in the
validation cohort (Table 5), showing improved classification
accuracy for predicting LM (Supplementary Figure S6 and
Table 5). The corresponding prediction error curves of all Cox
models showed that the integrated nomogram obtained the
lowest error compared to the other models (Figure 9). DCA
revealed that if the threshold probability in the clinical decision
was less than 88%, using the integrated nomogram to predict LM
would add more net benefit than the other models (Figure 10),
TABLE 1 | Characteristics of the patients in the training and validation cohorts.

Variable Training cohort
N=428

Validation cohort
N=183

P

Age, years 56.94 ± 11.77 56.07 ± 12.53
Sex 0.508
Male 271 (63.3) 121 (66.1)
Female 157 (36.7) 62 (33.9)

Primary tumor
location

0.638

Left-sided 328 (76.6) 137 (74.9)
Right-sided 100 (23.4) 46 (25.1)

Preoperative CEA
level

0.060

Normal 241 (56.3) 118 (64.5)
Elevated 187 (43.7) 65 (35.5)

Preoperative CA19-9
level

0.219

Normal 344 (80.4) 139 (76.0)
Elevated 84 (19.6) 44 (24.0)

VELIPI 0.237
No 228 (53.3) 107 (58.5)
Yes 200 (46.7) 76 (41.5)

Tumor differentiation 0.830
Well or moderately 347 (81.1) 147 (80.3)
Poorly or

undifferentiated
81 (18.9) 36 (19.7)

KRAS 0.491
Wild type 292 (68.2) 130 (71.0)
Mutation 136 (31.8) 53 (29.0)

BRAF 0.200
Wild type 389 (90.9) 172 (94.0)
Mutation 39 (9.1) 11 (6.0)

BRAS 0.734
Wild type 403 (94.2) 171 (93.4)
Mutation 25 (5.8) 12 (6.6)

PIK3CA 0.791
Wild type 373 (87.2) 157 (85.8)
Mutation 66 (12.9) 26 (14.2)

pT stage 0.738
I-II 167 (39.0) 70 (38.3)
III 184 (43.0) 84 (45.9)
IV 77 (18.0) 29 (15.8)

pN stage 0.456
0 265 (61.9) 107 (58.5)
I 99 (2301) 51 (27.9)
II 64 (15.0) 25 (13.7)

TNM stage 0.321
I 121 (28.3) 41 (22.4)
II 144 (33.6) 66 (36.1)
III 163 (38.1) 76 (41.5)

LM risk score 0.404 ± 0.101 0.415 ± 0.100 0.224
CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; VELIPI, vascular
emboli or lymphatic invasion or perineurial invasion.
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FIGURE 2 | Cumulative liver metastasis rate in the training and validation cohorts. The red line and blue line indicate the cumulative liver metastasis rate in the training
and validation cohorts, respectively. The cumulative rates of liver metastasis were 21.5% (92/418) and 19.7% (36/183) in the training and validation cohorts, respectively.
A

B

C

FIGURE 3 | Workflow of this study. (A) Selection of the ROI on the digital HE image. The tumor ROI was then segmented into patches of 1024 × 1024 mm. (B) A
total of 100 patches were randomly selected from each patient, and the liver metastasis likelihood of each patch was predicted by a deep learning model based on
ResNet-50. Then, the probability values of the 100 patches were merged to generate an average value as the LM risk score. (C) A nomogram was developed based
on the LM risk score and clinicopathological predictors in the training cohort and verified in the validation cohort. ROI, region of interest; CNN, convolutional neural
network; ResNet-50, 50-layer residual network; LM, liver metastasis.
Frontiers in Oncology | www.frontiersin.org April 2022 | Volume 12 | Article 8440676
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which indicated that the integrated nomogram has clinical
application value.
DISCUSSION

The accurate prediction of metachronous LM is necessary for the
selection of treatment strategies and the improvement of
prognosis of stage I–III CRC patients after radical surgery. In
this study, we constructed an LM risk score based on digital HE-
stained images, and the ResNet-50 model was significantly
associated with LM. The nomogram integrating the LM risk
score, pT stage, pN stage, and VELIPI can precisely predict LM
with satisfactory discrimination, calibration, and clinical
application value.

Metachronous LM significantly impacts the prognosis of CRC
patients who undergo radical surgery (39). The liver is the most
common metastatic site of CRC, and 80% of LMs occur within
two years after curative colectomy (5, 6, 40, 41). LM is the main
cause of death in these patients. Hence, early detection and
treatment can effectively improve the prognosis of metachronous
LM patients. Accurately predicting which patients are at high
Frontiers in Oncology | www.frontiersin.org 7
risk and choosing treatment options are important clinical
problems. Although the TNM staging system is widely used in
clinical practice, it cannot sufficiently predict the risk of
metachronous LM, and an effective biomarker is needed to
supplement the TNM staging system.

With the development of full-slide digital scanning
technology, all image information on traditional slides can be
digitized to form a digitized slice, namely, a digital pathological
image. It digitizes and networks pathological resources, realizing
the permanent storage of visualized data. More importantly,
digital HE images contain much potential pathological and
prognostic information (32, 42). Recently, deep learning
approaches have shown promise in tumor histopathological
assessment (18, 19, 27). Compared with traditional image
analysis methods, deep learning does not require professional
knowledge to define several hand-made features. Deep learning
can directly extract features related to the outcomes from the
image, and this process is performed automatically. Hence, deep
learning technology has been successfully applied to the analysis
of digital HE images, such as the classification and localization of
colon tissue (33) and the diagnosis of lung cancer (18). In
addition, imaging genomics research, such as predicting
microsatellite instability (MSI) status (34) and immune
FIGURE 4 | Plots of the best cutoff value of the LM risk score in the training cohort using the Kaplan–Meier method. LM, liver metastasis.
A B

FIGURE 5 | LM risk score and LM in the training and validation cohorts. Cumulative LM rate stratified by the LM risk score in the (A) training and (B) validation
cohorts. The cumulative liver metastasis rates in the patients with high LM risk score were 48.1% (64/133) and 41.3% (26/63) in the training and validation cohorts,
respectively, and the cumulative liver metastasis rates in the patients with low LM risk score were 9.5% (28/295) and 8.3% (10/120) in the training and validation
cohorts, respectively. HR, hazard ratio; CI, confidence interval; LM, liver metastasis.
April 2022 | Volume 12 | Article 844067
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subtypes (13) from HE digital images of gastrointestinal cancer,
suggests that digital HE images combined with deep learning is
feasible to explore the characterization of the tumor
microenvironment. Among several types of CNNs that have
been proposed, ResNet has been widely used for deeper learning
because it can effectively avoid gradient explosions. Hence, this
study used ResNet-50 to analyze the relationship between HE
images and LM in stage I-III CRC patients. We found that the
LM risk score is an independent risk factor for LM, and patients
with a high LM risk score were more likely to have postoperative
LM than patients with a low LM risk score. An activation map
was obtained, which can determine the tumor regions that the
ResNet-50 model assigns high values in patients with a high risk
of LM (Supplementary Figure S3). According to the activation
map, in addition to the heterogeneity of tumor cells, the
Frontiers in Oncology | www.frontiersin.org 8
difference in the extracellular matrix and the tumor-stroma
ratio may be related to the various probabilities of LM in stage
I-III CRC patients (35, 36).

According to the results of multivariable Cox regression, the
prediction model was constructed by integrating the LM risk
score and clinicopathological predictors and then presented as an
easy-to-use nomogram. The nomogram can visualize complex
and abstract regression models and promote communication
between doctors and patients (37, 38, 43). It is helpful for doctors
and patients to jointly formulate individualized treatment
strategies. T stage, N stage, and vascular invasion are
recognized risk factors for metachronous LM (39, 44, 45),
which is consistent with our results. To evaluate the
incremental value of the LM risk score, we constructed a
clinicopathological model. Then, we compared the integrated
TABLE 2 | Univariate and multivariate Cox regression in the training cohort.

Variable Univariate analysis Multivariate analysis
HR (95% CI) P HR (95% CI) P

Age, years 1.009 (0.992, 1.027) 0.294
Sex
Male Ref
Female 1.052 (0.691, 1.603) 0.812

Primary tumor location
Left-sided Ref
Right-sided 1.253 (0.791, 1.983) 0.336

Preoperative CEA level
Normal Ref
Elevated 1.423 (0.946, 2.142) 0.091 NA NA

Preoperative CA19-9 level
Normal Ref
Elevated 1.103 (0.666, 1.828) 0.703

VELIPI
No Ref Ref
Yes 2.040 (1.339, 3.109) 0.001 1.589 (1.036, 2.438) 0.034

Tumor differentiation
Well or moderately Ref
Poorly or undifferentiated 1.241 (0.756, 2.037) 0.393

KRAS
Wild type Ref
Mutation 1.196 (0.781, 1.832) 0.410

BRAF
Wild type Ref
Mutation 1.466 (0.641, 3.355) 0.365

BRAS
Wild type Ref
Mutation 1.759 (0.884, 3.501) 0.107

PIK3CA
Wild type Ref
Mutation 1.622 (0.958, 2.747) 0.072 NA NA

pT stage
I-II Ref Ref
III 2.329 (1.382, 3.925) 0.001 1.747 (1.023, 2.983) 0.041
IV 2.873 (1.587, 5.201) <0.001 2.022 (1.089, 3.755) 0.026

pN stage
0 Ref Ref
I 2.417 (1.460, 4.000) 0.001 1.995 (1.196, 3.329) 0.008
II 4.943 (3.024, 8.080) <0.001 2.885 (1.720, 4.841) <0.001

LM risk score
High Ref Ref
Low 0.159 (0.102, 0.249) <0.001 0.190 (0.121, 0.302) <0.001
April 2022 | Volume 12 | Article
HR, hazard ratio; CI, confidence interval; Ref, reference; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; VELIPI, vascular emboli or lymphatic invasion or perineurial
invasion; NA, not available.
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A

B C

FIGURE 7 | Integrated nomogram and the corresponding calibration curves. (A) Nomogram integrating the LM risk score, pT stage, pN stage and VELIPI for
predicting LM. (B) Calibration curve of the integrated nomogram in the training cohort. (C) Calibration curve of the integrated nomogram in the validation cohort.
VELIPI, vascular emboli or lymphatic invasion or perineurial invasion; LM, liver metastasis.
A B

FIGURE 6 | Time-dependent ROC curves of the LM risk score in the training and validation cohorts. Time-dependent ROC curves of the LM risk score in the training
(A) and validation (B) cohorts at 3 years. AUC, area under the ROC curve; ROC, receiver operating characteristic; LM, liver metastasis; CI, confidence interval.
Frontiers in Oncology | www.frontiersin.org April 2022 | Volume 12 | Article 8440679
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nomogram with the clinicopathological model, TNM stage, and
LM risk score alone. The results showed that the integrated
nomogram has better discrimination and calibration than other
models, and DCA confirmed that the integrated nomogram has a
higher clinical application value. Additionally, NRI and IDI
showed that the integrated nomogram has the best accuracy.
Therefore, the nomogram based on the LM risk score is
significantly superior to traditional clinicopathological models.
Based on the nomogram, we recommend that patients with a
high risk of LM should undergo more rigorous postoperative
monitoring and that adjuvant chemotherapy is essential.

Our research has the following advantages. First, HE staining
of tumor resection specimens and then TNM staging are
necessary processes for each patient, so they will not increase
the financial burden of the patient or the workload of the
pathologist; furthermore, all patients had undergone close
follow-up for at least 3 years.

Although our work is stimulating, there are still some
limitations. First, this study is a retrospective study, and
selection bias cannot be avoided. Therefore, further prospective
multicenter studies are needed to prove the robustness of the
integrated nomogram. Second, the CNN-based model has a
black-box nature, and we cannot use specific parameters to
display the correlation between digital HE images and LM.
Third, ROIs still needed to be manually selected, and we need
to further optimize the deep learning model to realize the
automatic annotation of ROIs. Fourth, the construction of the
nomogram is a multistep process, the clinicopathological
A B

FIGURE 8 | Comparison of the integrated nomogram and other models in the training and validation cohorts. The 3-year time-dependent ROC curves of the
integrated nomogram, clinicopathological model, TNM stage and LM risk score alone in the training (A) and validation cohorts (B). TNM, tumor-node-metastasis;
AUC, area under the ROC curve; ROC, receiver operating characteristic; LM, liver metastasis; CI, confidence interval.
TABLE 3 | C-index comparison of the integrated nomogram with other
prediction models.

Models C-index (95% CI) P

Training cohort
Integrated nomogram 0.807 (0.787, 0.827) Ref
Clinicopathological model 0.716 (0.690, 0.743) <0.001
TNM stage 0.666 (0.641, 0.691) <0.001
LM risk score 0.719 (0.696, 0.743) <0.001

Validation cohort
Integrated nomogram 0.812 (0.773, 0.850) Ref
Clinicopathological model 0.741 (0.697, 0.785) 0.001
TNM stage 0.670 (0.635, 0.704) <0.001
LM risk score 0.722 (0.686, 0.759) <0.001
Ref, reference; CI, confidence interval.
TABLE 4 | ROC comparison of the integrated nomogram with other prediction
models at 3 years.

Models AUC (95% CI) P

Training cohort
Integrated nomogram 0.840 (0.795, 0.885) Ref
Clinicopathological model 0.743 (0.685, 0.802) <0.001
TNM stage 0.692 (0.635, 0.749) <0.001
LM risk score 0.738 (0.685, 0.792) <0.001

Validation cohort
Integrated nomogram 0.848 (0.766, 0.931) Ref
Clinicopathological model 0.761 (0.657, 0.863) 0.004
TNM stage 0.687 (0.605, 0.769) 0.001
LM risk score 0.758 (0.673, 0.843) 0.002
ROC, receiver operating characteristic; CI, confidence interval; Ref, reference.
TABLE 5 | Net reclassification and integrated discrimination improvement by comparing the integrated nomogram with the clinicopathological model.

Models NRI (95% CI) P IDI (95% CI) P

Integrated nomogram vs. Clinicopathological model
Training cohort 0.480 (0.377, 0.582) <0.001 0.141 (0.075, 0.230) <0.001
Validation cohort 0.504 (0.274, 0.648) 0.010 0.135 (0.035, 0.249) <0.001
April 2022 | Volume 12 | Article
NRI, net reclassification improvement; IDI, integrated discrimination improvement; CI, confidence interval.
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FIGURE 9 | Prediction error curves for each model for stratifying liver metastasis in all patients. TNM, tumor-node-metastasis; LM, liver metastasis.
FIGURE 10 | Decision curve analysis for each model in all patients. Decision curve analysis for predicting liver metastasis in all patients. The y-axis measures the net
benefit, the red line represents the integrated nomogram, the blue line represents the clinicopathological model, the green line represents the LM risk score alone, the
yellow line represents TNM stage, the black line represents the assumption that no patients developed liver metastasis, and the gray line represents the assumption
that all patients developed liver metastasis. The net benefit was calculated by summing the benefits (true positive results) and subtracting the harms (false positive
results), weighting the latter by a factor related to the relative harm of an undetected liver metastasis compared with the harm of unnecessary treatment. TNM,
tumor-node-metastasis; LM, liver metastasis.
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variables entering directly into the ResNet 50 model can enhance
the efficiency and possibly even improve the performance of
the model.

In conclusion, we found that the LM risk score based on
ResNet-50 and digital HE images was significantly associated
with LM. Furthermore, an integrated nomogram could identify
stage I-III CRC patients at a high risk of developing LM after
primary colectomy, which could serve as a potential tool to
choose appropriate treatment to improve the survival of stage I-
III CRC patients.
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Supplementary Figure 1 | Kaplan–Meier survival analysis in the training and
validation cohorts. DFS (A) and OS (B) curves in the training cohort. DFS (C)
and OS (D) curves in the validation cohort. OS, overall survival; DFS,
disease-free survival.

Supplementary Figure 2 | Architecture and loss function of ResNet-50. The
architecture of ResNet-50 is shown and includes convolution layers, max pooling
layers, and a fully connected layer. ResNet-50, 50-layer residual network; LM, liver
metastasis.

Supplementary Figure 3 | Representative HE images of high and low LM risk
scores. The activation maps for representative images of high and low risk
scores, which reflect the weights corresponding to the liver metastasis risk, were
obtained from the HE image. Class activation map for recurrence vs. non-
recurrence. The high-intensity visual (red regions) area represents the area of
interest that the model pays more attention to, which has important predictive
value for liver metastasis. On the other hand, the blue area is the area that the
model pays less attention to, which has little important predictive value for liver
metastasis. LM, liver metastasis.

Supplementary Figure 4 | Distribution of the LM risk score in the training and
validation cohorts. The distribution of the LM risk score classified into the low- and
high-LM risk score groups based on a cutoff value of 0.49 in the training cohort
(A) and the validation cohort (B). LM, liver metastasis.

Supplementary Figure 5 | Relationship of the LM risk score with survival in the
training cohort and validation cohort. Three-year DFS (A) and OS (B) comparison
between the high- and low-LM risk score groups in the training cohort. Three-year
DFS (C) and OS (D) comparison between the high- and low-LM risk score groups in
the validation cohort. OS, overall survival; DFS, disease-free survival; HR, hazard
ratio; LM, liver metastasis.

Supplementary Figure 6 | Plots of net reclassification improvement in the
training and validation cohorts. Net reclassification improvement by comparing the
integrated nomogram with the clinicopathological model in the training (A) and
validation cohorts (B).

Supplementary Table 1 | Clinical characteristics of the patients according to the
LM risk score.

Supplementary Table 2 | Univariate and multivariate Cox regression in the
training cohort without the LM risk score.
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