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Background: Germ cell tumors (GCTs) are neoplasms derived from reproductive cells,
mostly occurring in children and adolescents at 10 to 19 years of age. Intracranial GCTs
are classified histologically into germinomas and non-germinomatous germ cell tumors.
Germinomas of the basal ganglia are difficult to distinguish based on symptoms or routine
MRI images from gliomas, even for experienced neurosurgeons or radiologists.
Meanwhile, intracranial germinoma has a lower incidence rate than glioma in children
and adults. Therefore, we established a model based on pre-trained ResNet18 with
transfer learning to better identify germinomas of the basal ganglia.

Methods: This retrospective study enrolled 73 patients diagnosed with germinoma or
glioma of the basal ganglia. Brain lesions were manually segmented based on both T1C
and T2 FLAIR sequences. The T1C sequence was used to build the tumor classification
model. A 2D convolutional architecture and transfer learning were implemented.
ResNet18 from ImageNet was retrained on the MRI images of our cohort. Class
activation mapping was applied for the model visualization.

Results: The model was trained using five-fold cross-validation, achieving a mean AUC of
0.88. By analyzing the class activation map, we found that the model’s attention was
focused on the peri-tumoral edema region of gliomas and tumor bulk for germinomas,
indicating that differences in these regions may help discriminate these tumors.

Conclusions: This study showed that the T1C-based transfer learning model could
accurately distinguish germinomas from gliomas of the basal ganglia preoperatively.

Keywords: germinoma, glioma, deep neural network, machine learning, transfer learning
INTRODUCTION

Germ cell tumors (GCTs) are neoplasms derived from reproductive cells, mostly occurring in
children and adolescents at 10 to 19 years of age (1). Intracranial GCTs are classified histologically
into germinomas (assessed in this study) and non-germinomatous germ cell tumors. Intracranial
germinomas mostly arise from pineal or suprasellar regions (2, 3). Due to the adjacency to midbrain
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structures, intracranial germinoma patients usually develop
hydrocephalus-related symptoms (3), and germinomas of the
basal ganglia are difficult to distinguish from gliomas, which are
the most common intracranial solid tumors, at the same site,
even for experienced neurosurgeons or radiologists. Intracranial
germinoma has a lower incidence rate compared with glioma in
children and adults (4).

Intracranial germinoma is sensitive to radiation therapy, and a
satisfactory prognosis could be achieved without surgical operation;
however, as mentioned above, it is difficult to diagnose by routine
MRI (T1-weighted, T2-weighted and enhanced T1) without
additional acquisition like DWI and SWI. Unfortunately, such
images are not always available due to the patient’s financial
status or scanner machine-hour shortage in developing countries.
Most entry-level hospitals in China are not equipped with an
advanced 3T MRI scanner or haven’t purchased those additional
imaging modalities from scanner vendors. In situ biopsies obtained
intraoperatively or preoperatively with the stereotactic guide
represent the “gold standard” to diagnose germinomas for most
of the cases (3, 5), while the potential risk of tumor seeding or spread
cannot be ignored. For some patients, traumatic procedures like
surgery can be avoided if it is possible to accurately distinguish
germinomas from gliomas with routine MRI. Although germinoma
is commonly seen in adolescents while glioma has a higher
incidence in the elderly population, headache and dizziness are
common symptoms reported by both glioma and germinoma
patients. Similarities in clinical manifestations compared to glioma
in addition to the rarity of germinoma cases make it difficult to
distinguish these two types of tumor, despite the difference of age at
diagnosis. The lower incidence rate of germinoma and the
abovementioned similarities provide little motivations for
physicians to require additional serum test in clinics for b-HCG,
an important indicator of germinoma. Therefore, a model using
only routine MRI that could help physicians decide whether a
patient needs further lab examination before hospital admission in
such a scenario would be valuable; furthermore, a simple system
requiring minimal input information that could distinguish these
two types of tumor would reduce the cost per patient by cutting
down unnecessary tests.

Recent advances in artificial intelligence (AI) in the field of
tumor medical imaging have revealed that computers can achieve
better accuracy in classifying different types of tumors than human
physicians (6–8). Previous studies have investigated deep learning-
based approaches to discriminate gliomas from other intracranial
lesions including brain metastasis (9, 10), meningioma (10, 11),
pituitary adenoma (10, 11), and acoustic neuroma (10). And other
studies also reported the classification of germinoma with
craniopharyngioma and pinealoblastoma (12, 13) by machine
learning approaches. These reports focus on germinomas of the
sellar and pineal region. Due to the uncommon incidence of
germinomas of the basal ganglia, it has not been explored if
routinely acquired MRI images can be utilized to differentiate
germinomas from gliomas of this region. In this work, a deep
learning model was established to answer this question. We
enrolled 73 patients diagnosed with germinoma or glioma of the
basal ganglia from two independent medical centers.
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Supplementary Figure S1 shows typical T1-weighted contrast
images of glioma and germinoma patients enrolled in this study,
with the characteristic irregular enhancement of tumor bulk and
cyst formation, which are similar between these two tumor types
(14–18).

The purpose of the study is to provide aid in preoperative
decision-making with a classification system for intracranial
germinomas and gliomas of the basal ganglia. Enhanced T1
MRI is routinely acquired for differential diagnosis of
intracranial lesions and is what’s solely needed for the neural
network we developed based on ResNet-18 (19), which provides
the strong capability for future clinical translation.
MATERIALS AND METHODS

Data Collection
Multi-center data for a total of 180 germinomas and 71 glioma
patients were retrieved from the databases of Xiangya Hospital and
Sanbo Brain hospital from 2010 to 2018. Brain MRI imaging was
performed as part of routine clinical care on scanners from various
manufacturers with different magnetic field strengths (Table 1) and
acquisition parameters (Table 2). Supplementary Figure S2
showed the distribution of voxel geometry. A total of 39
germinoma and 48 glioma patients had lesions of the basal
ganglia confirmed by immunohistochemistry (Figure 1). The
inclusion criterion was: lesions with enhancement areas larger
than 500 resliced voxels (average voxel size, 0.52 mm×0.52
mm×4.74 mm); 7 germinoma and 7 glioma patients were
excluded for this reason or not having enhanced T1 image at all.
There were no exclusion criteria based on age, gender, or race.
Demographic and clinical data, including gender, age, and race,
were retrieved from electronic medical records (Table 3).

Therefore, a total of 73 patients (31.07 ± 18.21 years old, varying
from 6 to 67 years; M: F = 47:26) were included in the final study
cohort (Table 3). The study was approved by the institutional
review board of Xiangya Hospital and Sanbo Hospital, and
informed consent was waived due to the retrospective nature of
TABLE 1 | Clinical MRI Scanners Used.

Manufacturers and magnetic field strength No. of patients

All manufactures
Total at 1.5 T 56 (76.7%)*
Total at 3 T 17 (23.3%)
Alltech Medical Systems
1.5 T 4 (5.4%)
GE Medical Systems
3 T 7 (9.6%)
Philips Medical Systems
1.5 T 19 (26.0%)
SIEMENS
1.5 T 26 (35.6%)
3 T 10 (13.7%)
TOSHIBA
1.5T 7 (9.6%)
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this study. The study was conducted in accordance with the
Declaration of Helsinki.

Image Preprocessing and Lesion Labeling
Pre-segmentation image registration was performed with both
T1-weighted contrast-enhanced (T1C) and T2-weighted fluid-
attenuated inversion recovery (FLAIR) images; affine images
were co-registered into the same geometric space using the
Elastix toolbox (20). Image transformation and re-slicing were
performed using TorchIO (21) scripts (https://github.com/
fepegar/torchio); images series were resliced into an average
voxel size of 0.52×0.52×4.74 mm to minimize biases in the
interpolation. All the T1C and FLAIR images were used for the
segmentation of enhancing tumors and peritumoral edemas,
respectively. Delineation of tumor boundaries was performed
in a semi-automated fashion on a slice-by-slice basis using the
ITK-SNAP software, an open-source 3D image analysis kit (22).
The segmented T1C and FLAIR images were reviewed for tumor
delineation and consistency by two neuroradiologists (CT and
NY with over 8 and 6 years of experience, respectively). The
delineated images of the two segmented tumor phenotypes
(enhancing tumor and peritumoral edema) were exported for
further analysis. Lesions smaller than 500 voxels (about 0.65
cm3) were excluded for the following reasons. Small lesions like
this could not be reliably segmented, typically such a small lesion
will only appear on a single slice or two which makes the image
less representative and reliable for feature extraction. In patients
with > 1 lesion, all the lesions larger than 500 voxels were
included in the analysis. The entire dataset contained a total of
93 lesions (45 germinoma lesions and 48 glioma lesions) from 73
patients (Figure 1).

Data Argumentation and Transfer Learning
We adapted a ResNet18 architecture pre-trained on the
ImageNet datasets (19). We only used T1C images to train the
classification model.

1. Slice selection, the center slice for each lesion was selected.
2. Conversion of a grayscale image to a 3-channel image. Three

strategies were compared.
a. No transformation (original gray-scale MRI images).
b. Upper and lower slices together with the center slice were
stacked as R, G and B channels respectively.
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c. Use the Jet color map to linearly transform the T1C gray
image into an RGB image.

3. Image size normalization. Images were resized to 224 × 224.

Due to a limited number of patients, data augmentation was
performed on-the-fly to prevent overfitting. More specifically, 6
data augmentation techniques were implemented, including
random flip, random affine, random blur, random ghosting,
random motion, and random elastic deformation. Examples of
the augmented images are shown in Figure 2.

The retraining process consisted of two steps, including
initializing the convolutional layers with loaded pre-trained
weights that trained based on the ImageNet data, and freezing all
convolutional layers and fine-tuning the classification layer. By
resetting the finial layer into 2 and changing the loss function into
cross-entropy, our model was able to implement the pre-learned
image feature extractionpattern to this tumorclassification task and
make prediction. To compare themodel performance, we also used
TABLE 2 | Summary of Acquisition Parameters in this study.

Parameter Minimum Median Maximum

MRI image with 3 T scanner
T1-weighted postcontrast MRI TE (msec) 2.37 2.98 26.82
T1-weighted postcontrast MRI TR (msec) 500 2200 2741.04
T1-weighted postcontrast MRI typical voxel size (mm) 0.72 × 0.72 × 0.9 1 × 1 × 1 1 × 1 × 5
T1-weighted postcontrast MRI typical matrix size 230 × 230 512 × 512 640 × 640
MRI image with 1.5 T scanner
T1-weighted postcontrast MRI TE (msec) 4.6 10 15.7
T1-weighted postcontrast MRI TR (msec) 25 400 2100
T1-weighted postcontrast MRI typical voxel size (mm) 0.30 × 0.30 × 2 0.45 × 0.45 × 5 0.72 × 0.72 × 5
T1-weighted postcontrast MRI typical matrix size 256 × 256 512 × 416 1024 × 1024
March 2022 | Volume 12
TE, echo time; TR, repetition time.
FIGURE 1 | Study flowchart.
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the same deep learning architecture to train our data from scratch.
All the parameters were set identical with the pre-trained model
except the randomly initial weights of convolutional layers.
ResNet18 model was used from Torchvision.models (0.11.0).

The ResNet18 with and without pre-trained models were
trained on an Ubuntu 18.04 workstation with 1 Intel Core i9-
7940 CPU, using an NVIDIA GTX 1080Ti 11GB GPU, with 256
GB available system RAM. Training in all categories was run for
100 epochs or 100 steps by stochastic gradient descent in batches
of 12, using an SGD Optimizer with momentum 0.9. The
learning rate was set as 0.001 for all layers and utilized with a
decay rate of 0.1 each 4 steps until the model gradually reached
convergence. In this study, 5-fold cross-validation was
performed to train the model. In each fold, 80% cases were
used as the training set and the rest were used as the validation
set. The training and validation were performed with Pytorch
(https://pytorch.org/) on Python 3.8.0.
Frontiers in Oncology | www.frontiersin.org 4
Model Visualization
Class activation mapping (CAM) was performed to identify the
areas contributing the most to the model, as described by Zhou
and collaborators (23). CAM can serve as a quietly powerful
approach for the reason that they enhance image regions
contributed more to the output of the model and denote the
model’s confidence in the prediction. Specifically, for a unit k in a
layer l, CAM calculates the importance score of k for class c and
follows with visualizing the importance via a heatmap. We added
a global average pooling layer after all the convolutional layer,
which helps find all the discriminative regions. Feature maps of l
before activation was visualized by CAM, then a heatmap was
superimposed on input images.

Statistical Analysis and Visualization
The performance statistics of the models were analyzed with the
R programing language (v 4.1.2). Visualization and calculation of
AUC (Area under the curve) and standard deviation of the 5-fold
cross-validation was calculated with R package precrec (v 0.12.7)
(24). In related analysis, lesion size is defined as the volumetric
size of the enhanced area in T1C images. Lesions larger than
median size are defined as large lesions, and lesions equivalent to
or smaller than median size are defined as small lesions.
Statistical tests of mean values were performed with Wilcoxon
signed-rank test unless specified otherwise.
RESULTS

Development of a Transfer Learning Model
to Distinguish Germinomas From Gliomas
As described in the method, 3 strategies of image transformation
were compared. First, we trained the model with the original
gray-scale MRI image, the model reached AUCs of 0.72 ± 0.07
(mean ± standard deviation [SD]) (Supplementary Figure 3A).
Second, the model trained on adjacent-slices-stacked images
reached AUCs of 0.81 ± 0.06 (mean ± SD) (Sup. Figure 3A).
Third, the model trained with the Jet colormap-transformed
images reached AUCs of 0.88 ± 0.04 (mean ± SD) (Figure 3A).
Image transformation with the Jet colormap seems to be the best
strategy for our dataset based on the ROC and the precision-
recall curve (Figures 3A, B, D and Supplementary Figures 3A, B).
The best model reached accuracy levels of 0.81 ± 0.01 in the
validation set (Figures 3C, D). The precision-recall curves of
TABLE 3 | Clinical characteristics of the cohort.

Characteristics

Diagnosis Glioma Germinoma
No. of patients 41 32
Age at first diagnosis 43 years median; 6-67 years range 13.5 years median; 7-44 years range
Gender
Female 18 8
Male 23 24
Number of lesions
1 37 26
>1 4 6
March
FIGURE 2 | Image processing and model architecture. Image preprocessing
included two major steps (image registration and tumor segmentation). The
jet colormap was applied to gray-scaled MRI images, followed by the use of 6
image augmentation techniques. Convolution layers from pre-trained
ResNet18 were fixed as a feature extractor. The final 2-dimension classifier
was retrained to fit our data.
2022 | Volume 12 | Article 844197
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these models indicate that when more information is provided to
the model, the result is slightly better.

To test the effectiveness of transfer learning and provide a
performance benchmark, we also trained ResNet18 on Jet
colormap-transformed images from scratch. Unsurprisingly, the
performance is worse than the pre-trained one, reaching AUCs of
0.79±0.06 (mean±SD), as shown inFigures3A,B (Theblue lines).

The mean lesion size of germinoma is smaller than glioma
Supplementary Figures 4A, B. To test whether lesion size affects
model performance, we performed chi-square (c2) test on
contingency tables of True-False prediction and tumor size of the
5-fold cross-validation Supplementary Figures 4C, D. No
significant difference in the distributions of predicting correctness
between small and larger lesions is found. This proved the model’s
Frontiers in Oncology | www.frontiersin.org 5
ability to generalize over various tumor sizes. Still, themedian lesion
size of correct prediction is slightly larger than incorrect prediction.
Indicate that the model might perform better with larger lesions
(Supplementary Figures 4C, D). Additionally, the model was
tested with lesions excluded in the original analysis (smaller than
500voxels), reachedAUCsof0.64±0.07 (mean±SD), this indicates
that our model might not be suitable for ultra-small lesions
(Supplementary Figures 3C, D).

The Class Activation Map Reveals a
Location Preference That the Model
Focuses on for Different Tumors
The neural network-based machine learning model was more
sophisticated and less interpretable than traditional methods.
A B

D

C

FIGURE 3 | Model evaluation. (A) Mean ROC in validation sets for the 5 runs. AUC = 0.88 ± 0.04 (mean ± standard deviation [SD]). Red line represents transfer
learning on ResNet18 pre-trained on ImageNet, blue line represents training of ResNet18 from scratch. (B) Precision-recall curve for the 5 runs. Red line represents
transfer learning on ResNet18 pre-trained on ImageNet, blue line represents training of ResNet18 from scratch. (C) Accuracy of the model during training. Dotted
lines indicate mean accuracy from training steps 100 to 300, of the five-fold training. Black line is the loess fitting of accuracy of n-fold cross-validation at each
training step. (D) Mean AUC and ACC of the four model we trained in this study. SD, standard deviation. ACC, accuracy.
March 2022 | Volume 12 | Article 844197
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Therefore, we applied CAM (23) to probe the model after
training. Pixels on a class activation map represent the
superimposed activation strength of each unit in the last
convolutional layer, which can be used to detect the regions on
which the model mostly focuses; in other words, this could reveal
the location preference that the model focuses on for
different tumors.

Both germinoma and glioma are characterized by a bulk
region (or core region) and a peritumoral edema region
(Figure 4A, left). To examine if the model had “attention”
preferences for different regions, we overlaid the class
activation map onto the original image (Figure 4A, right).
Whether the focal points were located in or outside of the
tumor bulk, they were significantly more likely to be centric
for germinoma than glioma cases in all five cross-validation runs
(Figure 4B). When the focal points were located in the edema,
they were significantly more likely to stay away from the outer
Frontiers in Oncology | www.frontiersin.org 6
edge of the edema for germinoma than glioma cases (Figure 4C).
No significant differences in the distance were found from the
focal points (when outside of the edema) to the outer edge of the
edema (Figure 4C), from the focal points to the center mass of
the tumor bulk, and from the focal points to the center mass of
the peritumoral edema Supplementary Figure 5 between these
two tumor types. In other words, there was a tendency for the
model to focus on the peritumoral edema region of gliomas and
the tumor bulk for germinomas. These findings indicated
different properties of these two types of tumors in terms of
physical structure, which could help discriminate them.
DISCUSSIONS

In this study, we developed a neural network for the
discrimination of germinomas and gliomas of the basal
A

B

C

FIGURE 4 | Class activation map analysis. (A) A schematic of a tumor’s physical structure (left), a schematic of the image with pseudo-color (middle), and a
superimposed class activation map (right). On the class activation map that is overlaid on the original image, the color bar indicates weights (red and blue for high
and low, respectively). (B) Distance from the model’s focal point (in the tumor bulk) to the edge of the tumor bulk (left). Distance from the model’s focal point (outside
of the tumor bulk) to the edge of the tumor bulk (right). (C) Distance from the model’s focal point (in the edema) to the edge of the edema (left). Distance from the
model’s focal point (outside of the edema) to the edge of the edema (right). In C and D, dotted lines indicate the mean distance (red and blue for germinoma and
glioma, respectively). Distances are normalized by tumor size. Wilcoxon signed-rank test, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. ns, not significant.
March 2022 | Volume 12 | Article 844197
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ganglia. Most previous reports of germinoma are case reports or
prognosis analyses based on tens of cases. To our best knowledge,
this is the largest cohort of basal ganglia germinoma and the first
quantitative MRI image analysis. The rarity of this disease with
the specific location makes it difficult to collect enough data to
train a convolutional neural network from scratch. In this case,
we applied two commonly implemented techniques. The first of
which is data augmentation to increase the dataset size and fight
overfitting. The second is transfer learning to dramatically
reduce the number of parameters to fit (25, 26).

It is reported that color information improves the
performance on object recognition tasks of human participants
(27). As color image encodes more visual information than
grayscale image. It is less explored if colorized medical image
improves accuracy in diagnostic imaging when examined by a
human radiologist. Kather, J. N. et al. showed that radiologists
can detect cancer tissue on colorized MRI images, with
equivalent performance on grayscale images, while receiving
almost no extra previous training (28). Our transfer learning
method is based on the ResNet18, pre-trained on the ImageNet
dataset, a natural scene database consisting of over 14 million
manually annotated RGB color images of over 1000 categories.
The above inspired us to test if deep learning models also have
better performance with colorized medical images in
classification tasks. Currently, there is no well-acknowledged
method for adding pseudo color to medical images. Previously
reported method includes linear color conversion from grayscale
to a color map (29), triplicate the grayscale channel to synthesize
color image (30, 31), concatenating three independent slices
from one or cross different series (planes) (32–35). In this
study, we thoroughly benchmarked these methods. The results
showed that linear transformation to a color map yielded the
highest AUC in our dataset. This provides a valuable reference for
future implementation of neural networks on medical imaging.

Neural network-based machine learning models are
infamously known as “black boxes”. Therefore, CAM was
implemented to improve interpretability, and to shed light on
the decision-making process of the network, thus ensuring the
focal point of the model doesn’t fall in irrelevant areas. A few
misclassified cases were shown in Supplementary Figure 6. For
misclassified germinomas Supplementary Figure 6A, focal
points of the model are located near ventricle structures and
irrelevant peritumoral white matter. For misclassified gliomas
Supplementary Figure 6B, focal points of the model located at
the tumor bulk or edge of it. Previous reports showed that
germinomas of the basal ganglia is characterized with minimal
peritumoral edema (36, 37). As for glioma, peritumoral edema is
a classic feature of MRI T2 image especially for high-grade
glioma (38, 39). This might explain why the model fails on
these specific cases and why it emphasizes peritumoral edema of
gliomas. The model attention areas provide a valuable reference
for physicians in case of suspected germinomas of the basal
ganglia to avoid misdiagnosis. We delineated the tumor regions
manually for CAM-related analysis, integrating automatic
classification algorithms and auto segmentation of tumor will
be explored in the future for the deployment of such models in
clinical practice.
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Medical images are volumetric datasets as they typically
contain slices of body segments and organs. In this study, we
developed a neural network model based on a single slice of T1C
MRI image, which is routinely acquired in medical practices.
Unlike the traditional radiomics based model, no laborious slice-
by-slice segmentation and labeling is required. The moderate
AUC of the model provides a stronger capability of clinical
translation. The increased number of parameters and the higher
computational complexity limited the application of 3D CNN
currently, but it might perform better in a larger dataset than
single-slice-based CNN.

This study had several limitations. First, the jet colormap was
still not representative and interpretable for different regions on
the image, such as the tumor bulk, edema, and normal tissues. In
future research, a customized colormap both suitable for
machine learning algorithms and human interpretation of MRI
gray-scaled images should be developed. Second, although we
implemented a good visualization method to identify the focus of
this model and discovered the differences for both tumors, the
biological meanings of the features of the model attention
mechanism still need to be explored further. Interpretable
CNN, which trains the kernel to represent the specific meaning
of parts on objects, could integrate biological knowledge for
better interpretability (40), which should be implemented in the
future. Third, the dataset was still small even though we gathered
data from two large medical centers. Data augmentation was
used to alleviate this problem, still, the repeatability and
robustness of the model should be validated with external data,
if possible. Finally, our model showed moderate ability to
generalize over various tumor sizes, but the model might have
better performance on large lesions.
CONCLUSIONS

A transfer learning classifier for germinomas and gliomas of the
basal ganglia was built, reaching a mean AUC of 0.88 and a mean
accuracy of 0.81 in the validation set. By employing class
activation mapping, we found the model was focused on the
peritumoral edema region of gliomas and the tumor bulk
for germinomas.
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