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Skin cutaneous melanoma (SKCM) attracts attention worldwide for its extremely high
malignancy. A novel term cytolytic activity (CYT) has been introduced as a potential
immunotherapy biomarker associated with counter-regulatory immune responses and
enhanced prognosis in tumors. In this study, we extracted all datasets of SKCM patients,
namely, RNA sequencing data and clinical information from The Cancer Genome Atlas
(TCGA) database and the Gene Expression Omnibus (GEO) database, conducted
differential expression analysis to yield 864 differentially expressed genes (DEGs)
characteristic of CYT and used non-negative matrix factorization (NMF) method to
classify molecular subtypes of SKCM patients. Among all genes, 14 hub genes closely
related to prognosis for SKCM were finally screen out. Based on these genes, we
constructed a 14-gene prognostic risk model and its robustness and strong predictive
performance were further validated. Subsequently, the underlying mechanisms in tumor
pathogenesis and prognosis have been defined from a number of perspectives, namely,
tumor mutation burden (TMB), copy number variation (CNV), tumor microenvironment
(TME), infiltrating immune cells, gene set enrichment analysis (GSEA) and immune
checkpoint inhibitors (ICIs). Furthermore, combined with GTEx database and HPA
database, the expression of genes in the model was verified at the transcriptional level
and protein level, and the relative importance of genes in the model was described by
random forest algorithm. In addition, the model was used to predict the difference in
sensitivity of SKCM patients to chemotherapy and immunotherapy. Finally, a nomogram
was constructed to better aid clinical diagnosis.
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INTRODUCTION

Skin cutaneous melanoma (SKCM) is one of the most lethiferous
malignancies. Though SKCM only constitutes ~5% of all skin
cancers, it accounts for >75% of skin cancer deaths (1).
Currently, most melanomas are removed via the standard
surgical technique that excises both the tumor and a margin of
normal appearing skin (2). Unfortunately, surgical resection
offers so little in the management of individuals with regional
or distant metastases (3). Adjuvant therapies, such as
radiotherapy, immunotherapy, biochemotherapy, can possibly
benefit postoperative patients (4). But the conventional
treatments have not improved the outcomes of SKCM, which
may be due to the hypo-responsiveness and inherent resistance
of melanoma cells (5). Immunotherapy has promised an
optimizing future for SKCM in recent years (6–8), managing
to enhance the prognosis of SKCM patients. Though it has
shown great clinical effect, only a small percentage of patients
profit by long-range treatment (9). Many factors like the tumor
types (10), and age (11) have potential influence on the efficacy.
Therefore, establishment of an efficient prognosis model is
essential, and it can direct clinical treatment of SKCM patients.

Immune checkpoints refer to a plethora of inhibitory pathways
hardwired into the immune system that are crucial for maintaining
self-tolerance and regulating the strength of the peripheric immune
system to minimize collateral tissue damage, realizing immune
evasion in tumors (12). Therefore, immune checkpoint inhibitors
(ICIs) are emerging as a promising antitumor immunotherapy. ICIs
are able to unleash anti-tumor immunity and mediate durable
cancer regressions (13) via inhibition of pathways like the cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4), programmed cell
death-1 (PD-1), and programmed cell death ligand-1 (PD-L1).
Elevated evidences have substantiated the use of ICIs in SKCM (14),
starting with the earliest approval of an anti-CTLA-4 drug called
ipilimumab for advanced-stage melanoma in 2011 (15). Currently,
pembrolizumab and nivolumab, both inhibitors of PD-1, also are
popularly used in clinical. Combination ICI therapy has shown
unprecedented, long-lasting survival benefits in the treatment of
Abbreviations: SKCM, skin cutaneous melanoma; CYT, cytolytic activity; TCGA,
The Cancer Genome Atlas; GEO, Gene Expression Omnibus; DEG, differentially
expressed genes; NMF, non-negative matrix factorization; TMB, tumor mutation
burden; CNV, copy number variation; TME, tumor microenvironment; GSEA,
gene set enrichment analysis; ICIs, immune checkpoint inhibitors; CTLA-4,
cytotoxic T-lymphocyte-associated protein 4; PD-1, programmed cell death-1;
PD-L1, programmed cell death ligand-1; GZMA, granzyme A; PRF1, perforin; OS,
overall survival; DSS, disease specific survival; PFS. progression-free-survival;
CYTRG, CYT-related gene; GSVA, gene set variation analysis; ESTIMATE,
estimation of stromal and immune cells in malignant tumor tissues using
expression data; MCP-counter, microenvironment cell populations-counter;
TNM, tumor-node-metastasis; ROC, receiver operator characteristic curve;
CCM, calibration curve method; PCA, principal component analysis; DCA,
decision curve analysis; C-index, concordance index; RMS, restricted mean
survival; IC50, half maximal inhibitory concentration; GDSC, genomics of drug
sensitivity in cancer; IPS, immunophenoscore; TCIA, the cancer immunome
database; HPA, human protein atlas; MAF, mutation annotation format; HRs,
hazard ratios; CIs, confidence intervals; AUC, area under curve; IHC,
immunohistochemical; NMI, N-Myc interactor; GBP, guanine-binding protein;
IFN-g, interferon- g; TYRP1, tyrosinase related protein 1; IFITM, interferon-
induced transmembrane; CAMs, cell adhesion molecules; DCs, dendritic cells.
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metastatic melanoma (16). However, despite the impressive effects,
a large proportion of patients do not respond to these drugs. A key
challenge is to understand the variability of immune responses to
ICIs. Granule exocytosis (perforin and granzymes) is considered as
one of main pathways involved in cytotoxic lymphocyte-mediated
tumor cell death, and it plays a crucial role in killing cancer cells
during cancer immunosurveillance and immunotherapy (17).
Michael et al. innovatively designed the cytolytic activity (CYT)
score based on expression levels of granzyme A (GZMA) and
perforin (PRF1) that relates with immune responses to ICIs
immunotherapies and predicts prognosis (18). Zaravinos et al.
once investigated that the CYT-high subgroup in colorectal
cancer can be benefited to a higher percentage from ICIs
immunotherapies (19). So, it is potentially valuable to explore
genes related to CYT and define its ultimate effect.

Thus, on the whole, in this article, we probed the RNA
sequence data from 446 SKCM specimens to find that CYT
was a valuable prognostic biomarker for patients with SKCM.
We also discovered that CYT may regulate tumor mechanism in
many ways, which provides new ideas for the immunotherapy
on SKCM.
MATERIALS AND METHODS

Collection of SKCM Samples and Datasets
As conducting this research, several datasets from public
databases were used. We downloaded the HTSeq-FPKM gene
expression data and corresponding clinical information of all
SKCM patients from the official website of the TCGA database
(https://www.cancer.gov). We collected 472 samples in total
(namely, one normal tissue sample and 471 SKCM tissue
samples). Cases with incomplete clinical data were excluded.
Finally, a total of 446 patients with full follow-up information
were enrolled. In the process of further validation, we employed
GSE65904 and GSE54467 matrices from the public repository of
the Gene Expression Omnibu (GEO) (https://www.ncbi.nlm.nih.
gov/geo/).

Evaluation of the Prognostic Value of CYT
In order to clearly define the prognostic value of CYT in SKCM,
we performed KM survival analysis (an event dependent
analyzing form to provide more accurate measurement of
survival rates at different intervals (20)) and univariate Cox
regression analysis on the overall survival (OS), disease specific
survival (DSS), and progression-free-survival (PFS) of patients in
the TCGA-SKCM dataset. We also combined results derived
from the univariate Cox regression analysis of GSE65904 and
GSE54467 to conduct a meta-analysis.

Identification of CYT-Related Genes
(CYTRG) and Prognosis-Related CYTRG
Patients in the TCGA-SKCM dataset were grouped into a high-
CYT and a low-CYT group by median split, and then we used
differential analysis on both groups in order to identify genes that
could characterize CYT that ‘CYTRG’. Prognosis-correlated
March 2022 | Volume 12 | Article 844666
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CYTRG for SKCM patients were then recognized using univariate
Cox regression analysis on CYTRG and corresponding
clinical data.

Identification of Subgroups and Evaluation
of Subgroups
Then non-negative matrix factorization (NMF) clustering was
applied on the CYTRG to classify new subgroups (clusters 1 and
2) of SKCM patients using the NMF R package. NMF is widely
used in bioinformatics and with its ability to extract meaningful
information from high-dimensional data (21), the use value of
identified CYTRG was accordingly confirmed. We conducted
KM survival analysis, compared number of somatic mutations
and performed Gene Set Variation Analysis (GSVA) to
determine the discrimination between C1 and C2 groups. The
Estimation of Stromal and Immune cells in Malignant Tumor
tissues using Expression data (ESTIMATE) algorithm was used
to calculate stromal score, immune score, and ESTIMATE score
of the different subgroups. The abundance of tumor-infiltrating
immune cells in the different subpopulations was then assessed
using the Microenvironment Cell Populations-counter (MCP-
counter) method, which was introduced by Becht et al. (22) that
allows the robust quantification of the absolute abundance of
eight immune and two stromal cell populations in heterogeneous
tissues from transcriptomic data.

Establishment of the CYT−Related
Prognostic Model
A total of 446 representative patients were extracted from the
TCGA repository. They possessed complete survival information
and all relevant clinical features, such as age, sex, tumor stage and
tumor-node-metastasis (TNM) stage. We employed lasso-cox
regression analysis to screen out crucial CYTRG that have close
relation with DSS. Certain CYT-related coefficients (bi) were
calculated with the multivariate Cox regression model. The risk
score formula (Expi) that was composed of bi and expression levels
of CYTRG was set up. The equation ‘Risk score = ∑ (bi ∗ Expi)’ was
used to calculate each risk score for every patient. The samples were
classified into either a high-risk or a low-risk cohort according to
the cut-of (based on the median risk score). Using R software
(version 4.04), KM survival analysis and log-rank test were
performed to compare DSS in either high-risk or low-risk group.

Evaluation of This Prognostic Model
Then, a receiver operating characteristic (ROC) curve was
generated by the R package survival ROC (23) and was used to
understand the diagnostic value of this model (24). Also, we
adopted the calibration curve method (CCM), principal
component analysis (PCA), decision curve analysis (DCA) to
further estimate the accuracy of this prognostic model. We
evaluated the prognostic significance of the risk scores and also
clinical variables, like age, sex, TNM staging, via univariate and
multivariate Cox regression analyses. Moreover, according to the
results from multivariate Cox regression analysis combined with
tumor mutation burden (TMB), a nomogram was then built and
concurrently could be used to predict DSS for the 1-year, 3-year,
Frontiers in Oncology | www.frontiersin.org 3
and 5-year of each SKCM patient. Briefly speaking, TMB refers
to the number of mutations that exist within a tumor, and high
TMB values are observed in melanoma and have been thought to
be associated with responses to ICIs (25). The prognostic value of
the novel model and the characteristic nomogram was further
compared with the tumor staging system, TMB, age, tumor
purity and gender in terms of the DCA plots, concordance
index (Cindex), and restricted mean survival (RMS) curves.

Drug Sensitivity Analysis
Since chemotherapy is commonly applied to treat SKCM, we
utilized R package “pRRophetic” to assess the chemotherapeutic
response determined by the half maximal inhibitory
concentration (IC50) of each SKCM patient on the Genomics
of Drug Sensitivity in Cancer (GDSC) website. Besides, to
elucidate the effects of CYT-related genes on drug sensitivity
and tolerance in this model, we acquired transcriptome data
from the CellMiner database (https://discover.nci.nih.gov/
cellminer/) and FDA-certified drug sensitivity-related data.
Then we utilized a Pearson correlation test to analyze the
relationship between gene expression and drug sensitivity. The
programmed cell death 1 (PDCD-1, also known as PD-1) and
cytotoxic T-lymphocyte associated protein 4 (CTLA-4) pathways
have been implicated in tumor immune evasion. So immune
checkpoint inhibitors targeting PD-1 and CTLA-4 may thereby
improve antitumor immunity. The immunophenoscore (IPS)
was used to predict clinical responses to immune checkpoint
inhibitors (26). The data of the IPS in SKCM patients were
download from the Cancer Immunome Database (TCIA)
(https://tcia.at/home). These results are able to better guide
doctors in choosing different drug treatment on patients.

Expression and Modulation of Genes in
the Signature
We conducted differential analysis on expression levels of genes
in the signature between normal samples and tumor samples. We
then searched for differential expression of genes between the
high-risk and low-risk groups. The Human Protein Atlas (HPA)
database (http://www.proteinatlas.org) was generated by Uhlén
et al. (27), and contains an invaluable resource of human
protein-coding genes, enlightening researchers on gaining
insights of human proteins. Thus we explored the expression
of CYTRGs represented in this signature in normal skins and
SKCM tissues using the HPA database. The expression of one
certain gene was investigated in normal and cancer tissues using
the same antibody. Then we conducted spearman correlation
analysis to demonstrate the relationship between CYT and genes
in our model, which helped to confirm the rationality of CYTRG
identified via the differential analysis.

Mutation Analysis and Tumor Mutation
Burden (TMB) Calculation
Mutation analysis was conducted based on all available somatic
mutation data of patients from the TCGA cohort. Then we
visualized the somatic mutation data in the Mutation Annotation
Format (MAF) using the “maftoools” R package, which is
March 2022 | Volume 12 | Article 844666
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efficient and comprehensive and provides various functions for
cancer genomic analyses (28). Subsequently, tumor mutation
burden (TMB) differential analysis was performed between wild
and mutation types based on defined genes in the model. We also
conducted differential analysis on TMB between the high-risk
and low-risk groups, and combined with TMB, we conducted
survival analysis between the two groups.

Tumor Microenvironment (TME) Analysis
The newly described algorithm, ESTIMATE (Estimation of
Stromal and Immune cells in Malignant Tumor tissues using
Expression data) method, applied for assessment of the presence
of stromal cells and the infiltration of immune cells in tumor
samples using gene expression data (29), was used to calculate
interstitial score, immune score, ESTIMATE score, and tumor
purity for different molecular subpopulations.

Immune Cell Infiltration, Immune
Checkpoint Gene and CYT Analyses
To better clarify the relationship between the tumor immune cell
infiltration status and calculated risk scores, 7 software programs,
namely, XCELL, TIMER, QUANTISEQ, MCP-counter, EPIC,
CIBERSORT-ABS, and CIBERSORT were used to analyze the
immune cell infiltration landscape. The lollipop diagram was
displayed to show the correlation between risk score and
immune infiltrated cells via Spearman correlation method. The
differences of immune cell content in high-risk and low-risk
groups were shown as boxplots using Wilcoxon signed-rank test.
Besides, we conducted differential analysis on the mRNA
expression of immune checkpoint genes and CYT elements
(GZMA and PRF1). We also performed Spearman correlation
analysis on PD-1, PD-L1, CTLA-4, CYT, GZMA, PRF1 and
calculated risk scores. Furthermore, we ran a correlation analysis
between CYT expression and immune cell contents. All results
further substantiated the utility value of our signature.

Gene Set Enrichment Analysis
A Gene Set Enrichment Analysis (GSEA) on risk genes was
performed to obtain the GO and KEGG pathways of this model.
The gene set enrichment study was conducted to that are
expressed between the high and low-risk classes of the MsigDB
(c2.cp.kegg.v7.4.symbols.gmt;c5.go.v7.4.symbols.gmt). The gene
set permutations were tested 1,000 times to demonstrate its
ability to function consistently. The phenotype label was used
to forecast adverse events.

Prediction of the Possibility That SKCM
Patients are Grouped as High Risk
After determining which clinical trait has significant difference, a
nomogram was drawn to predict whether a patient with SKCM
belongs to the high-risk group. Pathological stage and tumor-
bearing state are needed to help doctors better utilize this
prognostic model.

Statistical Analysis
All statistical analysis was accomplished by R version 4.0.4
(Institute for Statistics and Mathematics, Vienna, Austria;
Frontiers in Oncology | www.frontiersin.org 4
https://www.r-project.org). The correlation was determined by
Spearman correlation analysis. Wilcoxon test and t-test were
utilized to compare clinical variables. Survival status was assessed
by the Cox regression analysis. OS, DSS and PFS were generated
by the Kaplan–Meier method and evaluated by the log- rank test.
Two- tailed p <0.05 was considered statistically significant. The
sensitivity and specificity of the model were evaluated using ROC
curves. Additionally, we verified the confidence of the model
using test datasets and entire datasets. Reasonably, hazard ratios
(HRs) and 95% confidence intervals (CIs) were used to describe
the relative risk.
RESULTS

Patients With High CYT Have
Better Prognosis
The study design flowchart is shown in Figure 1. In total, 471
SKCM tissues and 1 para-cancer tissue were obtained from the
TCGA database. After initial screening, 446 samples with full
clinical information were included in our study. Detailed clinical
features of the samples are shown in Table 1. According to the
median value of CYT, we separated all SKCM patients into a
high-CYT and a low-CYT group, in which we conducted KM
survival analysis, and the results indicated that the high-CYT
group had better prognosis. Univariate Cox regression analysis
told us that CYT was a protective factor validated in 3
independent datasets, and consequently the conclusion came
that the higher CYT, the better prognosis for SKCM patients
(Figure 2A). However, meta-analysis showed that significant
heterogeneity remained when CYT was used to predict the
prognosis for SKCM patients (Figure 2B). Therefore, to
enhance prognosis judgment for SKCM, we performed
differential analysis respectively on the high-CYT and low-CYT
groups, and finally 864 genes that could manifest features of CYT
(CYTRG) were identified (Figure 2C), which adequately
indicated the exploring value of CYT.

Demonstrating the Value in the Identified
CYT-Related Genes (CYTRG)
To verify the high value of CYT-related genes (CYTRG) for
research, we applied non-negative matrix factorization (NMF)
clustering method based on the 864 identified genes, and an
elementary classification of patient subgroups was set through
the NMF consensus clustering, eventually with two subgroups
(C1 group, C2 group) sorted out (Figure 2D). As shown in
Figure 3A, the DSS time of each patient in clusters 1 and 2 were
visualized and the number of patients at risk was also categorized
in two lines. The results showed that patients in C1 group have
better prognosis than those in C2 group. Additionally, the
somatic mutation count in C1 group was also higher than that
in C2 group (Figure 3B). The GSVA pathways in C1 group and
C2 group showed significant difference too (Figure 3C). As
shown in Figure 3D, the SKCM tissues in cluster 1 showed
higher stromal score, immune score, and ESTIMATE score than
cluster 2. Also, as shown in Figure 3E, the Microenvironment
March 2022 | Volume 12 | Article 844666
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Cell Populations-counter (MCP-counter) algorithm was applied
to calculate the abundance of immune cells in SKCM tissues,
namely, B cells, T cells, NK cells, Neutrophils, Myeloid dendritic
Frontiers in Oncology | www.frontiersin.org 5
cells, Monocytic lineage, Fibroblasts, Endothelial cells, Cytotoxic
lymphocytes, CD8+ T cells, with statistically higher abundance of
9 kinds among them in c1 (Neutrophils excluded).

Establishment and Evaluation of
CYT-Based Prognostic Model
In the training sets, univariate Cox regression was used on
CYTRG to ascertain 553 prognosis-related CYTRG. Then
LASSO-Cox regression analysis was conducted and 14 key
CYTRG were screened out (Figures 4A, B). bi was calculated
using the formula below to establish the risk score model:

Risk score  =  ∑(bi ∗Expi) :

This formula was visualized in Figure 4C. We set the median
score of risk scores as the critical value, and divided 446 patients
into the high-risk and low-risk group.

Kaplan–Meier curve showed the DSS of the low-risk group was
much better than that of the high-risk group (p <0.001)
(Figure 4D). ROC had satisfactory sensitivity and specificity
(Figure 4E). PCA (Figure 4F) and t-SNE (Figure 4G) indicated
high discriminatory power of our model. We obtained similar
results using the samemethods on the testing sets (Figures 4H–K).

Univariate Cox regression analysis (Figure 5A) illustrated
that indexes CYT, tumor purity, risk score, age and tumor stage
were closely associated with DSS. We further performed
multivariate Cox analysis (Figure 5B), and found that the 14-
gene signature could be served as an independent prognostic
FIGURE 1 | Flow chart of this study.
TABLE 1 | Baseline data of SKCM patients from TCGA cohort.

Covariates Type Total High-risk group Low-risk group

Age ≤50 139 61 78
>50 307 162 145

Sex male 274 146 128
female 172 77 95

Stage Stage I 74 26 48
Stage II 139 91 48
Stage III 166 76 90
Stage IV 22 11 11
unknown 45 19 26

T T0 23 3 20
T1 40 14 36
T2 75 33 42
T3 87 43 44
T4 150 99 51
unknown 71 31 40

M M0 397 198 199
M1 23 12 11
unknown 26 13 13

N N0 220 115 105
N1 71 34 37
N2 49 22 27
N3 53 25 28
unknown 53 27 26
March 2022 | Volume 12 | Article 844666
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factor for SKCM (p <0.001), which meant that this signature can
be useful to well complement traditional forms of tumor staging.
Then we drew a nomogram for model visualization and clinical
application, namely, age, tumor stage, TMB and risk score
(Figure 6A). The area under the curve (AUC) values for the
1-, 3-, and 5-year DSS were “0.794”, “0.754” and “0.737”,
predicted by this model (Figure 6B). The calibration curve of
this predictive model suggested that the model had excellent
predictive property and could definitely benefit patients because
it exhibited an applicable prediction between the ideal prediction
and actual observations (Figure 6C). Finally, we used DCA
curves, C-index, RMS curves to confirm that this model and
the newly-composite nomogram were admissible. The DCA
curves showed the comparisons between the clinical net benefit
Frontiers in Oncology | www.frontiersin.org 6
of our model and the nomogram and that of other clinical traits
(Staging, TMB, age, tumor putiry, gender) for SKCM patients
(Figure 6D). Larger net benefits indicated that the model had the
excellent clinical effectiveness for bringing benefits for SKCM
patients. The C-index of the model and the nomogram was
compared with that of other clinical traits, as shown in
Figure 6E, and the concrete numbers were nearby 0.7, which
meant the model was of very moderate to quite important
magnitude. RMS curves were recommended by Eng et al. (30)
as a flexible and interpretable descriptive technique to represent
prognostic biomarkers. As shown in Figure 6F, the RMS
represents the life expectancy at 20 years (240 months) for
SKCM patients with different risk scores. The curve of the
model achieved the highest leading position (HR: 5.338;
A

B

C D

FIGURE 2 | Survival analysis and Meta-analysis. (A) Based on values of disease specific survival (DSS), overall survival (OS) and progression-free-survival (PFS), the
survival analysis was conducted and the results showed that patients with high-CYT had better prognosis. (B) The univariate Cox regression analysis of GSE65904,
GSE54467 and the TCGA-SKCM datasets were used to conduct a meta-analysis, which showed that CYT can be a protective factor for SKCM patients with a high
heterogeneity, so CYT cannot be used to predict prognosis for SKCM patients directly. The volcano plot displays 864 differentially expressed genes (DEGs) between
the high-CYT and low-CYT groups in the TCGA-SKCM cohort (C). Nonnegative matrix factorization (NMF) clustering was conducted and two subgroups were
identified the optimal value for consensus clustering (D).
March 2022 | Volume 12 | Article 844666
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P <0.001), indicating the high precision of our 14-gene signature.
On the whole, our results validated the accuracy and feasibility of
the signature.

Immunotherapeutic and
Chemotherapeutic Responses of High-
and Low-Risk Patients With SKCM
Immunotherapyhasbecomeapillar of cancer therapy (31). By far the
most widely used immunotherapeutic agents are blocking antibodies
targeted to immune inhibitory receptors such as CTLA-4, PD-1, and
PD-L1 (15). Unfortunately, not all types of cancer respond to it and
not all patients can benefit from it. A lot of research show that
strategies that combine traditional chemotherapy and burgeoning
immunotherapy synergistically improve the outcome of cancer
treatment (32). Expression levels of genes identified in this
signature were significantly correlated with the sensitivity of
various kinds of drugs by analyzing drug responses in the
CellMiner database (Supplementary Figure S1). Thus, we further
estimated the clinical response to immune checkpoint blockade
(targeting CTLA-4 and PD-1 in high- and low-risk patients with
SKCM). Then we used R package “pRRophetic” on Genomics of
Drug Sensitivity in Cancer (GDSC) (https://www.cancerrxgene.org/)
to estimate the half maximum inhibitory concentration (IC50) of
chemotherapy response in each SKCM patient (Figures 7A–L).
Results showed that in high-risk group, more promise in response
to sorafenib and imatinib were presented, while gefitinib behaved
Frontiers in Oncology | www.frontiersin.org 7
better in low-risk group. We also investigated the response to
chemotherapy in high-risk and low-risk patients with SKCM, and
found that 9 chemotherapeutic drugs demonstrated obvious
differences in estimated IC50 between high-risk and low-risk
groups. Among them, 6 categories (gemcitabine, ZM.447439,
NVP.BEZ235, roscovitine, NVP.TAE684 and vinblastine) showed
increased sensitivity in low-risk group and the rest 3 categories
(vinorelbine, docetaxel and doxorubicin) were more susceptive in
high-risk group. In addition, IPS grade analysis showed that the IPS
grade among low-risk patients was higher, which meant a better
immunotherapy effect (Figures 7M–P). These results can better
guide drug selection of patients and bring benefit for them.

Verification the Expression of Genes in
the Signature
In the boxplot (Figure 8A), different expression levels of CYTRG
in the signature between normal samples and tumor samples are
shown. The heatmap shows the same comparisons between
high-risk and low-risk groups (Figure 8B). Moreover, based on
the HPA database, we intended to make a further validation of
CYTRGs in this signature, and stepped forward to potentially
confirm the value of these CYTRGs. These 9 recognized
characteristic genes (IFITM1, UBA7, SEMA4D, NMI, GBP2,
ERAP2, KRT17, BCHE, and TYRP1) (Figure 8C) from our
model were present in the HPA database, whose differential
expression levels between normal skin samples and SKCM
A
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FIGURE 3 | Evaluation of the two newly identified subgroups in terms of their differentiation. Survival analysis (A), Mutation analysis of somatic cells (B) and GSEA
pathway differential analysis (C) on two subgroups. TME analysis of two identified subgroups was conducted (D). The abundance of tumor-infiltrating immune cells
was evaluated by MCP-counter and the differential analysis was then conducted (E). *P < 0.05; ***P < 0.001.
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samples were consistent with its transcriptional levels in both
cohorts, which convincingly supported our findings herein. All
immunohistochemical (IHC) images were downloaded from the
HPA database. Furthermore, we identified genes with a relative
importance >0.4 as the final filtration to highlight the most critical
genes. Figure 8D shows the relationship between the error rate and
the number of classification trees, and it also shows the top five
important genes (IFITM1, UBA7, CCL8, HAPLN3, and SEMA4D).
The value of genes in our model was confirmed again from the
perspectiveof geneexpression.Promisingly, these results canpossibly
inspire the scientists to explore CYT-related genes in preventing and
curing the disease. The expression levels of CYT were strongly
correlated with KIR2DL4, GBP2, SEMA4D, CCL8, UBA7, NMI,
HAPLN3, JSRP1, TLR2, and IFITM1 (cor >0.5), moderately
correlated with the expression levels of ERAP2 (cor >0.3), and
weakly correlated with the expression levels of BCHE, KRT17, and
Frontiers in Oncology | www.frontiersin.org 8
TYRP1, which further verified the rationality of differential analysis to
identify CYTRG (Supplementary Figure S2).

Calculation of Mutations of Somatic Cells
in SKCM Patients
The landscape of mutations of 14 hub genes in the signature was
shown in the waterfall map (Supplementary Figure S3A). The
KIR2DL4 gene nourished the highest frequency of nonsynonymous
mutation in SKCM patients. The bulk mutation type of 13 genes is
missense mutation, only ERAP2 gene has the most frequent
mutation type as nonsense mutation. The boxplot displays the
TMB difference of each gene in TCGA-cohort (Supplementary
Figure S3B). We used the red color to represent the mutation
types, and the blue color to represent the wild types. The diagram
shows that the mutation type for each gene owns higher TMB. The
result of differential analysis of TMB between the high-risk and
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FIGURE 4 | Construction of the CYT-related risk model by Lasso–Cox regression analysis. (A) Partial likelihood deviance of variables revealed by the Lasso
regression model. The red dots represented the partial likelihood of deviance values, the gray lines represented the standard error (SE), the two vertical dotted lines
on the left and right represented optimal values by minimum criteria and 1−SE criteria, respectively. (B) Coefficient profiles of the 553 prognosis related CYT-related
genes via Lasso–Cox regression analysis. (C) The coefficient values of 14 key CYT-related genes which were used to build the risk model were listed. Then validating
the model. (D) Survival analysis, (E) ROC analysis, (F) Principal component analysis, (G) t-SNE analysis of two risk groups of the 14-gene signature in training
cohorts, and (H–K) in testing cohorts.
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low-risk group is shown in Supplementary Figure S3C. TMB in
low-risk group is significantly higher than that in the high-risk
group. As shown in Supplementary Figure S3D, the survival
probability in the high-TMB group is higher than the low-TMB
group. On the side, analyzing the survival probability jointly with
TMB index, patients in the “high-TMB and low-risk” group have
best prognosis (Supplementary Figure S3E). All these results bear
out that high-TMB truly could be reckoned as a protective factor in
SKCM patients. We observed extensive copy number variations
(CNV) on fourteen key genes consisting of the groundwork for the
signature through theCNVanalysis. Among these genes,HAPLN3,
ERAP2, IFITM1, BCHE, andNMI showed high CNV amplification
frequency. In contrast, KIR2DL4, CCL8, TLR2, JSRP1, TYRP1,
GBP2, UBA7, KRT17, and SEMA4D had significantly high CNV
deletion frequency (Supplementary Figure S3F). The positions of
CNV of the 14 hub genes on human chromosomes are shown in
Supplementary Figure S2G.

Tumor Microenvironment (TME) in
SKCM Patients
We used the ESTIMATE algorithm to calculate estimate score,
immune score, stromal score, and tumor purity. Compared with
the low-risk group, the immune score, stromal score and
estimate score (Figures 9A–C) were higher in the high-risk
group (p <0.001). Tumor purity (Figure 9D) was lower in the
low-risk group. Moreover, a correlation analysis suggested risk
score had a significant negative relationship with immune score,
stromal score and estimate score (Figures 9E–G), and it had a
significant postitive relationship with tumor purity (Figure 9H).

Patients in the Low-Risk Group had Better
Immune Function, With Higher Immune
Cell Content, Expression of CYT and
Immune Checkpoint Genes
To better understand the correlation between risk score and
immune cell content, the Spearman correlation analysis and
Frontiers in Oncology | www.frontiersin.org 9
Wilcoxon rank-sum test were run via 7 different software
programs. The results are shown in Figure 10A. The correlation
coefficient varied significantly among different types of immune
cells, namely, B cells, T cells, macrophages, NK cells, neutrophils,
myeloid dendritic cells, etc. Moreover, bulk differential analyzes on
the amount of immune cells between the high-risk and low-risk
group were also conducted via 7 different software programs, and
the results are concordant among different software programs and
reveal that the content of many immune cells differ vastly between
the high-risk and low-risk group (Figure 10B). These results
manifest that this signature has close correlation with immune,
which elucidates that the signature may be an important immune
marker. Furthermore, themRNAexpression landscapebetween the
high-risk and low-risk group of a large number of immune
checkpoint genes was shown in Supplementary Figure S4A. The
differential analysis on the expression level of PD-1, PD-L1, and
CTLA-4 between the high-risk and low-risk groupswas performed.
To underline the most widely used immune checkpoint genes, we
also performed Spearman correlation analysis on PD-1, PD-L1,
CTLA-4 and calculated risk scores. The expression level of the three
genes is negatively correlated with the risk scores (Supplementary
Figures S4B–D). The results showed that their expression level was
higher in the low-risk group than that in the high-risk group
(Supplementary Figures S4E–G). In addition, expression of
CYT, GZMA, and PRF1 were higher in the low-risk group than
high-risk group (Supplementary Figures S5A–C). And they were
negatively correlated with risk score for SKCM patients
(Supplementary Figures S5D–F). In Supplementary Figures
S5G–I, we could see that CYT, GZMA and PRF1 had significant
correlation with many immune cells, especially with CD8+ T cells
(correlation coefficient >0.5, p <0.001). Results above may imply
that our signature is a good reflection of CYT.

Gene Set Enrichment Analysis
To further verify the observation based on this risk score model,
Gene Set Enrichment Analysis (GSEA) was utilized to seek out
A B

FIGURE 5 | Univariate Cox regression analysis (A) and multivariate Cox regression analysis (B) illustrated that the 14-gene signature could be used as an
independent prognostic factor for SKCM patients.
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enriched pathways in the KEGG and GO databases. We screened
out eligible gene sets from KEGG and databases, and selected the
most specific pathways. As shown in Supplementary Figure
S6A, some gene sets were significantly upregulated in the high-
risk subgroup, such as nitrogen metabolism, olfactory
transduction, oxidative phosphorylation, parkinsons disease
and ribosome. Some gene sets were significantly enriched in
the low-risk subgroup, such as antigen processing and
presentation, cell adhesion molecules cams, chemokine
signaling pathway, cytokine–cytokine receptor interaction,
hematopoietic cell lineage (Supplementary Figure S6B). In
GO database, some gene sets were significantly upregulated in
the high-risk subgroup, such as cornification, epidermal cell
differentiation, epidermis development, keratinization,
keratinocyte differentiation (Supplementary Figure S6C).
Frontiers in Oncology | www.frontiersin.org 10
Some gene sets were significantly enriched in the low-risk
subgroup, such as activation of immune response, adaptive
immune response based on somatic recombination of immune
receptors built, alpha beta t cell activation, antigen processing
and presentation, antigen receptor mediated signaling pathway
(Supplementary Figure S6D). The abundant results may
particularly inspire us to conduct further studies on the
pathogenesis of SKCM tumor progression.

Risk Probabilities of SKCM Patients Can
be Predicted by This Signature Based on
Clinical Traits
For the purpose of letting the signature better serve clinical
needs, we conducted a series of analyzes on the relationship
between the 14-gene signature and clinical characteristics.
A B
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C

FIGURE 6 | Construction and evaluation of Nomogram. A nomogram constructed by TMB and multi-Cox regression analysis on risk, TNM stage, and age to apply
the 14-gene signature in clinical practice (A). ROC curves (B) and calibration curves (C) indicate that the nomogram is accurate and specific. Further validation of the
prognositic value in our signature (D–F). DCA curves for the signature, the nomogram and other clinical traits in terms of their net benefits for SKCM patients (D).
Time dependent C-index curves of the model, the nomogram and other clinical traits (E). RMS curves for the signature, the nomogram and other clinical traits and
the model has the best potency in predicting prognosis of SKCM patients (F).
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Differential analysis on the risk scores of subgroups with various
T stage was performed. The diagram shows that along with the
progression of the disease, the risk score accordingly elevates
(Supplementary Figure S7A). Additionally, we introduced a
nomogram as a measure of risk scores for SKCM patients
(Supplementary Figure S7B) . Cabl ibrat ion curves
(Supplementary Figure S7C), ROC curves (Supplementary
Figure S7D) and DCA curves (Supplementary Figure S7E)
were drawn to indicate the predictive accuracy of the signature.
Frontiers in Oncology | www.frontiersin.org 11
DISCUSSION

The incidence of skin cutaneous melanoma (SKCM) continues
to rise globally (33). SKCM is the deadliest type of skin cancer
because of its early spread via the lymphatic vessels into lymph
nodes and distant organs (34), leading to a remarkably poor
prognosis and high recurrence rate. Traditional therapies have
their limitations in improving the prognosis of SKCM patients. It
is gratifying that the treatment landscape has shifted dramatically
A B C D
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FIGURE 7 | Immunotherapeutic and chemotherapeutic responses high- and low-risk patients with SKCM were shown. Lower IC50 of NVP.BEZ235 (A),
NVP.TAE684 (B), roscovitine (C), vinblastine (E), ZM.447439 (G), gefitinib (J), gemcitabine (K) were associated with a lower risk score. Lower IC50 of sorafenib (D),
vinorelbine (F), docetaxel (H), doxorubicin (I), and imatinib (L) were associated with a higher risk score. Distribution of immunophenoscore (IPS) in high-risk versus
low-risk SKCM subtypes. Violinplot representation of IPS in the high-risk versus low-risk groups in CTLA4 negative and PD1 negative group (M), CTLA4 positive and
PD1 negative group (N), CTLA4 negative and PD1 positve group (O), and CTLA4 positive and PD1 positive group (P).
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over a short period of time (6). Immunotherapy is reckoned as
the most promising one of emerging treatments, but not all
patients can benefit from it. Due to ubiquity of the immune
system, immune-related adverse effects affect patients and even
may lead to potentially life-threating conditions (35). Therefore,
the identification of biomarkers that can predict immune
responses of patients toward the specific treatment strategy so
that doctors can choose the most suitable patients who will
benefit from it is a prime objective of tumor study.

We noticed that in 2015, Rooney et al. elucidated the CYT
value as the potential landmark that could be used to predict
prognosis in cancers and had associations with counter-
regulatory immune responses, which may contribute to reveal
mechanisms of tumor development (18). Thus, genes associated
with the CYT level are needed in order to help us better
understand immune changes in human body during
immunotherapy treating. It is noteworthy that in colorectal
cancer, patients with higher CYT-values showed a more
sensitivity to ICIs than those with lower CYT-values (19).
Based on this, we identified CYT-related genes (CYTRG),
established a CYT-related prognostic model, validated novel
therapeutic treating targets for immunotherapies, enriched the
thoughts for the treatment on SKCM in this study. For the first
time, we surprisingly built a bond between SKCM and
CYT score.

The CYT was calculated as the geometric mean of the GZMA
and PRF1 expression in TPM. GZMA from NK cells and
Frontiers in Oncology | www.frontiersin.org 12
cytotoxic T lymphocytes (CTLs) activates gasdermin B
(GSDMB) to trigger pyrotosis in target cells, which has been
thought as a factor enhancing antitumor immunity (36). PRF1
also plays an important role in keeping the ability of NK cells and
CTLs to strike down target cells, protecting the organism from
immunosuppression and mainting immune regulation (37).
Hence, through the primary analysis, we found that CYT was a
protective factor for the prognosis of SKCM patients, which was
within our expectations. Then, samples from TCGA database
were divided into the high- and low-CYT group based on the
median value of CYT scores.

Subsequently, 864 CYTRG were screened out, which further
confirmed that CYT may possess abundant value in predicting
prognosis for SKCM. This assumption was proved then.
Fourteen CYTRG with relevant prognostic and predictive
implications were identified and were used to construct the
risk score model. Among them, eleven (KIR2DL4, GBP2,
SEMA4D, CCL8, UBA7, NMI, HAPLN3, JSRP1, TLR2, IFITM1,
and ERAP2) were favorable prognostic factors, whereas the other
three (BCHE, KRT17, and TYRP1) were hazardous. Interestingly,
some of them have already been verified to play an important
part in SKCM. Zhou et al. (38) demonstrated that the low
expression of KIR2DL4 is significantly associated with poor
prognosis in SKCM. Moreover, KIR2DL4 as a receptor on
HLA-G, has been thought as one of potential targets for
immunotherapy to treat cancer (39). Fillmore et al. established
stable clones constitutively expressing NMI (N-Myc interactor)
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FIGURE 8 | The expression of genes in the signature, the boxplot shows the comparisons between normal types and tumor types (A), the heatmap shows the
comparisons between the high-risk and low-risk groups (B), and the immunohistochemical stainings shows 9 gene expression on protein level (C). Error rate for the
data as a function of the classification tree, out-of-bag importance values for the predictors (D).
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in both breast and melanoma cell lines and eventually proved
that NMI retards tumor growth (40). Also, Compagnone et al.
(41) once gave evidence that ERAP2 may promote immune
responses mediated by T cells and NK cells to certain cancers,
with low expression related to poor prognosis. In consequence,
the established signature can provide novel biomarkers for
further studies. It could offer ideas for us to assess prognosis of
SKCM patients and we found that in the low-risk group, DSS for
SKCM patients was indeed longer than that in the high-
risk group.

Whereafter, the close relationship between the DSS and CYT
and other clinical features was also determined. Moreover, we
verified the independence of this 14-gene signature as a prognosis
predictor. Besides, a nomogram was built to visualize our model.
Nomograms are widely used for cancer prognosis (42). Through
multiple analyses, the signature was believed to own a fulfilling
distinctness, sensibility and authenticity.

To illustrate that the model is pragmatic in nature on guiding
clinical drug use, firstly we found that the expression levels of
gene in this signature were expressively correlated with the
sensitivity of various kinds of drug in the CellMiner database,
which integrates the NCI-60 cell line database and drugs
approved by the U.S. Food and Drug Administration, thought
as an efficient tool to easily identify drugs that are effective
against different types of cancer (43). Next we calculated IC50 to
determine chemotherapeutic responses for each SKCM patient.
Sorafenib and imatinib elicited a better potency in the high-risk
group, while gefitinib did considerably better in the low-risk
group. Sorafenib was experimented to prolong OS in mice by
inhibiting migration and invasion of melanoma cells and the
authors speculated it to be of potential use for treating SKCM
(44). As a monotherapy or in combination with chemotherapy,
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sorafenib is of limited use, hence it is vital to explore biomarkers
to choose the suitable patients that are more likely to respond to
sorafenib (45). Likewise, as tyrosine kinase inhibitor, imatinib
can regulate tumor immunity by depleting effector regulatory T
cells (46), and it is gradually studied too (47–49). Gefitinib has
also been explored (50, 51). Thus, this possibly could be used as
reference for patients with different estimated prognosis via our
model to choose suitable drugs. Moreover, we investigated
various chemotherapeutic drugs. Gemcitabine, ZM.447439
(Aurora kinase inhibitor), NVP.BEZ235 (PI3K inhibitor),
Roscovitine, NVP.TAE684 and vinblastine were more sensitive
to patients in the low-risk group, while vinorelbine, docetaxel,
doxorubicin were more sensitive to patients in the high-risk
group. Chemotherapy always has a major role to play among all
traditional therapies (5), therefore the findings in our study can
be applied for guiding clinical chemotherapy in patients
with SKCM.

Through a series of rigorous screening, our model identified
that mRNA expression levels of 14 hub genes had differences
between the normal/tumor group, and between the high-/low-
risk groups. Besides, nine hub genes had differences at the
protein expression levels between the normal/tumor tissues. In
the further analysis of the 14 hub genes, IFITM1, UBA7, CCL8,
HAPLN3 and SEMA4D emerged as the most important ones for
the prognosis in SKCM patients. Among all listed genes, GBP2,
TYRP1 and IFITM1 are of intense interest to further discussion.
Guanylate binding protein 2 (GBP2) belongs to the vast guanine-
binding protein (GBP) family that is consumingly induced by
interferon- g (IFN-g). Its role in tumorigenesis has received
increasing attention in recent years. Notably, Ji et al. (52)
demonstrated that GBP2 reinforces anti-tumor functions by
intercepting the Wnt/b-catenin pathway in SKCM and
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FIGURE 9 | Tumor microenvironment analyses. Comparisons between high-risk group and low-risk group in terms of immune score, stromal score, ESTIMATE score
(A–C) and tumor purity (D). The relationship between the risks core and immune score, stromal score, ESTIMATE score (E–G) and tumor purity (H) in tumor tissues.
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enhances prognosis. Yu et al. (53) found that GBP2 promotes
glioblastoma invasion through Stat3/fibronectin pathway. While
in breast cancer, GBP2 can also be stated as a tumor suppressor
gene according to experimental evidence of scientists (54, 55).
Sadly, there lacks solid studies on functions of GBP2 in SKCM
formation for now, which also gives preliminary inspirations. On
the contrary, human tyrosinase related protein 1 (TYRP1) is a
melanosome protein involved in the pigmentary machinery of
melanocytes and well-studied for its emerging roles in the
malignant melanocyte and melanoma progression (56). Gilot
et al. (57) even explored in depth that a reduction in the TYRP1
mRNA level should restore the tumor-suppressor activity of
miR-16 and highlighted miRNA displacement as a promising
targeted therapeutic approach for melanoma. The family of
interferon-induced transmembrane (IFITM) proteins is
interferon induced antiviral proteins, localized in the plasma
and endolysosomal membranes. With regard to IFITM1, also
known as 9-27 or Leu13, is reported to be overexpressed in a
wide range of neoplasms and thought as an independent
prognostic biomarker for patients with certain tumor types
(58). Its role in SKCM prgression stays relatively obscure. Yang
et al. (59) used to speculate that IFITM1 functions as a tumor
suppressor gene and arrived at a preliminary confirmation of its
prognostic role for SKCM. These results support that our model
is of great value in predicting prognosis for SKCM patients, and
hub genes in the model are potentially important from both a
fundamental and practical point of view.

Tumor mutation burden (TMB) refers to the number of gene
mutations within tumors. Considering its close connections with
immune checkpoint inhibitor (ICI) treatments and other
immunotherapies, high-TMB has been focused on its useful
Frontiers in Oncology | www.frontiersin.org 14
role as a novel biomarker for planning treatments and
selecting ICIs across some cancer types, melanoma included
(60–62). High TMBmight promote neoantigen generation and T
cells can react to neoepitopes generated from mutated genes that
bind to MHC molecules, causing effective antitumor immune
response (63). Chalmers et al. (64) analyzed 100,000 human
cancer genomes and arrived at a conclusion that a substantial
part of cancer patients with high TMB may benefit from
immunotherapy. High TMB is associated with better prognosis
in patients receiving ICI treatment (65). Herein we analyzed the
somatic mutation profiles in SKCM samples. A landscape on
mutation types of fourteen key genes in our model was shown. A
series of results through the mutation analysis told us that high-
TMB was connected with lower risk scores in SKCM patients and
patients with higher TMB had better survival. Firstly, our results
convey the conclusions that high-TMB in SKCM patients may
equal to longer lifespan. Secondly, this might give thoughts for
guiding ICI treatment for SKCM patients.

Furthermore, we analyzed tumor microenvironment (TME) by
using the ESTIMATE algorithm. TME serves as a nutrient sink on
which the tumor cells feed and develop (66). Groundbreaking
studies in melanoma, ovarian and colorectal cancer have shown
that certain features of the TME—in particular, the degree of
tumor infiltration by cytotoxic T cells—can predict a clinical
outcome of a patient (67). The classical tool—ESTIMATE
computational method was used to estimate the ratio of
immune-stromal component in TME, viewed in the form of
three sorts of scores: immune score, stromal score, and
ESTIMATE score. The stromal scores ranged from −1,778.68 to
1,898.41, the immune scores ranged from −1,458.20 to 3,748.11,
and the ESTIMATE scores ranged from −2,582.43 to 5,069.01.
A B

FIGURE 10 | The risk score correlated with the presence of many kinds of immune cells, which was analyzed via XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC,
CIBERSORT-ABS, CIBERSORT (A). The heatmap shows the differential analysis of different numbers of immune cells between the high-risk and low-risk group (B).
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Then we found that stromal scores, immune scores and
ESTIMATE scores were all lower in the high-risk group than
those in the low-risk group, which meant higher TME score
contributed to better prognosis for SKCM patients.

Next, we analyzed the infiltration of immune cells in patients
with SKCM. Tumor-infiltrating immune cells play a significant role
in regulating responses to immunotherapies. Seven common
methods were used to evaluate the correlation between tumor
infiltrating immune cells and risk scores, namely, XCELL (68),
TIMER (69), QUANTISEQ (70), MCPCOUNTER (22), EPIC (71),
CIBERSORT-ABS (72), and CIBERSORT (73). We found that
significant relation existed between risk scores and different types
of immune cells, such as B cells, T cells, macrophages, NK cells,
neutrophils, andmyeloid dendritic cells. B cells are considered to be
the main effector cells of humoral immunity which inhibit
neoplastic progression by secreting immunoglobulins, promoting
T cell response, and killing cancer cells directly (74). B cells are also
discussed as an important prognostic and predictive biomarker in
SKCM (75). Selitsky et al. (76) once experimentally confirmed that
B cells can modulate the anti-tumor immune response by
mediating proliferation and functional polarization of T cells,
and they also found that a potential law in patients receiving
CTLA-4 inhibitors where a lack of B cell response is possibly a sign
of poor response to ICIs. Moreover, CD8+ and CD4+ T cells have
been generally recognized as important anti-tumor immune cell
subgroups with their cancer-cell killing efficacy, working as a
crucial autoimmune gateway against cancer intrusion of an
organism. We also found that in the low-risk group, immune
checkpoint genes were higher and so as to Treg cells, which in our
view was according to the better immune function compared to the
high-risk group. Previous studies have shown that the upregulation
of PD-L1 and its connection to antigen-specific CD8+ T cells can
explain the confined host immunity in cancers (known as adaptive
immune resistance), yet the high expression of PD-1, PD-L1 and
other immunosuppressive molecules could be attributed to not
only the mutations of tumor cells, but also the induction of tumor-
infiltrating cells (12, 77). In TME, higher expression of
immunosuppressive molecules can represent stronger immune
attack, which can benefit the patients. Low levels of
immunosuppressive molecules usually mean that the tumor cells
are not recognized by the immune system or the immune system is
already in ruins, which to some extent explains why immune
checkpoint genes universally express more in the low-risk group.
Moreover, we noticed patients in the low-risk group had higher
TMB value and prolonged survival than the high-risk group. This
also indicated that in the low-risk group, they had better immune
functions, because tumor cells should withstand the anti-tumor
immunity of the body with continuous mutations and produce
more immunosuppressive molecules (termed as immune escape)
(78). On the contrary, low TMB may signify a rather powerful
invasion of tumor cells or an extremely damaged immune system,
by which tumor cells do not need mutations to tolerate tumor
immunity. These speculations are consistent with the higher levels
of immune infiltrating cells in the low-risk group for SKCM. In
further studies, we found that CYT, GZMA and PRF1 were highly
expressed in the low-risk group, significantly negatively correlated
Frontiers in Oncology | www.frontiersin.org 15
with risk scores, and expressively positively related with CD8+ T
cell content. Thus we hypothesized that high CYT in SKCM could
mediate tumor immunity through CD8+ T cell and lead to better
outcomes. And there was a moderate positive correlation between
CYT and Macrophages 1 (M1), and a moderate negative
correlation between CYT and Macrophages 2 (M2). M1 is
mainly involved in inflammatory responses and anti-tumor
processes, while M2 shows tumor-promoting activity (79). Thus
we could better assume that SKCM with higher CYT would have
better clinical prognosis because of stronger mmunogenicity and a
more favorable TME. Furthermore, GZMA was a potent adjuvant
that induced antigen-specific cytotoxic CTLs to play a prominent
part in antitumor activity in mice when co-administered with
antigen (80). Inoue et al. indicated that more expression levels of
PD-1 ligands, GZMA and HLA-A in melanoma tissues may be
conductive to respond preferentially to nivolumab treatment by
expanding oligoclonal tumor-infiltrating lymphocytes (81). PRF1
was also confirmed to have close relation with better OS by
modulating tumor immunity in cancers like head and neck
squamous cell carcinoma, ovarian cancer and basal-like breast
tumors, and liver cancer (82–84). In summary, our findings show
that the patients in the low-risk group had better survival, and
provide a theoretical basis for studying pathogeniss and treatment
methods of SKCM. CYT, as a protective factor in SKCM, was
again confirmed.

Through the GSEA of biological pathways for different risk
subgroups in different databases, we found that a diverse array of
immune-related signaling pathways showed significant
differences, which lies within our expectations. Interestingly, the
pathways like activation of immune response, antigen processing
and presentation, cell adhesion molecules (CAMs) were
significantly downregulated among high-risk group. Antigen
processing and presentation is a classic adaptive immune-
response course in which dendritic cells (DCs) are considered to
play a central role potently and professionally (85). In many
tumors, an immunosuppressive microenvironment can be
attributed to the dysfunction of DCs to recognize, process, and
present tumor antigens to T cells (86). The loss of CAMs in the
early stage of melanoma allows the tumor cells to proliferate and
intrude the dermis with the reduction of anchorage on the
basement membrane and between the ambient keratinocytes
(87), which allows distant metastasis in the follow-up mutations.
These results illustrate that CYT regulates tumor pathogenesis by
modulating various immune responses. Remarkably, our GSEA
also offers some new insights into tumor mechanism governing,
many of them certainly seem like an untapped area to explore.
Parkinsons disease was enriched in the high-risk group. Forés-
Martos et al. (88) demonstrated that significant genetic
correlations exist between Parkinson’s disease, prostate cancer,
and melanoma.

As is mentioned above, within this study, we found that PD-1,
CTLA4 and PD-L1 genes were expressed more in the low-risk
group. PD-1, CTLA4, PD-L1 inhibitors currently are among the
hottest ICIs, contribute much to treat cancers, including SKCM.
It may roughly possess accurate predictive capacity to identify
patients who could respond well to immunotherapies. The
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underlying mechanism for this may be ascribed to that the higher
TMB in the low-risk group contributes to more neoantigens
generated by tumor mutations and more T lymphocytes
infiltrated by tumors, which makes the tumor more
immunogenic along with a stronger anti-tumor immune
response [15]. In fact, this is consistent with the result that
SKCM patients with higher TMB expression have better
outcomes. However, it is cautionary to note that our results
suggest that immune checkpoints are generally upregulated in
SKCM patients, noting that they are more prone to immune
escape during immunotherapy. These conclusions offer practice
guidance, and shed a new light on the immunotherapy
for SKCM.

Nevertheless, there were limitations in this study. This was a
retrospective study with datasets from the TCGA database,
lacking specific clinical information such as treatment and
recurrence records. And our conclusions need to be validated
in vivo or in vitro experiments to further examine the function of
CYTRGs in SKCM progression and to understand mechanisms
of neoplasia better. Still, prospective clinical studies are welcome
to verify phenomena reflected in this research.

In summary, our analyses of gene expression matrix and
corresponding clinical characteristics identified 14 prognosis-
related CYTRGs in skin cutaneous melanoma. Based on the
clinical characteristics of CYT, we constructed a novel risk
scoring model, which can effectively evaluate the prognosis for
SKCMpatients and forecast the benefit of SKCM immunotherapy.
Our study illustrated that CYT may positively influence the
development and outcome of tumors by modulating tumor
microenvironment. Thus, poor prognosis of high-risk patients
with SKCM may be attributed to the lower immune functions of
immune cells. And different sensitivity to therapeutic drugs
between the high- and low-risk groups could also be due to
differential expressions of immune checkpoints and cytokines.
Significantly, our study showed that low-risk patients with SKCM
benefit more from immunotherapies and the model can be
employed as a key tool to facilitate rational drug use and guide
clinical treatment.
CONCLUSION

Our study is the first to establish a 14 CYT-related-gene
prognostic model. Abundant analyzes verify that this signature
can be used as a promising predictive biomarker and therapeutic
target for SKCM patients.
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immune checkpoint genes. The overview of differential expression of immune
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Supplementary Figure 6 | Gene set enrichment analysis. Representative
enrichment plots generated in the KEGG database, the pathways enriched in the
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(C) and low-risk group (D) are displayed.

Supplementary Figure 7 | Correlation analysis on the relationship between the
14-gene signature and clinical characteristics. Differential analysis on risk scores of
subgroups with various T stage (A). The nomogram based on OS/follow-up time,
tumor status/T stage to evaluate risk scores (B). Cablibration curves (C), ROC
curves (D), DCA curves (E) indicate the accuracy of the signature.
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