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PKM2 is a phosphotyrosine-binding glycolytic enzyme upregulated in many cancers,
including glioma, and contributes to tumor growth by regulating cell cycle progression. We
noted, however, that in multiple glioma cell lines, PKM2 knock-down resulted in an
accumulation of cells in G2-M phase. Moreover, PKM2 knock-down decreased Cdk1
activity while introducing a constitutively active Cdk1 reversed the effects of PKM2 knock-
down on cell cycle progression. The means by which PKM2 increases Cdk1 activity have
not been described. Transient interaction of T14/Y15-phosphorylated Cdk1 with cyclin B
allows Cdk7-mediated pT161 Cdk1 phosphorylation followed by cdc25C-mediated
removal of pT14/Y15 and activation of Cdk1 in cycling cells. In the present course of
investigation, PKM2 modulation did not influence Cdk7 activity, but phosphotyrosine
binding forms of PKM2 co-immunoprecipitated with pY15-containing Cdk1-cyclinB and
enhanced formation of active pT161 Cdk1-cyclin B complexes. Moreover, exogenous
expression of phosphotyrosine binding forms of PKM2 reversed the effects of PKM2
knock-down on G2-M arrest. We here show that PKM2 binds and stabilize otherwise
transient pY15-containing Cdk1-cyclinB complexes that in turn facilitate Cdk1-cyclin B
activation and entry of cells into mitosis. These results, therefore, establish metabolic
enzyme PKM2 as a direct interactor and activator of Cdk1-cyclin B complex and thereby
directly controls mitotic progression and the growth of brain tumor cells.

Keywords: PKM2, G2-M arrest, Cdk1, cyclin B, glioma

INTRODUCTION

Conversion of phosphoenolpyruvate (PEP) to pyruvate the final rate-limiting step of glycolysis is
catalyzed by Pyruvate kinase (PK) (1), a metabolic enzyme that exists as homotetrameric M1 form
(PKM1) expressed in normal differentiated tissues, including the brain with a high affinity for PEP and
generate high levels of pyruvate (2-4). Whereas proliferating cells from tumors as well as fetal tissues
expressed M2 isoform (PKM2) (5, 6) that oscillates between a glycolytically active tetramer and a more
loosely associated, glycolytically-inactive, monomeric/dimeric form (7). In tumor cells, PKM2
predominantly exist in monomeric/dimeric forms due to low levels of allosteric activator fructose
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bisphosphate (FBS) and due to the presence of phosphorylated
PKM2 at Y105 (8) that have an increased binding affinity for pY-
containing proteins (9). The resultant decrease in PK activity spares
the intermediates of glycolysis for biosynthetic processes and helps
create a metabolic environment suitable for tumor cell proliferation.

In addition to altering metabolism, the conversion of
tetrameric PKM2 to dimeric PKM2 reveals a variety of non-
metabolic PKM2 functions that contribute to tumor cell growth.
Dimeric PKM2, unlike PKM1 or tetrameric PKM2, has protein
kinase activity and uses PEP as a donor to phosphorylate histone
H3 and Stat3 (10, 11). This results in the increased transcription
of a variety of genes encoding proteins such as cyclin D1 and c-
myc that promote cell cycle entry. Dimeric PKM2 is also a pY-
binding protein and uses a domain that includes PKM2 K433 to
bind to pY133 B-catenin and pY200 HuR (11-13). Furthermore,
mutant forms of PKM2 that have enhanced protein kinase
activity stimulate cell growth. At the same time, those defective
in pY-binding fail to rescue tumor cells from the growth
inhibition caused by PKM2 suppression (9, 10, 12). These
results suggest that the non-metabolic effects of PKM2,
particularly transcription reprogramming, co-operate with
PKM2-induced metabolic changes to facilitate cell cycle entry
and tumor cell growth.

Consistent with a role for PKM2 in tumor growth, several
groups have noted that suppression of PKM2 levels leads to
decreased tumor cell proliferation (9, 11, 14). We noted,
however, that tumor cells expressing shRNA constructs
targeting PKM2 do not have generalized growth defects but
rather have very specific cell cycle defects, accumulating with a
greater than 2N DNA content and in a manner consistent with
an inability to enter mitosis (13, 15). Entry into mitosis is an
extensively studied yet incompletely understood process that
represents the last barrier to proliferation, particularly in
tumor cells that frequently lack a G1 checkpoint (16).
Furthermore, because entry into mitosis requires a single
cyclin-dependent kinase (Cdkl) whose activity is extensively
regulated by post-transcriptional events, we considered the
possibility that PKM2 uses a non-metabolic function other
than transcriptional regulation to control entry into mitosis
and to promote tumor cell growth. In this report, we show
that PKM2 is an integral component of the Cdkl-cyclin B
complex that controls mitotic entry, binding independently of
its protein kinase or metabolic activity to nuclear Y15-
phosphorylated Cdkl-cyclin B complexes to facilitate Cdkl
activation. The increased Cdkl activation, in turn, facilitates
the progression of tumor cells into mitosis. These findings,
therefore, place PKM2 in direct contact with the cell cycle
machinery and identify a novel means by which PKM2 links
metabolism to the control of the cell cycle and tumor cell growth.

MATERIALS AND METHODS

Cell Culture
U87MG, T98G, LN319, GBM6, GBM39 human glioma cells
were provided by the UCSF Brain Tumor Center Tissue Core

and were cultured as described (13, 15). The generation of NHAs
expressing E6/E7/hTERT plus H-RasV12 (Ras astrocytes) has
been described previously (17, 18).

Modulation of PKM2 and Cdk1 Expression
Non-targeted or one of five different lentiviral PKM2 shRNA
were used to infect U87, T98G, and LN319 cells as described
previously (13, 15). Following puromycin selection (1 pg/ml, two
weeks) and expansion, the 2 clonal populations exhibiting the
lowest PKM2 expression relative to controls for each cell type
were chosen for further study. The parental and PKM2 knock-
down cells were also transiently transfected (Fugene 6) with one
of four different forms of GFP-Cdk1 (Cdk1-AY, Cdkl-TF, Cdkl-
AF, and Cdk1-WT), or one of four different forms of mouse
PKM2 (PKM2, K399E, K367M, R399E). Cell cycle analysis and
lysate preparation was performed 48 hours after transfection.

Cell Synchronization and Cell Cycle
Analysis

Cells were synchronized by incubation for 48 hrs in serum-free
DMEM-H21 media followed by a release in 10% FBS-containing
media and collection at the indicated time points. In some
experiments, cells were also incubated with DASA-58 (40 uM,
3 hrs, Millipore) prior to harvest. Mitotic cells were collected
from the media after a 2-3 min shake of the flasks 24 hrs after
serum-stimulation, with a greater than 90% purity of the
population. For mitotic count, cells were fixed and stained with
phospho (Ser 28) histone H3.3 antibody (Cell Signaling) and
analyzed by flow cytometry. Cell cycle distribution was assessed
in fixed, propidium iodide-labeled cells subjected to flow
cytometry using a FACSCalibur (BD Biosciences) in
combination with Flowjo software (Treestar) (15).

Protein Extraction, Cross-Linking,
Immunoprecipitaton, and Western

Blot Analysis

Protein lysates from control or DASA-58 (0-100 uM, 3 hrs)
treated cells were prepared in lysis buffer (50mM HEPES, pH7.0,
150mM NaCl, 10% Glycerol, 1% Triton-X, ImM EDTA, 100mM
NAF, 10mM NaPPi) supplemented with protease and
phosphatase inhibitors (Roche). For cross-linking studies, cell
lysates (100ug) were incubated with freshly prepared
glutaraldehyde (0.125% final concentration, 5 minutes, 37°C).
Following termination of the reaction, the cross-linked proteins
were solubilized by the addition of an equal volume of Laemmli
sample buffer. For immunoprecipitation, protein lysates
were pre-cleared with protein A/G-agarose beads (Santa Cruz,
3 h, 4°C), then incubated with primary antibody (16 h, 4°C). The
immune complexes were precipitated for 2 h at 4°C with protein
A/G-agarose beads. In control samples, the primary antibody
was substituted with control IgG (rabbit or mouse depending on
the source of the primary antibodies). Immunoprecipitates were
washed four times with RIPA buffer containing 0.5 M NaCl and
2% SDS and three times with PBS and then resuspended in
Laemmli buffer. Proteins were separated on 4-20% Tris-Glycine
gradient polyacrylamide gels (Invitrogen) and transferred onto
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Immuno-Blot PVDF membranes (Bio-Rad Laboratories).
Membranes were then incubated in blocking buffer (1X TBS
containing 5% milk and 0.05% Tween-20, 2 hours), probed
overnight with antibodies specific for PKM2 (1:1000), B-actin
(1:20,000), cdc25C, phospho (5216) cdc25C, cyclin Bl (all Cell
Signaling), GFP (ThermoFisher), or Cdkl(Santa Cruz), washed,
then incubated with appropriate horseradish peroxidase-
conjugated secondary antibodies (Santa Cruz Biotechnology).
Antibody binding was detected by incubation with ECL reagents
(Amersham Pharmacia Biotech).

Cdk1-Cyclin B, cdk7, and PK

Activity Assays

For Cdkl-cyclin B activity analysis, cell lysates were diluted and
pipetted into recombinant Cdc7 pre-coated wells (MBL
International Corp), after which Mg2+ and ATP were added,
and the amount of phosphorylated substrate was measured by
binding to an anti-phospho-Cdk7 (T 376) antibody and a
horseradish peroxidase-conjugated anti-mouse IgG. The
catalyzed color reaction was quantified by spectrophotometry
and used to determine the relative amount of Cdkl-cyclinB
activity in the samples following the manufacturer’s directions
(MBL International Corp). The Cdk7 activity was measured by
using recombinant Cdk7/Cyclin H/MAT1 enzyme, Cdk
substrate peptide, and luminescence was detected using the
microplate reader as per the manufacturer (BPS Bioscience,
San Diego) instruction. PK activity was measured as previously
described (13).

Statistical Analysis

In-vitro experiments were performed in triplicates. Means and
standard errors were computed. The unpaired Student’s t-test
was applied for comparing two groups while a one-way ANOVA
test with post hoc Turkey-Kramer multiple comparisons test was
used to evaluate multiple groups. P<0.05 was considered
statistically significant.

RESULTS

Loss of PKM2 limits Cdk1-CyclinB
Activation and G2-M Cell Cycle Arrest

PKM2 knock-down cells accumulated in the G2-M phase of the
cell cycle, and Cdkl is the only cyclin-dependent kinase required
for entry into mitosis (19, 20). We, therefore, considered the
possibility that PKM2 uses the regulation of Cdkl for mitotic
progression. To address this possibility, we did a stable knock-
down of PKM2 using lentiviral shRNA in U87, T98G, and
LN319 glioma cell lines. As shown in the Western blot in
Figure 1A top panel, the lentiviral introduction of shRNA
targeting PKM2 (+) resulted in significant decreases in PKM2
expression relative to scramble (-) controls in each cell lines. We
next measured Cdkl activity in lysates of control and PKM2
knock-down cells after release from serum starvation-induced
synchronization. As cells approach mitosis, levels of cyclin B rise
and the Cdkl transiently associated with cyclin B becomes

activated by phosphorylation on Thr161 by Cdk7 (21, 22).
This activation is opposed by Mytl- and Weel-mediated
inhibitory phosphorylations of Cdkl at T14 and Y15 (23),
respectively, which can be removed by the cdc25 family of
phosphatases, primarily cdc25C (24). Control cells showed the
expected rise in Cdkl1-cyclin B activity associated with entry into
mitosis 8-10 hrs after addition of serum (Figure 1A). This pulse
of Cdkl activity was significantly reduced in PKM2 knock-down
cells, suggesting a defect in Cdkl activation in these cells.
Consistent with this observation, PKM2 knock-down cells also
contained significantly less Cdkl activated by T-loop (thr161)
phosphorylation (Figure 1B). PKM2 knock-down cells also
retained more cdc25C in a phosphorylated (ser216) form that
is a substrate for 14-3-3-dependent nuclear export and cannot
contribute to the removal of the inactivating phosphorylations of
Cdk1 at T14 and Y15 (Figure 1B) (25). Furthermore, increasing
CdKk1 activity by the introduction of a constitutively active GFP-
tagged Cdkl mutated to eliminate the possibility of inactivating
phosphorylations at T14 and Y15 (AF Cdkl) (26) reversed the
increases in pcdc25C levels caused by PKM2 knock-down
(Figure 1B). Representative flow plot of U87 glioma cells in
which PKM2 levels were suppressed (PKM2 shRNA) exhibited
an accumulation of G2-M cells based on their cell cycle analysis
relative to scramble controls (-). There is a slight decrease in the
percentage of cells in the GO/G1 and S phase in the PKM2 knock-
down group compared to the control group. Introducing wild
type Cdkl (WT Cdkl) was unable to rescue the G2-M arrest in
PKM2 knock-down U87 cells, but mutated AF-Cdkl that are
constitutively active was able to reverse the effects of PKM2 loss
on G2-M arrest along with the little changes in G0/G1 and S
phase (Figure 1C, left panel). Quantitative analysis of cells in G2-
M phase also demonstrated a significant increase in PKM2
knockdown group which was rescued by AF-Cdkl but not
with WT Cdkl in both U87 and LN319 cell lines (Figure 1C,
right panel). These results show that Cdk1 activity is stimulated
by PKM2 and that Cdkl is a key means by which PKM2
regulates cell cycle progression.

PKM2 Physically Interacts With the Cdk1-
CyclinB Complex

PKM2 could increase Cdkl T161 phosphorylation and activation
indirectly by increasing the activity of the CdklI-activating Cdk7
kinase. The levels and activity of Cdk7, however, were
comparable in both control and PKM2 knock-down cells
(Figure 2A). Alternatively, PKM2 could increase Cdk1 activity
by increasing the levels of Cdk1 or cyclin B, or by stimulating the
formation or activation of the Cdkl-cyclin B complex. To
address these possibilities, control, and PKM2 knock-down
cells were serum-starved, and lysates were collected 0-15 hrs
after release into the complete serum. In the total cell lysates of
control cells, levels of cyclin B rose as the cells neared entry into
mitosis around 10 hrs post-release (Figure 2B, left panel). In
control lysates in which total Cdkl was immunoprecipitated,
then assessed by Western blot with a cyclin B antibody, an
interaction between Cdkl and cyclin B was observed in between
2-15 hrs post-release (Figure 2C, top left panels and
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FIGURE 1 | Loss of PKM2 limits Cdk1-cyclinB activation and G2-M cell cycle arrest. (A) U87, T98, or LN319 glioma cells were lentivirally infected with a scrambled
shRNA (-) or constructs encoding shRNAs targeting human PKM2 (+). Following drug selection, polyclonal populations were examined by Western blot for PKM2
and B-actin expression. Cdk1-cyclin B activity in lysates from synchronized, serum-stimulated control and PKM2 knock-down U87, T98G and LN319 cells as
determined by an in vitro kinase assay. (B) Levels of Cdk1, GFP, pT161 Cdk1, Cdc25C, pS216 Cdc25C and B-actin in total cell lysates from unsynchronized cells
expressing scrambled shRNA, or PKM2 shRNA and subsequently manipulated to express a blank or AF Cdk1-encoding construct. (C) The distribution of cells in
various phases of the cell cycle was determined by FACS-based analysis on U87 and LN319 cells expressing scrambled shRNA or PKM2 shRNA, and expressing
WT or constitutively active (AF) Cdk1. Representative cell cycle plot of all treatment groups of U87 cells in left panel and G2-M values from all treatment group of U87
and LN319 cell lines are presented on the right panel. Values are presented as the mean + standard error of mean of three determinations. PI, propidium iodide.
*p<.05, n=3.
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cell line (Supplementary Figure 1A). Normal human astrocytes
(NHAs) that slowly proliferate for a very limited passage number
express mostly PKM1 and a very little PKM2 and can serve as a
negative control (Supplementary Figure 1B). The generation of
genetically modified NHAs that express E6-E7-hTERT plus H-
RasV12 and are transformed (17, 18) mainly express PKM2, and
a very little PKM1 will be a positive control cell line for Cdkl,
cyclin B, and PKM2 interaction (Supplementary Figure 1B). IP-
Co-IP experiments using lysates of genetically modified NHA-
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FIGURE 2 | PKM2 physically interacts with the Cdk1-cyclin B complex. (A) Levels (top) and activity (bottom) of Cdk7 in control and PKM2 knock-down U87, T98G
and LN319 cells 10 hrs following release from serum deprivation-induced arrest. (B) Levels of cyclin B1, PKM2, and Cdk1 in total cell lysates in control or PKM2
shRNA U87 cells measured at the times indicated following release from serum deprivation-induced arrest. (C) Levels of Cdk1, cyclin B, or PKM2 from Cdk1, cyclin
B or PKM2 immunoprecipitates measured at the times indicated following release of control or PKM2 shRNA U87 cells from serum deprivation-induced arrest. Data
in M lanes were derived from cells isolated by mitotic shake-off. I:B = Immuno Blot, IP = immunoprecipitate. Bottom panel: Densitometric analysis of Cdk1, cyclin B,
or PKM2 levels in U87 cells from Cdk1, cyclin B or PKM2 immunoprecipitates. (D) Western blot analysis of cyclin B1 in control and PKM2 knock-down U87, T98G
and LN319 cells. Densitometric analysis (bottom right panel) of western blot demonstrating levels of cyclin B1 in different experimental groups. *p<.05, n=3.

e6-e7-hTERT-Ras cells demonstrated strong interaction between
cdkl, cyclin B, and PKM2 between 2-15 hrs post-release
(Supplementary Figure 1C, right panel). In PKM2 knock-
down U87 cells, levels of total Cdkl were comparable to those
in control cells, while levels of cyclin B were approximately 30%
lower (Figures 2B, D). Minimal cyclin B, however, was found in
Cdkl immunoprecipitates, and very little Cdkl was found in
cyclin B immunoprecipitates, despite the presence of both
proteins in the lysates (Figure 2C, right panels). Similarly, in
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immunoprecipitates of Cdkl and cyclin B from unmodified
NHAs that express very little PKM2, minimal cyclin B or Cdk1
were found, respectively demonstrating little or no interactions
(Supplementary Figure 1C left panel). The inability of Cdkl-
cyclin B complexes to form in the absence of PKM2 suggested
that PKM2 might directly interact with one or both of these
molecules to facilitate the complex formation, activation, and cell
cycle progression. Consistent with this idea, PKM2 was found in
both Cdkl and cyclin B immunoprecipitates in U87 cells
(Figure 2C, left panels), PDX cell lines (GBM6 and GBM39)
(Supplementary Figure 1A), and positive control NHA-e6-e7-
hTERT-Ras cells ((Supplementary Figure 1C, right panel), and
conversely, cyclin B and Cdkl were found in PKM2
immunoprecipitates (Figure 2C, bottom left panel). PKM2,
however, was not associated with either cyclin B or Cdkl until
these proteins became associated with one another as the cells
began to approach mitosis and was not associated with either
protein in immunoprecipitates from cells undergoing mitosis
(M, Figures 2B, C, left panels). These results show that PKM2
physically interacts with a component of the Cdkl-cyclin B
complex and that this interaction facilities complex formation/
activation and entry into mitosis.

Pharmacologic Activation of PKM2

Suppresses Cdk1-CyclinB Complex Levels
Growth signaling and the subsequent metabolic needs of tumor
cells drive the conversion of PKM2 from a glycolytically active
tetramer to a glycolytically inactive dimer (10). To determine if
this conversion plays a role in Cdk1-cyclin B complex formation,
tumor cells were incubated with N,N’-diarylsulfonamide
NCGC00185916 (DASA-58), a PKM2 activator that binds
PKM2 subunits and promotes tetramer formation (7), after
which the cells were monitored for effect on the Cdk1-cyclin B
complex levels. PK activity was enhanced by exposures of DASA-
58 (40 UM, 3hrs) (Figure 3A) that also significantly increased the
tetrameric: dimeric PKM2 ratio (Figure 3B). While the exposure
of cells to DASA-58 had no effect on total amounts of Cdkl,
cyclin B or PKM2 in serum-starved cells 10 hrs after serum
addition (Figure 3C), it significantly decreased the amount of
cyclin B and Cdk1 that could be immunoprecipitated with PKM2
(Figure 3D, top panel), decreased the amount of PKM2 and
Cdkl that could be immunoprecipitated with cyclin B
(Figure 3D, bottom panel), and decreased Cdkl-cyclin B
activity in the PKM2 immunoprecipitates (Figure 3E). These
results show that the shift from tetrameric to dimeric PKM2
facilitates Cdkl-cyclin B complex formation, and that these
events can be inhibited by the pharmacologic activator of PKM2.

A Y15 Cdk1-PKM2 Interaction Facilitates
Cdk1-CyclinB Activation and Cell

Cycle Progression

PKM2 is a pY-binding protein, and although cyclin B has not
been reported to contain pY residues, Cdkl is phosphorylated on
Y15 by Weel (27, 28). We therefore considered the possibility
that PKM2 may drive cell cycle progression by binding Y15
phospho-Cdkl in Cdkl-cyclin B nuclear complexes and

facilitating their activation. To address this possibility, PKM2
WT and PKM2 knock-down cells were infected with constructs
encoding GFP-tagged wild-type Cdkl or forms of Cdkl mutated
to prevent inactivating phosphorylation at T14 (AY), Y15 (TF)
or both (AF) (27). The cells were then synchronized by serum
starvation, returned to serum-containing media, and harvested at
a time (10 hrs post serum addition) at which PKM2-Cdk1-cyclin
B complexes had formed in control cells. Nuclear
immunoprecipitated GFP-Cdkl complexes from control cells
expressing the GFP-tagged wild-type or AY Cdkl contained
PKM2 while those from cells expressing GFP-tagged Cdk1
proteins mutated to prevent phosphorylation at Y15 (TF or
AF) did not (Figure 4A). Furthermore, although the
immunoprecipitated Cdkl-cyclin B complexes from all groups
displayed Cdkl/cyclin B activity when PKM2 was present, only
those complexes which could not be inactivated by Y15
phosphorylation (TF, AF) retained activity in the absence of
PKM2 (Figure 4B), and only the TF and AF forms of Cdk1 could
rescue cells from PKM2 shRNA-induced growth suppression
(Figure 4C). Most of the PKM2-knockdown cells were unable to
progress into mitosis (phospho-histone H3.3+ cells) 12 hrs.
following release compared to control cells (Figure 4D), and
only the TF and AF forms of Cdkl could rescue cells to reenter
mitosis from PKM2 shRNA-induced G2-M arrest. The binding
of PKM2 to the Cdkl-cyclin B complex therefore is dependent
on the presence of Cdkl that can be phosphorylated at Y15, and
this PKM2-pY15Cdkl-cyclin B interaction appears critical for
subsequent Cdk1 activation.

PKM2 Uses Its pY-Binding Ability to
Facilitate Cdk1-CyclinB Activation and Cell
Cycle Progression

To better understand which PKM2 activities are critical for Y15
Cdkl binding, PKM2 knock-down cells were infected with
constructs encoding GFP-tagged wild-type Cdkl and either
shRNA-resistant murine WT PKM2 or forms of PKM2 with
altered pY binding or kinase activity; K433E, which lacks pY
binding but retains both protein kinase and pyruvate kinase
activities (12), R399E, which binds pY but because of reduced
ability to form tetramers has enhanced protein kinase activity and
reduced pyruvate kinase activity (10), or K367M, which retains pY
binding in the absence of protein kinase and pyruvate kinase
activities (9). The cells were then synchronized by serum
starvation, returned to serum-containing media, and harvested
at 10 hrs post serum addition, after which nuclear GFP (Cdk1)
immunoprecipitates were analyzed for the presence of GFP-Cdk1,
PKM2, cyclin B1, and Cdkl-cyclinB activity. Exogenous
expression of WT murine PKM2 (mM2) in cells in which
endogenous PKM2 expression was suppressed resulted in high
levels of GFP-immunoprecipitable Cdkl-cyclin B-PKM2
complexes (Figure 5A) and Cdkl-cyclin B activity relative to
cells lacking exogenous PKM2 expression (Figure 5B). Exogenous
expression of kinase-dead (K367) and protein kinase-enhanced
(R399) forms of PKM2 that, like WT PKM2 retained pY binding
also enhanced Cdkl-cyclin B-PKM2 complex formation and
Cdkl-cyclin B activity, while expression of the glycolytically
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FIGURE 3 | Pharmacologic activation of PKM2 suppresses Cdk1-cyclin B complex levels. (A) PK activity in U87 cells exposed to DASA-58 (0-100 uM, 3 hrs) as
measured by an in vitro PK assay. (B) Levels of tetrameric and dimeric PKM2 in chemically cross-linked lysates of U87, T98G, or LN319 cells10 hrs following release
from serum deprivation-induced arrest and incubated with vehicle (DMSO) (-) or DASA-58 (40 uM) 3hrs before harvest. The lower panel is the densitometric analysis
of the data in the upper panel displayed as the tetramer/dimer ratio, (C) Levels of PKM2, Cdk1, and cyclin B in vehicle(DMSO)(-) or DASA-58-treated (40 uM, 3 hrs)
U87, T98G, or LN319 cells from panel (B) (D) Levels of Cdk1, cyclin B1 and PKM2, in whole cell PKM2 (top) or cyclin B (bottom) immunoprecipitates from cells 10
hrs after release from serum deprivation-induced arrest and which were exposed to vehicle (DMSO) (-) or DASA-treated (40 uM) for the last three hrs of the study.
(E) Cdk1-cyclin B activity in lysates from panel (B) I:B, Immuno Blot; IP, immunoprecipitate. *p <.05, n=3.

active K433, which cannot bind pY, failed to do so (Figure 5B).
Consistent with this data, only the forms of PKM2 capable of
binding pY (mM2, K367, R399) could, independently of their
metabolic and protein kinase activities, reverse the
accumulation of cells in G2-M along with a slight increase in
GO0/G1 and S phase (Figure 5C), caused by PKM2 depletion.
Significantly less mitotic (phospho-histone H3.3+) cells in

PKM2 knock-down group were reversed by overexpressing
WT murine (mM2), kinase-dead (K367), and protein kinase-
enhanced (R399) forms but not with the form of PKM2 that
were unable to bind pY (Figure 5D). Collectively these results
show that dimeric PKM2 uses its pY-binding ability to increase
Cdkl-cyclin B activation to facilitate tumor cell entry into
mitosis (Figure 5E).
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PKM2 shRNA

DISCUSSION

Tumor cell growth requires co-ordination between the factors that
control metabolism and the factors that control cell cycle
progression. PKM2 is a key regulator of the cellular metabolic
state, and in response to growth factor signaling is converted from
a tetrameric pyruvate kinase to a dimeric/monomeric protein
kinase (10). This conversion conserves the intermediates of

glycolysis for biosynthesis, but also allows the protein kinase
activity of PKM2 to phosphorylate proteins that indirectly
regulate the transcription of growth-related genes (11). The
results presented here show that PKM2 acts more directly
and centrally on the cell cycle machinery than previously
suspected, binding independently of its kinase activity to Y15-
phosphorylated Cdkl in nuclear Cdkl-Cyclin B complexes to
facilitate complex activation and cell cycle progression. These
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FIGURE 5 | PKM2 uses its pY-binding ability to facilitate Cdk1-cyclin B activation and cell cycle progression (A) Levels of cyclin B1, PKM2, Cdk1, and (B) Cdk1-
cyclin B activity in nuclear GFP immunoprecipitates from PKM2 shRNA-expressing U87 cells expressing GFP-tagged WT Cdk1 and mouse WT (mM2) or R399E,
KB867M, or K433E forms of PKM2 measured 10 hrs after release of cells from serum deprivation-induced arrest. (C) FACS-based cell cycle distribution in U87 and
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likelihood of Cdk1 activation (4). Cdk1 activation allows the cellular metabolic state to match the cellular proliferative state.
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studies therefore directly link metabolic regulation to cell cycle
machinery and tumor cell growth.

In addition to revealing new PKM2 targets and functions, the
present work also identifies PKM2 as an integral component of
the Cdkl-cyclin B complex that controls progression into
mitosis. PKM2, preferentially in its dimeric form, appears in
complexes with Cdkl and cyclin B in a manner dependent on the
presence of a phosphorylatable Y15 Cdkl, and the ability of
PKM2 to bind pY-containing peptides. PKM2-containing
complexes appear as Cdkl and cyclin B assemble and become
activated in the nucleus approaching entry into mitosis, but are
not found in mitotic cells, presumably because in mitosis all
Cdkl1-cyclin B complexes are activated and pY15 Cdkl levels are
minimal (29). PKM2 also does not associate with Cdkl1 at early
time points following serum stimulation although it is unclear if
this is because of a lack pY15Cdk1-cyclin B complexes or a lack
of nuclear pY15Cdkl available for binding. Alternatively, the
generation of Y15Cdkl, the formation of Cdkl-cyclin B
complexes, and the binding of PKM2 may occur
simultaneously, although more detailed approaches would be
required to address this point. While these studies are the first to
show that a regulator of cellular metabolism is also an intimate
part of the Cdkl-cyclinB complex, the findings are consistent
with studies in which PKM2 and cyclin B were identified as
binding partners of Cdkl in post-mitotic Xenopus laevis oocytes,
but not in the same oocytes in M phase (30).

If PKM2 is an integral component of Cdkl-cyclin B complex,
how does its binding bring about an increase in Cdk1 activity and
changes in cell cycle progression? With the caveat that Cdkl
activation is an incompletely understood process, the present
results could be explained in three different but not mutually
exclusive ways. First, PKM2 binding to the Cdkl-cyclin B
complex could influence the activities of the enzymes (Cdc25C,
Cdk7, Weel, Mytl) that interact with the complex and lead to
Cdkl activation. In the present studies, however, PKM2
suppression had no effect on Cdk7 activity. Furthermore,
although Cdk1 inactivates Weel and causes nuclear retention
of Cdc25C (25, 30), these actions are a consequence of Cdkl
activation, and not likely an explanation for how PKM2 initiates
increases in Cdkl activity. Second, PKM2 binding to the Cdk1-
cyclin B complex may favor nuclear accumulation and
subsequent activation of the complex. Y15 phosphorylated
Cdkl-cyclin B complexes are in a state of constant flux
between the cytoplasm and the nucleus (31), and binding of
dimeric PKM2 in the nucleus could limit export and favor Cdk1
activation. Nuclear Cdkl-cyclin B complex levels, however, are
regulated primarily by nuclear import rather than nuclear export
(31), and as such it is unclear how primarily nuclear forms of
PKM2 could regulate the process, although this possibility
cannot formally be excluded. Finally, PKM2 may stabilize
nuclear pY15Cdkl-cyclin B complexes, making them more
likely to be acted upon by Cdk7 and/or Cdc25C. Cdk1 is T161
phosphorylated in the nucleus by Cdk7 simultaneously with its
binding to cyclin B, and the processes are mutually dependent

(32). Most nuclear Cdk1-cyclin B complexes in G2, however, are
phosphorylated at all three regulatory sites (14, 15, and 161),
suggesting that the removal of the T14 and Y15 inhibitory
phosphorylations from Cdkl represents the final activating
event (33). The observation that pT14 is removed before pY15
(34), coupled with the finding that PKM2 is needed to activate
only those forms of Cdkl that can be phosphorylated at Y15,
suggests that PKM2 binding and stabilization of the Cdk1-cyclin
B complex may allow Cdc25C more time for the specific removal
of pY15. It will be of interest to examine this process in more
detail, and to determine how it is accomplished in the absence of
PKM2 kinase activity.

In addition to adding to our understanding of the links
between metabolism, cell cycle regulation, and tumor cell
growth, the results and the model presented suggest new areas
of investigation. First, given the importance of the PKM2 pY
binding function, and the ability of DASA-58 to reduce Cdkl-
cyclin B complex formation, it will now be important to determine
how pharmacologic activation of PKM2 alters PKM2 localization
and pY binding. Similarly, although DASA-58 decreases Cdk1-
cyclin B complex formation in tumor cells, it does not under
normoxic conditions alter cell growth (7). It therefore appears
likely that additional undefined factors contribute to the regulation
of the Cdkl-cyclin B complex and the setting of the cellular
proliferative state. Although this present work defined PKM2 as an
integral component of the fundamental cell cycle regulatory
complex in gliomas, PKM2 is over-expressed in other types of
cancers, and most likely as like gliomas interaction of PKM2 with
Cdk1 may play an important role in cell cycle progression. Finally,
it will be important to validate the role of PKM2 in regulating
Cdkl-cyclinB activation in other tumor types and to define in
more detail how PKM2 binding contributes to Cdkl
activation, and perhaps more importantly, to determine if
molecules can be developed that alter the interaction and can be
used therapeutically to disrupt the elegant linkage between
metabolism and cell cycle regulation necessary for tumor
cell growth.
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