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brain tissue surrounding
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Cystic glioblastomas are aggressive primary brain tumors that may both destroy

and displace the surrounding brain tissue as they grow. The mechanisms

underlying these tumors’ destructive effect could include exposure of brain

tissue to tumor-derived cytokines, but quantitative cytokine data are lacking.

Here, we provide quantitative data on leukocyte markers and cytokines in the

cyst fluid from 21 cystic glioblastomas, which we compare to values in 13 brain

abscess pus samples. The concentration of macrophage/microglia markers

sCD163 and MCP-1 was higher in glioblastoma cyst fluid than in brain abscess

pus; lymphocyte marker sCD25 was similar in cyst fluid and pus, whereas

neutrophil marker myeloperoxidase was higher in pus. Median cytokine levels

in glioblastoma cyst fluid were high (pg/mL): TNF-a: 32, IL-6: 1064, IL-8:

23585, tissue factor: 28, the chemokine CXCL1: 639. These values were not

significantly different from values in pus, pointing to a highly pro-inflammatory

glioblastoma environment. In contrast, levels of IFN-g, IL-1b, IL-2, IL-4, IL-10,
IL-12, and IL-13 were higher in pus than in glioblastoma cyst fluid. Based on the

quantitative data, we show for the first time that the concentrations of

cytokines in glioblastoma cyst fluid correlate with blood leukocyte levels,

suggesting an important interaction between glioblastomas and the

circulation. Preoperative MRI of the cystic glioblastomas confirmed both

destruction and displacement of brain tissue, but none of the cytokine levels
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correlated with degree of brain tissue displacement or peri-tumoral edema, as

could be assessed by MRI. We conclude that cystic glioblastomas are highly

pro-inflammatory environments that interact with the circulation and that they

both displace and destroy brain tissue. These observations point to the need for

neuroprotective strategies in glioblastoma therapy, which could include an

anti-inflammatory approach.
KEYWORDS

glioblastoma, macrophage, cytokine, tumor microenvironment, brain abscess, pus,
inflammation, cyst fluid
Introduction

Glial progenitor cells may give rise to malignant tumors

ranging from the highly differentiated, low-grade astrocytomas

to the undifferentiated, rapidly growing glioblastomas (1, 2);

glioblastoma carries a median survival time of months only (3,

4). Because of the limitations to tumor expansion imposed by the

rigid skull, it is often assumed that glioblastomas grow by

destroying brain tissue (5–8) in addition to displacing it (4, 9).

Indeed, several lines of evidence point to a destructive effect of

glioblastomas on the surrounding brain tissue. Destruction of

white matter tracts (in which glioblastomas tend to reside) has

been shown with MRI-based diffusion tensor imaging (10), and

loss of the neuronal marker N-acetyl-aspartate from white

matter that has been infiltrated by glioblastoma has been

shown with magnetic resonance spectroscopy (11). In

agreement, glioblastoma patients have high circulating levels of

neurofilament light chain, a marker of neuronal damage (12).

Histologically, glioblastomas are seen to grow by invading the

surrounding brain tissue (1, 9, 13), but the original brain tissue is

hardly present within the tumor, in line with a destructive effect

of glioblastomas on the brain tissue that has been invaded. A

destructive or toxic effect of glioblastoma on neural cells has

been replicated experimentally by several research groups (14–

16). To our knowledge, no study has attempted to distinguish

between destruction and displacement of brain tissue on pre-

surgical MRIs of glioblastomas. This would be clinically valuable

information, which may help predict functional outcome after

surgery and thus guide patient information prior to surgery.

In principle, glioblastomas may cause destruction of normal

brain tissue through a variety of processes that encompass an

inflammatory response, physical strain due to the tissue

distortion caused by the tumor, ischemia due to compression

of vasculature or the inadequacy of the neovasculature

established in the course of tumor growth, and exposure of the

surrounding brain tissue to neuroactive or neurotoxic

compounds. The last decades have seen the identification of
02
several such glioblastoma-derived neuroactive compounds,

including various cytokines (17, 18), glutamate (15, 19, 20),

matrix metalloproteinases (21), hormones such as androgens,

insulin, and erythropoietin (22–24), micro-RNAs in

extracellular vesicles (25, 26), and extracellular nanotubes (27).

Thus, glioblastomas may influence the surrounding brain tissue

in a multi-modal fashion (25). However, the clinical importance

of the various factors is not fully known, in part because of the

practical difficulties of obtaining human material that allows not

only the detection of such compounds, but also their

quantification. One approach to solving this problem is offered

by the fact that glioblastomas may have cystic compartments

(28, 29). The cyst fluid is in close contact with both tumor cells

and the surrounding brain tissue (Figure 1). Cyst fluid is

aspirated during neurosurgery and lends itself to the

quantitative study of the glioblastoma environment.

Some aspects of the presumed neurotoxicity of glioblastomas

warrant mention. First, glioblastomas tend primarily to reside in,

and spread along, the white matter tracts of the brain (Figure 2;

30). Glioblastomas, therefore, would be expected to impact axons

or their myelinating oligodendroglia, the local fibrous astrocytes,

or white matter neurons (31, 32) in addition to neuronal cell

bodies in the cerebral cortex. In agreement, MRI-based studies

confirm a major effect of glioblastomas on white matter integrity

(10, 11). Second, analysis of the cyst fluid of cystic glioblastomas

has shown that the concentration of the neurotoxic compound

glutamate is highly variable between patients (33, 34). This

finding suggests that the effect of glioblastomas on their

surroundings, too, is variable. Third, glioblastomas harbor

macrophages, microglia, and lymphocytes that secrete cytokines

in addition to those secreted by the glioblastoma cells themselves

(18, 25, 35–37). Thus, tumor-associated leukocytes probably

contribute to the overall inflammatory effects of glioblastomas

on the surrounding brain tissue.

The present study addresses two related issues: 1) whether

glioblastomas entail inflammation that could mediate their
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destructive effect on the surrounding brain tissue, and 2)

whether a destructive effect of glioblastomas on the

surrounding brain tissue can be distinguished from

displacement of brain tissue on pre-surgery MRI. With respect

to the first issue, we analyzed cyst fluid from cystic glioblastomas

and obtained quantitative data on cytokine concentrations,

which we compared to cytokine concentrations in pus from

bacterial brain abscesses, a highly pro-inflammatory

environment. With respect to the second issue, we examined

MRIs of the cystic and solid glioblastomas to evaluate whether

displacement of brain tissue alone could account for the

accommodation of the tumors within the restricted space of

the skull, or whether destruction of brain tissue would be

necessary to accommodate the tumor. We complemented

these studies with an immunohistochemical analysis of cystic

glioblastomas to look for evidence of a destructive effect of

glioblastoma on brain tissue and to look for tumor-associated

leukocytes that could shed light on the presence of cytokines in

the cyst fluid of cystic glioblastomas.
Methods

Patients, neuroimaging, glioblastoma
cyst fluid, and brain abscess pus

We prospectively enrolled patients with cystic glioblastoma

and patients with bacterial brain abscess that underwent

neurosurgery at The Department of Neurosurgery, The

National Hospital, Oslo, Norway 2012-2021. All patients gave
Frontiers in Oncology 03
informed written consent to their participation. The study was

approved by The Regional Committees for Medical and Health

Research Ethics of Norway (concession# 2012/781 and 2012/

617). There were no exclusion criteria. The glioblastoma cysts

were identified as such intraoperatively from their highly fluid,

non-solid, content. Cystic glioblastomas are rather infrequent,

constituting approximately 8% of glioblastoma cases (28), hence

the long period of enrolment.

To see if destruction of surrounding brain tissue could be a

feature even of solid glioblastomas, we recruited 10 patients with

solid glioblastoma retrospectively 2019-2021. Solid tumors, too,

contained areas that could appear cystic or necrotic on MRI

(compare Figures 1, 2), but at surgery these areas were identified

as solid and necrotic.

During tumor surgery, tumor cyst fluid was aspirated into a

polypropylene syringe. The cyst fluid was rapidly centrifuged at

3000 g and 4°C for 10 minutes, and the supernatant was frozen

at -80°C until analysis. Brain abscess patients underwent pus

evacuation through a minimally invasive procedure as described

(38). Pus was rapidly centrifuged at 3000 g, and the supernatant

was frozen at -80°C until analysis.

The diagnosis of glioblastoma was based on histological

examination. Isocitrate dehydrogenase (IDH) mutation status

was available for all patients. Pus from brain abscess patients

underwent bacterial identification with polymerase chain reaction

(PCR) or culture methods as per hospital routine (39, 40).

For glioblastoma patients with cystic glioblastomas, number

of days of corticosteroid treatment to reduce brain edema (41)

was recorded together with blood leukocyte count on the day

of neurosurgery.
FIGURE 1

Cystic glioblastoma. Note how the cyst is in close contact with tumor tissue (white asterisk) and the surrounding brain tissue, both white matter
and overlying neocortex. Red asterisks indicate the zone of peri-tumoral edema.
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Cytokine measurements

The cytokines TNF-a, IFN-g, IL-1b, IL-2, IL-4, IL-6, IL-8,
IL-10, IL-12(p70), IL-13, MCP-1 (CCL2), the chemokine

CXCL1 (Groa), and tissue factor were analyzed with the U-

Plex Biomarker Group 1 (human) assay (Meso Scale

Diagnostics, Rockville, MD, USA), which yields quantitative

data on cytokine concentration in fluids. Simultaneously, some

leukocyte markers were analyzed: soluble CD163 (sCD163), a

marker of activated macrophages (42, 43), the soluble IL-2

receptor a-subunit, sCD25, a marker of lymphocytic activation

(44–46), and the neutrophil marker myeloperoxidase (MPO;

47). IL-1b, IL-2, IL-12, TNF-a, and IFN-g are considered typical

Th1 cytokines, whereas IL-4, IL-10, and IL-13 are considered

Th2 cytokines (48, 49). Tissue factor was analyzed as a pro-

inflammatory and pro-coagulant factor (50) that is highly

expressed in glioblastoma (51).
MRI-based evaluation of displacement
of brain tissue surrounding
the glioblastomas

All but one glioblastoma patient (who had cystic

glioblastoma) underwent pre-operative MRI, including T1-

weighted magnetization–prepared, rapid gradient echo

(MPRAGE) images before and after intravenous infusion of
Frontiers in Oncology 04
gadolinium-based contrast agent (Clariscan 279.3 mg/mL, 0.2

mL/kg bodyweight, GE Healthcare, USA) and T2-weighted

images. MRI was repeated days to weeks after surgery. Tumor

and cyst volumes were calculated semi-automatically from post

contrast T1-weighted images with the Smartbrush program

(Brainlab, Feldkirchen, Germany). This method provides a

minimum estimation of tumor volume (4, 52). The cystic

glioblastomas that underwent MRI were the same as those that

were analyzed with respect to cytokine content.

Degree of tissue displacement (mass effect) caused by the

tumors and cysts was evaluated by an experienced

neuroradiologist (see Acknowledgements) and classified as

minimal, moderate or pronounced based on the degree of

midline shift and compression of the cerebral ventricles and

subarachnoid spaces caused by the tumors (Figure 2). For

correlation assessments, the rating of mass effect (minimal,

moderate, pronounced) was converted to the values 1, 2, and

3, respectively. T2-weighted fluid-attenuated inversion recovery

(FLAIR) signal was used to evaluate peri-tumoral edema, which

was also graded as minimal, moderate, or pronounced

(converted to 1, 2, and 3, respectively, according to 53).

Hence, the evaluation of whether tumors had caused tissue

destruction was based on a relative lack of mass effect in spite

of a substantial tumor volume. Post-operative MRIs were

included to evaluate the impression of a destructive effect of

the tumors on the surrounding tissue, keeping in mind that

tumor resection implies the removal of some of the brain tissue

surrounding the tumor and that post-surgery radiation therapy

may cause some degree of gliosis and tissue retraction. However,

because the last author (DD) performed the surgeries, we know

that the resection of surrounding brain tissue was limited.
Histology

Tissue was removed from various parts of the glioblastomas

during surgery, among them border zones between tumor and

surrounding brain tissue, both white matter and neocortex.

Tissue samples were fixed in 4% formaldehyde and embedded

in paraffin. Paraffin sections were investigated with hematoxylin

and eosin staining and with immunohistochemistry. For

immunohistochemistry, we used antibodies against glial

fibrillary acidic protein (GFAP), which stains glioblastoma

cells (Glostrup, DK; product # M0761). Antibodies for

neuronal markers were against neurofilament heavy chain

(non-phosphorylated; Dako product # M0762), and the

neuronal nuclear protein NeuN (Millipore-Chem; Merck,

Darmstadt, Germany; product # MAB377, clone A60). For

visualisation of macrophages and activated microglia we used

antibodies against CD68 (DAKO product # M0814). For

visualisation of T-lymphocytes we used antibodies against

CD3 (Leica Biosystem, UK; product # CD3). For visualization

of B-lymphocytes we used antibodies against CD20 (Dako
FIGURE 2

Solid glioblastoma in the left occipital lobe. Note how the tumor
affects white matter (compare with contralateral side) and
produces a mass effect with obliteration of the subarachnoidal
spaces of the ipsilateral sulci (arrows). Centrally, this tumor has
an area of necrosis (asterisk), which is not cystic.
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product # M0755). Secondary antibodies were from rabbit

(Dako). These antigens have been used previously as specific

markers for glioblastoma-associated leukocytes (36).
Data presentation and statistics

Data on cytokine concentrations and volumes of tumors,

cysts, and brain abscesses are given as absolute values. Data were

analyzed with respect to normality with the Kolmogorov-

Smirnov test. Differences between cytokine levels in

glioblastoma cyst fluid and brain abscess pus were analyzed

with the Mann-Whitney U test or the Student’s t-test, as

appropriate. Correlations were analyzed with Pearson’s or

Spearman’s test, as appropriate. P-values < 0.05 were

considered statistically significant.
Results

Patients, glioblastomas, and
brain abscesses

Twenty-one patients with cystic glioblastoma, four women

and 17 men, aged 26-78 years (median age 65 years) had tumors

in any of the cerebral lobes. Three out of the 21 patients with

cystic glioblastoma had tumors with IDH mutations; according

to the recent classification system (2) these are WHO grade IV

astrocytomas, but are included in this series as they were

considered glioblastomas at the time of diagnosis and were

macroscopically indistinguishable from the rest of the group.

Ten patients with solid glioblastoma, five women and five men,

aged 41-78 years (median 59 years), had tumors in any of the

cerebral lobes; none of these tumors had IDH mutations.

The cyst fluid that was aspirated from the glioblastoma cysts

was highly fluid, transparent and of a color that varied from faint

yellowish to colorless. Centrifugation of cyst fluid samples (2-5 mL)

caused the precipitation of a few cells that could be seen by light

microscopy; these cells, which constituted a minimal fraction of the

cyst fluid, were not characterized further. All but one of the

glioblastoma patients received corticosteroid treatment for 1-83

days (median 14 days) to reduce peri-tumoral edema. Doses were

initially 16 mg methylprednisolone four times per day; these were

gradually reduced to 4 mg four times per day, the rate of dose

reduction depending on the severity of symptoms and the clinical

response to treatment. After tumor resection, all patients received

adjuvant temozolomide treatment and radiation therapy (3).

Thirteen patients, three women and ten men, aged 24-72

years (median age 53 years) had bacterial brain abscesses in any

of the cerebral lobes. Abscess volumes were 2.7-42 cm3 (median

21 cm3). The aspirated pus was highly viscous, opaque and of a

color that varied from yellowish to brown. Microscopy prior to

centrifugation showed a high density of leukocytes, mostly
Frontiers in Oncology 05
neutrophils, which constituted >50% of the pus volume. PCR

or bacterial culture identified Streptococcus intermedius in eight

patients, Fusobacterium nucleatum in three, Aggregatibacter

aphrophilus in two, and Parvimonas micra, Porphyromonas

endodontalis, Propionebacterium acnes, and b-hemolytic

streptococci group G in one patient each. (In two pus samples,

three bacterial species were identified: F. nucleatum, P. micra,

and P. acnes in one; S. intermedius, A. aphrophilus, and P.

endodontalis in another). The bacterial identity did not correlate

with abscess volumes or cell marker or cytokine levels.
Cell markers and cytokine levels in
glioblastoma cyst fluid and brain
abscess pus

In glioblastoma cyst fluid, the concentration of sCD163, a

marker of activated macrophages and microglia (42, 43) was

significantly higher than in brain abscess pus (Table 1). This was

true also for MCP-1, a pro-inflammatory chemokine that is

secreted mostly by monocytes, macrophages, and microglia (54).

The level of sCD25, a lymphocyte marker (44–46), was not

significantly different in glioblastoma cyst fluid and brain abscess

pus. In contrast, the concentration of MPO, which is released

from neutrophils (47), was much higher in brain abscess pus, in

keeping with pus being dominated by neutrophils and in

agreement with a previous study showing that MPO is a

dominant protein in brain abscess pus (38). Similarly, the

concentration of IL-1b, which may be released from both

neutrophils and macrophages (55), was much higher in brain

abscess pus than in glioblastoma cyst fluid. Histological analysis

of tissue from cystic glioblastomas showed the presence of

macrophages and lymphocytes in glioblastoma and their

proximity to the cyst fluid (Figure 3; se images C, D, and

E, specifically).

Cytokine levels were highly variable across the 21 glioblastoma

cyst fluid samples (Table 1). For instance, levels of MCP-1, IL-6, IL-

8, and the chemokine CXCL1 varied by >1000-fold. TNF-a levels

varied similarly, from not being detectable in one patient to the

maximum value being approximately 25 times higher than the

median value. The glioblastoma cytokine levels correlated positively

with one another (Table 2), reflecting that cytokine levels tended

overall to be high, medium, or low.

In spite of the great variability in cytokine concentration,

glioblastoma cyst fluid levels of TNF-a, IL-6, IL-8, and CXCL1

were not significantly different from those in brain abscess pus,

and, as stated above, the level of MCP-1 was significantly higher

in cyst fluid, all indicative of a highly pro-inflammatory

glioblastoma environment (Table 1). The levels of IFN-g, IL-
1b, IL-2, IL-4, IL-10, IL-12, and IL-13, in contrast, were

significantly higher in pus than in cyst fluid. The level of tissue

factor, a non-cytokine pro-inflammatory and pro-coagulant

compound, which may stimulate the release of cytokines such
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as IL-8 and the chemokine CXCL1 (50), was not significantly

different in glioblastoma cyst fluid and brain abscess pus.

The three patients whose tumors harbored IDH mutations

did not stand out in any way with respect to cyst fluid cytokine

levels. For instance, their level of tissue factor, which reportedly

is lower in tumors bearing IDH mutations (50), was 25, 46, and

89 pg/mL, respectively, which was at, or above, the median value

for the group as a whole (Table 1).

The levels of several cytokines in glioblastoma cyst fluid

correlated with blood leukocyte count (Table 3). The level of IL-

10 in glioblastoma cyst fluid correlated with the number of days

on steroid treatment (r=0.66; p=0.0015) in line with previous

studies (57, 58); for the other cytokines, including the other Th2

type cytokines IL-4 and IL-13 (see Methods, section Cytokine

measurements), there was no correlation with number of days of

corticosteroid treatment (r values from -0.27 to 0.05; p values

0.23-0.80). Similarly, there was no correlation between number

of days of corticosteroid treatment and blood leukocyte levels

(r= -0.11; p=0.6). It should be kept in mind, however, that the

dose of methylprednisolone was not the same throughout the

treatment period (see Section Results, Patients, glioblastomas,

and brain abscesses), which could obscure correlations with

corticosteroid treatment.

Median survival for the whole patient group was 18.5

months (range 2-100). Two patients, whose tumors carried

IDH mutations survived for 81 and 100 months; one patient,
Frontiers in Oncology 06
whose glioblastoma did not carry an IDH mutation, survived for

85 months. When patients carrying IDH mutation were

excluded, median survival was 17.5 months (range 2-85).

There were no correlations between the level of any cytokine

and survival, whether or not patients whose tumors carried IDH

mutations were excluded (r= -0.22 – 0.28; p>0.2).
Glioblastoma volumes and assessment of
displacement (mass effect) vs.
destruction of surrounding brain tissue

Pre-operativeMRIs were available for 20 out of the 21 patients

with cystic glioblastomas that were analyzed with respect to cyst

fluid cytokine content (the last patient underwent pre-operative

CT only). Cyst volumes were 5-60 cm3 (median 28 cm3), whereas

the volume of tumor tissue was 3.4-78 cm3 (median 19 cm3). The

cyst volumes constituted 16-83% of the total tumor (solid tumor +

cyst) with a median value of 48%.

In the patients with cystic glioblastomas, mass effect

correlated with cyst volume (r=0.59; p=0.0079) and with

tumor volume (r=0.47; p=0.045). In three of the 20 patients,

mass effect was deemed minimal, in eight it was moderate, and

in nine it was pronounced. In the patients with minimal and

moderate mass effect, the relatively low degree of tissue

displacement, in spite of substantial tumor and cyst volumes,
TABLE 1 Cell markers and cytokines in glioblastoma cyst fluid and brain abscess pus.

Glioblastoma (n=21) Brain abscess (n=13)

Median Min – Max Median Min – Max

sCD163 ng/mL 1874* 124 – 12281 88 6 – 2635

sCD25 pg/mL 1587 113 – 10910 550 232 – 9324

MPO µg/mL 0.69*** 0.03 - 29.2 >180 46 – >180

MCP-1 pg/mL 8898* 7 – 143652 433 72 – 38733

TNF-a pg/mL 32* n.d. – 1020 62 31 – 99

IFN-g pg/mL 7*** n.d. – 51 48 n.d. – 5947

IL-1b pg/mL 13*** n.d. – 194 9296 103 – 19611

IL-2 pg/mL 5*** n.d. – 19 24 12 – 55

IL-4 pg/mL 1* n.d. – 9 4 2 – 29

IL-6 pg/mL 1064 2 – 28921 178 66 – 32495

IL-8 pg/mL 23585 1 – 87416 26272 21153 – 27319

IL-10 pg/mL 4*** n.d. – 18 11 6 – 26

IL-12 pg/mL 3* n.d. – 17 8 2 – 65

IL-13 pg/mL 37*** n.d. – 123 102 49 – 188

CXCL1 pg/mL 639 3 – 12701 722 33 – 13077

TF pg/mL 26 1.1 – 508 11 0.4 – 114
f

Patients with cystic glioblastoma (n=21) or bacterial brain abscess (n=13) underwent neurosurgery with drainage of glioblastoma cyst fluid or brain abscess pus, which were analyzed for
cytokines. sCD163 values are ng/mL, MPO values are µg/mL, the other values are pg/mL. Data are median, minimum, and maximum values. Asterisks: significantly different from
corresponding values in brain abscess pus; *: p<0.05, **: p<0.01, ***: p<0.001 (Mann-Whitney U test or Student’s t-test, as appropriate). MPO levels exceeded maximum detectable value
(180 µg/mL) even after 1:5 sample dilution, hence the use of “>180 µg/mL” in the table; this was the value recorded in 8 out of 13 patients. IFN, interferon, IL, interleukin; MCP, monocyte
chemoattractant protein; MPO, myeloperoxidase; n.d., not detectable; TNF, tumor necrosis factor; TF, tissue factor. In calculating median values non-detectable levels were given a zero
value. Bolds are correlation coefficients.
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FIGURE 3

Neuropathological analysis of cystic glioblastoma. (A) Hematoxylin and eosin staining of a representative biopsy reveals intratumoral cysts.
(B) Glioblastoma cells show strong immunoreactivity (brown color) for GFAP. (C) Anti-CD68 antibodies label macrophages and microglia cells
(dark brown cells). The areas of the section without solid tissue represent cyst lumen. (D) Anti-CD3 antibodies label T-lymphocytes (dark brown
cells). The areas of the section without solid tissue represent cyst lumen. (E) Anti-CD20 antibodies label immunoreactive B-lymphocytes (dark
brown cells). The areas of the section without solid tissue represent cyst lumen. (F) The infiltrative growth pattern of the glioblastoma cells in
white matter is evident among the axons that are stained dark brown for neurofilament heavy chain. (G) Glioblastoma cells infiltrate neocortical
tissue where neurons are stained dark brown for NeuN. (H) Hematoxylin and eosin staining of neocortex shows damaged neurons (white
arrowheads) with shrunken, triangular appearance and condensed chromatin. Prominent satellitosis (56) can be seen (black arrow). Please note
the proximity of tumor-associated leukocytes to the cyst lumen (C–E). Note also how macrophages and lymphocytes may both be scattered
throughout the tumor and appear in groups (C–E) and how neurons (brown nuclei) embedded among tumor cells (blue nuclei) appear pycnotic
in the center of (G).
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was consistent with some brain tissue having been destroyed by

tumor growth (Figure 4). In some patients, peri-tumoral edema

contributed visibly to whatever mass effect there was

(Figures 4C, E), but peri-tumoral edema and mass effect were

not correlated in the group as a whole (r=0.15; p=0.55).

Involvement of the neocortex could be seen in some patients

with cystic glioblastomas (Figures 4C, E, G); this was also seen

histologically (Figures 3G, H).

There were no significant correlations between mass effect

on the one hand and cyst fluid levels of leukocyte markers or

cytokines on the other hand (r values from -0.35 to -0.02; p

values 0.15-0.95). Similarly, there were no significant

correlations between degree of peri-tumoral edema as seen on

T2-weighted FLAIR MRI on the one hand and levels of

leukocyte markers or cytokines on the other (r values from

-0.16 to 0.05; p values 0.52-0.98).

The contrast-enhancing component of solid glioblastomas

(n=10) measured 1-58 cm3 (median volume 16 cm3).

Displacement of brain tissue (mass effect) correlated with tumor

volume (r=0.65; p=0.041). However, in five of the 10 patients,

mass effect of the tumor was deemed minimal, in four it was

moderate, and in one it was pronounced. In some patients with

minimal mass effect, the relative absence of displacement of brain

tissue in spite of a substantial tumor size appeared consistent with

the notion that some brain tissue had been destroyed due to tumor
Frontiers in Oncology 08
growth (Figure 5). In some patients, the involvement of the

neocortex, whether over the brain convexities (Figures 5A, G)

or parasagittally (Figures 5C, E), was apparent on MRI.

Histological analysis of cystic glioblastomas showed tumor

cell infiltration of white matter and neocortex (Figures 3F, G).

Neocortical neurons appeared damaged (Figure 3H). Although

these histological images do not prove the neurotoxicity of

glioblastoma cells in human brain, they illustrate the proximity

of tumor cells to vulnerable neurons.
Assessment of post-surgery MRIs in
glioblastoma patients

MRI performed days to weeks after surgical removal of the

glioblastomas showed the presence of a resection cavity in

patients with cystic or solid glioblastomas (Figures 4H, I;

Figures 5B, D, F, H). In some patients, the loss of neocortical

tissue was evident after tumor resection, whether over the brain

convexities (Figures 4B, D, F, H, I; Figures 5B, H), or

parasagittally (Figures 4H, I; Figures 5D, F). In some patients,

loss of brain tissue was seen as tissue retraction leading to

enlargement of the lateral ventricles (Figure 4F). These

observations were a further suggestion that some brain tissue

had been destroyed by the glioblastomas.
TABLE 3 Correlations between blood leukocyte count and levels of cell markers and cytokines in glioblastoma cyst fluid.

sCD163 sCD25 MPO MCP-1 TNF-a IFN-g IL-1b IL-2

0.40 0.52
p=0.017

0.56
p=0.013

0.44
p=0.049

0.62
0.0027

0.47
p=0.029

0.43
p=0.0052

0.51
p=0.019

IL-4 IL-6 IL-8 IL-10 IL-12 IL-13 CXCL1 TF

0.37 0.43 0.61
p=0.0031

0.44
p=0.044

0.38 0.38 0.63
p=0.0025

-0.001
frontie
Patients with cystic glioblastoma (n=21) underwent neurosurgery with drainage of cyst fluid. Data are correlation coefficients (Pearson’s or Spearman’s, as appropriate) and corresponding p-values
below 0.05. IFN, interferon; IL, interleukin; MCP, monocyte chemoattractant protein; MPO, myeloperoxidase; TNF, tumor necrosis factor; TF, tissue factor. Bolds are median values.
TABLE 2 Correlations between levels of some cytokines and sCD25 in glioblastoma cyst fluid.

IL-8 IL-6 TNF-a CXCL1 sCD25

MCP-1 0.76
p=5x10-5

0.69
0.00049

0.56
p=0.0085

0.62
p=0.0025

0.70
p=0.00037

IL-8 0.81
p=10-5

0.68
p=0.00066

0.71
p=0.00029

0.63
p=0.00020

IL-6 0.71
p=0.00033

0.82
p<10-10

0.61
p=0.0037

TNF-a 0.85
p<10-10

0.70
p=0.00044

CXCL1 0.59
p=0.0048
Patients with cystic glioblastoma (n=21) underwent neurosurgery with drainage of cyst fluid. Data are Spearman’s correlation coefficients and corresponding p-values. The positive correlation
indicates that inflammatory activity was overall high, medium or low. IL, interleukin; MCP, monocyte chemoattractant protein; TNF, tumor necrosis factor. Bolds are correlation coefficients.
rsin.org

https://doi.org/10.3389/fonc.2022.846674
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hassel et al. 10.3389/fonc.2022.846674
Discussion

High, but variable concentrations of
pro-inflammatory cytokines in the
glioblastoma environment. Possible
impact on the surrounding brain tissue

We report here on concentrations of pro-inflammatory

cytokines as they would appear in the microenvironment of

cystic glioblastomas and the surrounding brain tissue. In general,
Frontiers in Oncology 09
cytokine levels were high. The median concentrations of TNF-a,
IL-6, IL-8, MCP-1, and the chemokine CXCL1 in glioblastoma

cyst fluid were far higher than previously published serum values

for SARS covid-19 patients, patients with sepsis, and healthy

controls (59–66). The values reported here are similar to CSF

values after intracerebral and intraventricular hemorrhage, an

acutely inflammatory condition (67). The conclusion that pro-

inflammatory markers are high in the glioblastoma

microenvironment was corroborated by the comparison with

pus from bacterial brain abscesses, a highly pro-inflammatory
FIGURE 4

Four cystic glioblastomas before and after tumor surgery. T1
weighted MPRAGE MRIs after intravenous injection of
gadolinium-based contrast medium (which gives the ring-
formed bright signal in most images), except in D and G, which
are T2-weighted and T2-weighted FLAIR, respectively. Images
(A, C, E, G) show pre-surgical MRIs. Note the modest
displacement of surrounding brain tissue (compare with
contralateral side). Images (B, D, F, H, I) show MRIs after 240,
295, 330, 39 days, and 45 months, respectively. Tumors in
images (A, C) were assessed as having minimal mass effect,
tumors in images (E, G) had pronounced mass effect. Note the
absence of brain tissue where the tumor and cyst resided; this
comprises white matter and adjacent neocortex.
FIGURE 5

Four solid glioblastomas before and after tumor surgery. T1-
weighted MPRAGE MRIs were obtained after intravenous
injection of gadolinium-based contrast medium (which gives a
bright, ring-formed signal in most images). Images (A, C, E, G)
show pre-surgical MRIs. Tumors in images (A, C) were assessed
as having minimal mass effect. Note the modest displacement of
surrounding brain tissue (compare with contralateral side).
Tumors in images (E, G) were assessed as having moderate and
pronounced mass effect, respectively. Images (B, D, F, H) show
MRIs after 400, 167, 26, and 4 days, respectively. Note the
absence of brain tissue where the tumor resided. This includes
both white matter and the overlying neocortex.
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environment: glioblastoma cyst fluid had levels of TNFa, IL-6,
MCP-1, CXCL1, sCD163, sCD25, and tissue factor that were

similar to or higher than those in pus, although the level of

several other cytokines was higher in pus. The levels of MCP-1,

IL6 and IL-8 in glioblastoma cyst fluid in the present study were

similar to values reported previously in glioblastoma cyst fluid

(Table 4); as can be seen from the table, some other

inflammation-related proteins have also been detected in

glioblastoma cyst fluid. However, in spite of the usefulness of

analyzing glioblastoma cyst fluid for quantitative data on

cytokines and related proteins, relatively few studies have been

performed on this fluid for the last 30 years.

The high level of TNF-a in brain abscess pus was similar to

that reported previously by Bajpai et al. (78). The importance of

TNF-a, IL-6, and other cytokines for the acute host response

against severe bacterial brain infection has been documented in

experimental studies (79–81). The high concentration of these

cytokines in glioblastoma cyst fluid is all the more remarkable.

We found that the levels of several cytokines in glioblastoma

cyst fluid correlated with blood leukocyte counts. At present, we

cannot say whether this correlation reflected systemic effects of

the glioblastomas or, vice versa, that a high blood level of

leukocytes leads to a high number of leukocytes entering the

glioblastomas with ensuing high levels of cytokines. In either

case, this observation may point to an important interaction

between glioblastomas and the circulation.

A purpose of the present study was to investigate whether an

inflammatory effect of glioblastomas could contribute to a

destructive effect on the surrounding brain tissue. Indeed, the

concentrations of inflammatory markers in glioblastoma cyst

fluid pointed to a highly pro-inflammatory and potentially

destructive environment. However, the concentrations of
Frontiers in Oncology 10
cytokines needed to affect brain tissue adversely is currently

not known. Most cytokines have been reported to be involved in

both neurodegenerative and regenerative processes. IL-8

receptors have been identified on axons in human brain (82),

and the CXCL1 receptor, CXCR2, is expressed in CNS

oligodendrocytes (83), which would allow for an inflammatory

response in white matter to the high levels of IL-8 and CXCL1 in

glioblastoma cyst fluid. However, CXCL1, which is formed by

glioblastoma cells, leukocytes and astrocytes alike, and which

could be important for tumor immunogenicity (84), may also

have neuroprotective effects (85, 86). Overexpression of IL-6 in

the brain causes neurodegeneration (87), but other studies have

suggested a physiological role for IL-6 in the stabilisation of CNS

axonal microtubules (88). Similarly, TNF-a may cause neuronal

and oligodendroglial dysfunction and death, while at the same

time acting as a trophic factor for brain cells (89), and the pro-

inflammatory cytokines IL-6 and MCP-1 have roles in axonal

regeneration after mechanical damage to the spinal cord (90–

93). Therefore, we are not able to delineate the exact effects of the

various cytokines, or their combined action, on the brain tissue

surrounding glioblastomas. More research is needed on the

effects of cytokines on the function, survival, and degeneration

of the brain tissue surrounding a glioblastoma. There was,

however, a striking variability in cytokine levels among

patients. Thus, it may be assumed that the degree of

inflammation probably varies between glioblastomas and that

inflammation, to the extent that it affects normal brain tissue or

tumor growth (25, 35, 37), does so differentially.

Some of the proteins detected in this study are considered to

be fairly cell-specific: sCD163 and MCP-1 are markers of

activated macrophages and microglia (42, 43, 54), sCD25 is a

marker of activated lymphocytes (44–46), and MPO is primarily
TABLE 4 Inflammation-related proteins identified in cyst fluid from cystic glioblastomas, as reported in the literature.

Pro-inflammatory proteins in cyst fluid Concentration in cyst fluid Method Authors and publication dates

TGF-b2 n.d. SDS-PAGE Bodmer et al., 1991 (68)

IL-8 612-7,787 pg/mL ELISA Van Meir et al., 1992 (69)

MCP-1 2,400-15,000 pg/mL ELISA Kuratsu et al., 1993 (70)

VEGF 2,252- 1263,000 pg/mL ELISA Takano et al., 1996 (71);
Stockhammer et al., 2000 (72)

Tenascin-C 150-1,368 ng/mL SDS-PAGE Jallo et al., 1997 (73)

MIP-1b 0-50 pg/mL ELISA Ishii et al., 1998 (74)

Ferritin, basigin, TNF n.d. SELDI-TOF Hoelscher et al., 2013 (75)

IL-6 Approx. 500 pg/mL ELISA Shen et al., 2014 (76)

L1CAM 6,118 ± 4,095 ng/mL ELISA Wachowiak et al., 2018 (77)

Bradykinin, TREM2, ALCAM, and more n.d. LC-MS/MS Dahlberg et al., 2022 (24)
The table shows, in chronological order, various inflammation-related proteins that have been identified in glioblastoma cyst fluid, their concentrations, the method used for detection, and
the year of publication. Please note that in the Kuratsu etal. (70) paper, cyst fluid was from patients with anaplastic astrocytoma. The review by Shen etal. (76) includes data from 8 studies
published 2003-2013. The number of cyst fluids analyzed in each study varied base on 1 to 25.
ALCAM, Activated leukocyte cell adhesion molecule; CAM, Cell adhesion molecule; ELISA, Enzyme-linked immunosorbent assay; IL, Interleukin; LC, Liquid chromatography; MCP,
Monocyte chemoattractant protein; MIP, Macrophage inflammatory protein; MS, Mass spectrometry; n.d., Not determined; SELDI-TOF, Surface-enhanced laser desorption ionization time
of flight; SDS-PAGE, Sodium dodecyl sulfate–polyacrylamide gel electrophoresis; TGF, Transforming growth factor; TNF, Tumor necrosis factor; TREM, Triggering receptor expressed on
myeloid cells; VEGF, Vascular endothelial growth factor.
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a marker of neutrophils (47). The high levels of these proteins

suggested the presence of the corresponding leukocytes in

glioblastomas or their cysts. Histologic analysis confirmed the

presence of macrophages and/or microglia and lymphocytes in

cystic glioblastomas, in agreement with previous studies in solid

glioblastomas (18, 36).

The degree of edema surrounding a glioblastoma has been

proposed as a predictor of poor survival (94, 95). The edema has

been ascribed to the production of vascular endothelial growth

factor (VEGF) by glioblastomas (96). In the present study, the

high concentrations of various cytokines in the glioblastoma

environment likely contributed to capillary leakage and edema

formation. For instance, TNF-a, IL-1b, IL-6, and IL-8 have all

been shown or suggested to mediate brain edema formation

independently of one another (97–101).
The glioblastoma-mediated destruction
of the surrounding brain tissue may be
assessed qualitatively on pre-surgery MRI

MRI observations in the present study complement previous

studies on the destructive effect of glioblastoma on the

surrounding brain tissue. This destructive effect has been

documented by magnetic resonance spectroscopy and diffusion

tensor imaging of the brain (10, 11), by the high circulating levels

of neurofilament in glioblastoma patients (12) and in

experimental studies (14–16). In the present study, a

destructive effect of glioblastoma was evident, because

displacement alone (mass effect) could not account for the

accommodation of the tumor within the brain tissue. This

observations points to the need for neuroprotective strategies

in glioblastoma therapy. Previously, glutamate receptor blocker

perampanel has received interest as a drug that could reduce

tumor growth and at the same time act as a neuroprotective

agent, as has been shown in experimental animal studies (102),

but the possibility of neuroprotection through antiepileptic drug

treatment has been questioned (103). The finding in the present

study of very high concentrations of cytokines in the cyst fluid of

cystic glioblastomas points to immunomodulation as another

possible neuroprotective approach.

Our assessment of the destruction caused by glioblastoma

was qualitative. Future studies are needed to develop a

quanti tat ive method for MRI-based assessment of

glioblastoma’s destructive effect in human brain.

The destructive process seemed to affect both white matter

and the overlying neocortex. Several mechanisms could underlie

a destructive process in the brain tissue surrounding the

glioblastoma, but, presumably, these mechanisms are

somewhat different for grey and white structures. A high

inflammatory activity could be destructive in both types of

brain tissue, whereas glutamate, which may be released by

glioblastomas (15, 19, 20), would probably affect cortical
Frontiers in Oncology 11
neurons with glutamate receptors more than white matter. In

contrast, physical strain, including stretching and distortion of

brain tissue, could have a more pronounced effect on white

matter axons. All destructive mechanisms are likely to produce

secondary inflammatory responses that could be reflected in the

cyst fluid levels of cytokines.

We did not see any correlation between cyst fluid levels of

cytokines on the one hand and MRI-based assessment of

displacement of brain tissue or peri-tumoral edema on the

other. It remains to be investigated, with a method for

quantitative assessment of brain tissue destruction, whether

glioblastoma cytokine concentrations correlate with

destruction of brain tissue.
Limitations

There are limitations to the comparison of glioblastoma cyst

fluid to brain abscess pus with respect to cytokine levels. Even

though brain abscess pus is a highly pro-inflammatory

environment with a high content of neutrophi l s ,

myeloperoxidase, and various cytokines (38, 78), it is also a

hostile environment with low concentration of glucose, low pH,

and high ammonia levels (39, 104). These conditions may be

unfavorable for cytokine formation. Further, differences in

cytokine levels between glioblastoma cyst fluid and brain

abscess pus may reflect differences in cell types and cell

density in the two fluids (34, 104). However, in spite of these

limitations, it appears clear that the level of pro-inflammatory

factors is high in both fluids.

We did not characterize our tumor samples with respect to

genetic alterations that are common in glioblastomas: TERT

promoter mutation, EGFR amplification, or gain of

chromosome 7 combined with loss of chromosome 10 (2), and

so we do not know whether these genetic alterations would

influence the inflammatory environment of glioblastoma.

Most glioblastomas are not cystic (28), and we cannot say

whether the concentrations of cytokines in glioblastoma cyst

fluid would be similar in solid tumors. Cytokines are assumed to

contribute to the growth of solid glioblastomas (18, 25, 35, 37),

but their concentration in the extracellular fluid of solid tumors

remains a topic for further research.

The assessment of the destruction of brain tissue caused by

glioblastoma was done in a qualitative manner by an

experienced neuroradiologist. We have not presented a

method for quantitative determination of destruction of the

brain tissue surrounding a glioblastoma. In the absence of a

quantitative method, we were unable to look for correlations

between cyst fluid cytokine levels and degree of destruction of

brain tissue. Such a method could be a valuable tool for

prognostic evaluation of glioblastoma surgery, as displaced

brain tissue would presumably regain some function after

surgery, whereas destroyed tissue would not.
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We did not follow our patients with MRIs to see if cytokine

levels in glioblastoma cyst fluid correlated with formation of

drop metastases or with spread of the tumor within the brain

tissue. Cytokines probably have an important role in the

proliferation and migration of glioblastomas (17, 18). The lack

of a correlation between the levels of the measured cytokines on

the one hand and patient survival on the other could suggest that

any correlation between cytokine levels and glioblastoma

migration and metastasis relies on cytokines other than the

ones investigated in the present study.

We have not presented data on the expression of cytokine

receptors in the brain tissue surrounding the glioblastomas.

Expression of cytokine receptors would be a prerequisite for

glioblastoma-derived cytokines to cause tissue damage.

Investigation of cytokine receptor expression in the

peri-tumoral brain tissue remains a task for future

histopathological research.
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signaling mediates neurodegeneration in glioma. Life Sci Alliance (2021) 4(3):
e202000693. doi: 10.26508/lsa.202000693

24. Dahlberg D, Rummel J, Distante S, De Souza GA, Stensland ME, Mariussen
E, et al. Glioblastoma microenvironment contains multiple hormonal and non-
hormonal growth-stimulating factors. Fluids Barriers CNS (2022) 19(1):45.
doi: 10.1186/s12987-022-00333-z

25. Broekman ML, Maas SLN, Abels ER, Mempel TR, Krichevsky AM,
Breakefield XO. Multidimensional communication in the microenvirons of
glioblastoma. Nat Rev Neurol (2018) 14(8):482–95. doi: 10.1038/s41582-018-
0025-8

26. de Mooij T, Peterson TE, Evans J, McCutcheon B, Parney IF. Short non-
coding RNA sequencing of glioblastoma extracellular vesicles. J Neurooncol (2020)
146(2):253–63. doi: 10.1007/s11060-019-03384-9

27. Valdebenito S, Lou E, Baldoni J, Okafo G, Eugenin E. The novel roles of
connexin channels and tunneling nanotubes in cancer pathogenesis. Int J Mol Sci
(2018) 19(5):1270. doi: 10.3390/ijms19051270

28. Sarmiento JM, Nuño M, Ortega A, Mukherjee D, Fan X, Black KL, et al.
Cystic glioblastoma: an evaluation of IDH1 status and prognosis. Neurosurgery
(2014) 74(1):71–5. doi: 10.1227/NEU.0000000000000200

29. Curtin L, Whitmire P, Rickertsen CR, Mazza GL, Canoll P, Johnston SK,
et al. Assessment of prognostic value of cystic features in glioblastoma relative to
sex and treatment with standard-of-care. Front Oncol (2020) 10:580750.
doi: 10.3389/fonc.2020.580750

30. Hong JH, Kang S, Sa JK, Park G, Oh YT, Kim TH, et al. Modulation of nogo
receptor 1 expression orchestrates myelin-associated infiltration of glioblastoma.
Brain (2021) 144(2):636–54. doi: 10.1093/brain/awaa408
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