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Purpose: This study aimed to develop a deep convolutional neural network (DCNN)
model to classify molecular subtypes of breast cancer from ultrasound (US) images
together with clinical information.

Methods: A total of 1,012 breast cancer patients with 2,284 US images (center 1) were
collected as the main cohort for training and internal testing. Another cohort of 117 breast
cancer cases with 153 US images (center 2) was used as the external testing cohort. Patients
were grouped according to thresholds of nodule sizes of 20 mm and age of 50 years. The
DCNN models were constructed based on US images and the clinical information to predict
the molecular subtypes of breast cancer. A Breast Imaging-Reporting and Data System (BI-
RADS) lexicon model was built on the same data based on morphological and clinical
description parameters for diagnostic performance comparison. The diagnostic performance
was assessed through the accuracy, sensitivity, specificity, Youden’s index (YI), and area
under the receiver operating characteristic curve (AUC).

Results: Our DCNN model achieved better diagnostic performance than the BI-RADS
lexicon model in differentiating molecular subtypes of breast cancer in both the main
cohort and external testing cohort (all p < 0.001). In the main cohort, when classifying
luminal A from non-luminal A subtypes, our model obtained an AUC of 0.776 (95% CI,
0.649–0.885) for patients older than 50 years and 0.818 (95% CI, 0.726–0.902) for those
with tumor sizes ≤20 mm. For young patients ≤50 years, the AUC value of our model for
detecting triple-negative breast cancer was 0.712 (95% CI, 0.538–0.874). In the external
testing cohort, when classifying luminal A from non-luminal A subtypes for patients older
than 50 years, our DCNN model achieved an AUC of 0.686 (95% CI, 0.567–0.806).

Conclusions: We employed a DCNN model to predict the molecular subtypes of breast
cancer based on US images. Our model can be valuable depending on the patient’s age
and nodule sizes.

Keywords: deep convolutional neural network, ultrasound, breast cancer, molecular subtype, luminal A,
triple-negative breast cancer
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INTRODUCTION

Due to the development of tumor biology, genomics,
bioinformatics, and other areas of basic research, the treatment
of breast cancer has transformed from the traditional surgery
mode into a precision medicine mode (1). Clinically, based on
the state of hormone receptors (estrogen receptor [ER] and
progesterone receptor [PR]), human epidermal growth factor
receptor-2 (HER2), and Ki67 proliferation index, breast cancer is
categorized into different molecular subtypes that have distinct
risk profiles and treatment schemas (2, 3). Four breast cancer
molecular subtypes have been described, namely, luminal
A (hormone receptor positive, HER2 negative), luminal
B (hormone receptor positive, HER2 positive), HER2-enriched
(hormone receptor negative, HER2 positive), and triple-negative
(hormone receptor negative, HER2 negative) subtypes. This is
the basis of precision medicine for breast cancer. One study from
JAMA demonstrated that 63% of the overall mortality reduction
of breast cancer was associated with treatments of chemotherapy,
hormone therapy, and trastuzumab, and the associations varied
by breast cancer molecular subtypes (4). The classification of
molecular subtypes depends on postoperative pathology, which
is significantly delayed for the rational preoperative treatment
formulation. Therefore, non-invasive methods for molecular
subtypes of breast cancer before surgery are crucial for further
arrangement and have become the focus of current research.

In order to align with the concept of precision medicine,
many attempts have been taken by medical imaging to provide a
promising solution for preoperative non-invasive prediction of
breast cancer molecular subtypes. As a routine modality for
breast diseases, there have been recent studies of ultrasound (US)
on molecular typing of breast masses by morphological features
(5–7). However, because of the operator dependence and
instability of US images, the claimed relevant sonographic
features such as margins and posterior acoustic features might
be indefinite and unreliable. Therefore, in the actual clinical
work, it is almost impossible for radiologists to predict the
molecular subtypes of breast masses by only relying on visual
observation of US images. Additional diagnostic assistance is
urgently needed for real-world radiologists to cope with
this challenge.

At present, several studies combined medical images with
machine learning or deep learning (DL) approaches, which are
more accurate and convenient to predict molecular subtypes
preoperatively based on US, mammography, and MRI images
(8–11). Different from the hand-crafted feature extraction of
machine learning methods, DL has been proved to be more
labor-saving and superior by automatically extracting features
from raw data (12). The deep convolutional neural network
(DCNN) consisting of consecutive layers for feature extraction is
one of the most popular architectures in the DL family
nowadays (13).

Based on pathophysiological and epidemiological results, triple-
negative breast cancer occurs more frequently in women who are
younger, and the tumors are usually larger in size. Furthermore, in
China, the peak ages of breast cancer are in the 40–50-year age
Frontiers in Oncology | www.frontiersin.org 2
group (14, 15). As a whole, patient age and lesion size have a certain
reference value for the accurate diagnosis of molecular subtypes.
Hence, firstly, the purpose of this study was to predict the molecular
subtypes of breast cancer through DCNN architecture based on
primary breast US images. Furthermore, we explored the diagnostic
efficacy in different age groups (≤50 and >50 years) and tumor size
groups (≤20 and >20 mm).
MATERIALS AND METHODS

Patients and Data
The datasets used in this study were collected from two hospitals,
one as the main cohort for training and internal testing collected
between January 2008 and August 2019 and the other as the
external testing cohort collected between June 2021 and February
2022. This retrospective study was approved by the Institutional
Review Board of our hospital (No. 2019KY055). Informed consent
was waived by the board. The inclusion criteria of this study were as
follows: 1) all the breast masses were pathologically proven, 2)
patients with complete information of US examinations, 3) the
patients had not undergone other treatments, and 4) complete
immunohistochemical (IHC) marker (ER, PR, HER2, and Ki-67)
result on histopathology. The exclusion criteria were as follows: 1)
US images with poor quality and 2) the pathological results and IHC
markers were incomplete for molecular subtyping. ER and PR
positivity was defined as the detection of ≥1% positive staining in
tumor nuclei. HER2 status was graded as 0, 1+, 2+, or 3+. A score of
3+ staining was defined as HER2 positive, and scores of 0 and 1+
were considered as HER2 negative. As for 2+ staining, HER2 gene
amplification by fluorescence in situ hybridization (FISH) should be
taken for final diagnosis. Ki-67 expression was graded as low
(<14%) or high (≥14%). Breast cancers were categorized into four
subtypes on the basis of their receptor status. The subgroups defined
were as follows: luminal A (ER and/or PR+, HER2−), luminal B (ER
and/or PR+, HER2+), HER2-positive (ER and PR−, HER2+), and
triple-negative (ER−, PR−, and HER2−) (Figure 1). Finally, a total
of 1,012 breast cancer lesions (20.85 ± 11.33 mm; range, 7.8–104
mm) from 1,012 patients (57.14 ± 13.09 years; range, 25–90 years)
with 2,284 US images were involved as the main cohort (center 1),
including 248 cases (548 images) of luminal A subtype, 457 cases
(1077 images) of luminal B subtype, 105 cases (222 images) of
HER2+ subtype, and 202 cases (437 images) of triple-negative
subtype. Another cohort of 117 breast cancer lesions (22.79 ±
12.06 mm; range, 4–65 mm) from 117 patients (59.25 ± 11.91
years; range, 33–85 years) with 153US images (center 2) was used as
the external testing cohort, including 41 cases (52 images) of
luminal A subtype, 47 cases (58 images) of luminal B subtype, 13
cases (20 images) of HER2+ subtype, and 16 cases (23 images) of
triple-negative subtype.

The US images in this study were acquired by several different
US equipment in our medical center, including Philips (IU22;
Amsterdam, the Netherlands), Aixplorer (Super Imagine; Aix-en-
Provence, France), GE Healthcare (LOGIQ E9; Pittsburgh, PA,
USA), Hitachi (EUB 8500; Tokyo, Japan), Esaote (MyLab™Twice;
July 2022 | Volume 12 | Article 848790
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Genoa, Italy), and Siemens (Sequia512 and ACUSON S3000;
Munich, Germany) with linear transducers of frequency 5–12
MHz. Moreover, clinical data on patient age, US tumor size
(short diameter and long diameter), and aspect ratio were also
collected for feature extraction.

Image Annotation and Dataset Partition
The labeling tool of LabelImg (https://github.com/tzutalin/
labelImg) was used to crop the regions of interest (ROIs) from
the original breast US images with rectangular boxes. The
annotation was manually processed and confirmed by a breast
radiologist with over 5 years of experience in breast
US interpretation.

The main cohort dataset was split into two parts, a training set
and a test set, according to the patient count at a ratio of 4:1. The
image numbers of each subset in the main cohort are shown
in Table 1.

Deep Convolutional Neural Network Model
In this paper, we proposed a DCNN model, which combined the
B-mode US image of breast cancer and clinical information to
Frontiers in Oncology | www.frontiersin.org 3
classify the molecular subtypes of breast cancer. We used the pre-
trained convolutional neural networks on the ImageNet dataset
to extract the high dimensional features of B-mode US images.
The clinical information was encoded through a neural network
and finally became a 512-dimensional feature vector. Then both
the features of B-mode US images and the feature vector of
clinical information were concatenated for classification by a
softmax algorithm.

We fine-tuned three different DCNN models on our B-mode
US image dataset, including EfficientNet, DenseNet-121, and
VGGNet-16. Before the images were input into the network, they
were adjusted to a size of 224 × 224 pixels and normalized. In
order to solve the problem of overfitting, data augmentation
including flipping, rotation, cropping, and contrast
transformation was used during the training of networks.

We trained the DCNN with the stochastic gradient descent
(SGD) optimizer accomplished in a computer with two NVIDIA
2080Ti graphic processing units (GPUs) and 256 GB of random
access memory. To solve the problem of unbalanced samples, the
focal loss strategy was used. The batch size, learning rate, and
maximum iterations were set to 16, 0.005, and 100, respectively.
A B

DC

FIGURE 1 | Examples of our ultrasound image dataset. (A) A 72-year-old woman with intraductal papillary breast carcinoma (1.6 cm) of luminal A subtype. (B) A
56-year-old woman with invasive ductal breast carcinoma (1.7 cm) of luminal B subtype. (C) A 40-year-old woman with invasive micropapillary breast carcinoma
(1.5 cm) of HER2+ subtype. (D) A 39-year-old woman with invasive ductal breast carcinoma (1.9 cm) of triple-negative subtype.
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The processing flow of our DCNN Architecture is shown
in Figure 2.
Breast Imaging-Reporting and Data
System Lexicon Model
Morphological characteristics of each mass were classified by two
radiologists who were blinded to the clinical and pathological
results of the breast lesions. If there was no initial agreement, the
final result will be reached after discussion. The two radiologists
had 7 and 20 years of experience in breast US interpretation.

In accordance with the American College of Radiology Breast
Imaging Reporting and Data System (BI-RADS) lexicon, the
morphological description included the following parameters:
the shape (oval, round, or irregular), orientation (parallel or not
parallel), margin (circumscribed, indistinct, angular,
microlobulated, or spiculated), echo pattern (anechoic,
hyperecho i c , complex , hypoecho ic , i soecho i c , o r
heterogeneous), posterior acoustic features (no posterior
acoustic features, enhancement, shadowing, or combined
pattern), surrounding tissue (adjacent ducts changes, tissue
edema, architectural distortion, skin thickening, skin retraction,
and irregularity), calcification (outside a mass, in a mass,
Frontiers in Oncology | www.frontiersin.org 4
intraductal, or none), and vascularity distribution (none, in a
mass, next to a mass, or in the surrounding tissues). These
BI-RADS parameters were included as variables for BI-RADS
lexicon modeling. Other included parameters were age, lesion
number, lesion location, tumor size, and lymph node status in US
(normal or abnormal).

Then we constructed a BI-RADS lexicon model based on the
above parameters. The solver, penalty, and maximum iterations
of the model were all adjusted for the best result during the
training period.

Statistical Analysis
The diagnosis performance was assessed according to the
classification accuracy (ACC), sensitivity (SEN), specificity
(SPC), Youden’s index (YI), and area under the receiver
operating characteristic curve (AUC). The diagnosis
performance was evaluated based on the patient level, not the
image level. The bootstrapping analysis was performed on the
AUC values of each group of experiments to obtain the 95% CIs.
The paired t-test was applied to AUC values to measure the
performance differences. Statistical analysis was computed using
the Python (3.6) programming language and R Studio software
(3.5.2). p < 0.05 was regarded as statistically significant.
FIGURE 2 | The processing flow of our deep convolutional neural network architecture.
TABLE 1 | The main cohort dataset with different groups of tumor sizes and patient ages.

Tumor size groups (mm) Images (cases) Total

≤20 >20

Luminal A 401 (189) 147 (59) 548 (248)
Luminal B 542 (246) 535 (211) 1,077 (457)
HER2+ 112 (51) 110 (54) 222 (105)
Triple-negative 197 (94) 240 (108) 437 (202)
Age groups (years) ≤50 >50
Luminal A 148 (60) 300 (188) 548 (248)
Luminal B 485 (182) 592 (275) 1,077 (457)
HER2+ 75 (34) 147 (71) 222 (105)
Triple-negative 114 (53) 323 (149) 437 (202)
Total 2,284 (1,012)
July 2022 | Volume 12 | A
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RESULTS

Deep Convolutional Neural Network Model
vs. Breast Imaging-Reporting and Data
System Lexicon Model
As shown in Tables 2 and 3, our DCNN model showed better
performance compared with the BI-RADS lexicon model in all
three experiments in terms of AUC values in both the main
cohort and external testing cohort (all p < 0.001), which proved
the validity of our model. In the main cohort, for distinguishing
luminal A from non-luminal A subtypes, our DCNN model
(DenseNet-121) achieved the highest AUC (0.717, 95% CI,
0.622–0.809) and ACC (80.1%) as compared with the
BI-RADS lexicon model (0.628, 95% CI, 0.539–0.719 and
52.2%). The diagnostic SEN, SPC, and YI were 87.8%, 53.3%,
and 41.1%, respectively. Our DCNN models of EfficientNet-B2
obtained a higher AUC of 0.601 (95% CI, 0.495–0.683) for
differentiating the luminal from non-luminal subtypes
compared with the BI-RADS lexicon model. Our DCNN
models also achieved an AUC of 0.577 (95% CI, 0.455–0.698)
and an ACC of 76.9% for differentiating the triple-negative (TN)
and non-triple-negative (non-TN) subtypes, which was better
than the BI-RADS lexicon model. In the external testing cohort,
Frontiers in Oncology | www.frontiersin.org 5
our DCNN model achieved better AUC values of 0.680 (95% CI,
0.579–0.780), 0.639 (95% CI, 0.518–0.760), and 0.560 (95% CI,
0.399–0.721) as compared with the BI-RADS lexicon model
(0.622, 95% CI, 0.516–0.728; 0.462, 95% CI, 0.342–0.583; 0.433,
95% CI, 0.266–0.599) in all three experiments.

The Effect of Age on Differentiating
Molecular Subtypes
As shown in Table 4, we explored the effectiveness of our DCNN
models in different age groups (≤50 and >50 years). In the main
cohort, our model had a good performance for distinguishing
luminal A from non-luminal A subtypes in the >50 years age
group, with the highest AUC of 0.776 (95% CI, 0.649–0.885) and
ACC of 83.3% (Figure 3). Their SEN and SPC were 89.0% and
65.6%, respectively. In the external testing cohort, our DCNNmodel
achieved AUC values of 0.686 (95% CI, 0.567–0.806) for
distinguishing luminal A from non-luminal A subtypes in the >50
years age group. As shown in Table 5, our DCNN model also
achieved an AUC of 0.712 (95% CI, 0.538–0.874) in the ≤50 years
age group for distinguishing the non-TN from TN subtypes
(Figure 3) in the main cohort, while its diagnostic performance
could not be evaluated in the external testing cohort where the TN
subtype only has one patient.
TABLE 4 | Diagnostic performance of deep convolutional neural network model for differentiating luminal A and non-luminal A subtypes based on patient age in the
main cohort.

Experiment Model AUC (%) ACC (%) SEN (%) SPC (%) YI (%)

Age ≤ 50 EfficientNet-B0 58.1 46.4 35.7 92.3 28.0
DenseNet-121 59.6 53.6 48.2 76.9 25.1
VGGNet-19 57.4 53.6 48.2 76.9 25.1

Age > 50 EfficientNet-B0 75.2 83.3 90.0 62.5 54.6
DenseNet-121 77.6 83.3 89.0 65.6 54.6
VGGNet-19 72.7 81.8 88.0 62.5 50.5
July 202
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AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPC, specificity; YI, Youden’s index.
TABLE 3 | Diagnostic performance of BI-RADS lexicon model for differentiating breast cancer subtypes in the main cohort.

Experiment AUC ACC (%) SEN (%) SPC (%) YI (%)

Luminal A vs. non-luminal A 0.628 0.522 0.436 0.822 0.258
Luminal vs. non-luminal 0.494 0.668 0.222 0.846 0.068
Triple-negative vs. non-triple-negative 0.553 0.575 0.576 0.575 0.151
BI-RADS, Breast Imaging-Reporting and Data System; AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPC, specificity; YI, Youden’s index.
TABLE 2 | Diagnostic performance of deep convolutional neural network model for differentiating breast cancer subtypes in the main cohort.

Experiment Model AUC ACC (%) SEN (%) SPC (%) YI (%)

Luminal A vs. non-luminal A EfficientNet-B0 0.686 78.1 86.5 48.9 35.4
DenseNet-121 0.717 80.1 87.8 53.3 41.1
VGGNet-19 0.664 74.6 82.1 48.9 31.0

Luminal vs. non-luminal EfficientNet-B2 0.601 64.2 53.7 68.4 22.1
DenseNet-121 0.587 61.1 64.8 59.6 24.4
VGGNet-19 0.561 64.2 48.1 70.6 18.7

Triple-negative vs. non-triple-negative EfficientNet-B2 0.577 76.9 33.3 86.3 19.6
DenseNet-121 0.565 58.1 60.6 57.5 18.1
VGGNet-19 0.572 50.5 69.7 46.4 16.1
AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPC, specificity; YI, Youden’s index.
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The Effect of Tumor Size on Differentiating
Molecular Subtypes
As shown in Table 6, we divided the patients into two groups by the
long diameters (≤20 and >20 mm). The results showed that our
DCNN model had the best performance in distinguishing luminal
A from non-luminal A subtypes for long diameters ≤20 mm, with
the AUC, ACC, SEN, SPC, and YI of 0.818 (95% CI, 0.726–0.902),
80.4%, 82.5%, 75.0%, and 57.5%, respectively (Figure 3).
DISCUSSION

Medical imaging explored the characteristics from cellular to
molecular levels and even the microscopic views to identify the
different types of breast cancer to aid in clinical practice. Breast
cancer with different molecular subtypes displays diverse, subtle,
and overlapping imaging features, which makes accurate
diagnosis difficult (16, 17). In this study, we involved different
DCNN models for the preoperative differentiation of molecular
subtypes of breast cancer, and the diagnostic performance was
compared in different patient age groups and tumor size groups,
which is not covered in previous studies and could provide more
complementary information for real-world radiologists on
molecular subtype classification (18, 19).

Based on BI-RADS terminology for US, after standard
morphological feature classification, we established a BI-RADS
lexicon model for molecular subtype diagnosis to compare with
Frontiers in Oncology | www.frontiersin.org 6
our DCNN model. The BI-RADS lexicon model analysis has
been widely applied to tumor characterization, cancer recurrence
prediction, and detection of breast cancer for fine-needle
aspiration cytology (20, 21). It was reported that using the BI-
RADS lexicon model reached a similar performance to that of the
radiologists or other machine learning methods. It is common
knowledge that the descriptor labeling of breast masses in US was
subjective and time-consuming, which prevents it from being
applied in the clinical setting. Practically, our DCNN model
showed great application potential with results superior to those
of the BI-RADS lexicon model in all tasks in both the main
cohort and external testing cohort.

Our dataset has a considerable sample size, which is leveraged
by our DCNN model to fully mine the hierarchical information
from breast cancer US images, and thus the DCNN could cope
with a variety of tasks including the stratification analysis of the
ages and tumor sizes. According to the breast cancer tumor node
metastasis (TNM) stage system, the tumor size is a key reference
factor for surgical method selection. A small tumor (tumor
size ≤20 mm) is difficult to diagnose by US images, because its
morphological characteristics are not obvious, and it is easy to be
misdiagnosed as a benign nodule (22). Delayed treatment can
impose severe psychological and financial burdens on patients.
Moreover, the luminal A subtype is more sensitive to endocrine
therapies with a good prognosis when diagnosed and treated
early. In our study, the DenseNet-121 DCNNmodel achieved the
best performance for differentiating luminal A from non-luminal
A subtypes for tumor sizes ≤20 mm with an AUC of 0.818
A B C

FIGURE 3 | The ROC curves of our DCNN model in identifying different breast cancer molecular subtypes on the test set. (A) Classifying luminal A from non-luminal
A subtypes among patients older than 50 years. (B) Classifying luminal A from non-luminal A subtypes for tumor sizes ≤20 mm. (C) Classifying triple-negative from
non-triple-negative subtypes for patients younger than 50 years. ROC, receiver operating characteristic; AUC, area under the ROC curve; DCNN, deep convolutional
neural network.
TABLE 5 | Diagnostic performance of deep convolutional neural network model for differentiating triple-negative and non-triple-negative subtypes based on patient age
in the main cohort.

Experiment Model AUC (%) ACC (%) SEN (%) SPC (%) YI (%)

Age ≤ 50 EfficientNet-B2 71.2 58.5 81.8 53.7 35.5
DenseNet-121 68.5 63.1 81.8 59.3 41.1
VGGNet-19 63.5 63.1 72.7 61.1 33.8

Age > 50 EfficientNet-B2 50.4 71.9 36.4 79.8 16.2
DenseNet-121 51.2 33.1 95.5 19.2 14.6
VGGNet-19 55.1 68.6 40.9 74.7 15.7
July 202
2 | Volume 12 | Article 8
AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPC, specificity; YI, Youden’s index.
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(95% CI, 0.726–0.902) and ACC of 75.9%, which could be
applied to guide the initial treatment for breast cancer patients.

Several studies have shown that the patients with TN breast
cancer are younger (<40 years) than those with non-TN subtypes
(23). Therefore, on the basis of age stratification, we further
explored the classification effectiveness of our model for this
particular subtype of breast cancer. Because of its more
aggressive nature and poorer prognosis, early diagnosis and
treatment of triple-negative breast cancer have always been a
focus of medical research. The study conducted by Saha et al.
obtained an AUC of 0.654 through a machine learning model on
MRI images for distinguishing TN breast cancer from other
subtypes (18). Wu et al. retrospectively analyzed US images and
clinical data of 140 cases of surgically confirmed breast cancer
(divided into TN and non-TN breast cancer groups) (8). The
features of US images and color Doppler images were all
analyzed by machine learning methods. Among the twelve US
and color Doppler image features finally extracted, there were 8
features with statistical differences between the two groups
(p < 0.05). The final diagnosis performance achieved an AUC
of 0.88 with a SEN of 86.96% and an SPC of 82.91%. Based on the
single-mode image of two-dimensional US for feature extraction,
our results achieved a moderate result with the best AUC of 0.712
(95% CI, 0.538–0.874) for differentiating TN from non-TN
subtypes among patients with age ≤ 50 years. Hence, the
results of this study are crucial for assisting in the diagnosis of
TN breast cancer to the maximum extent for younger women. In
addition, for the classification of luminal A from non-luminal A
subtypes, our model showed a diagnostic AUC of 0.776 (95% CI,
0.649–0.885) and an ACC of 83.3% among patients > 50 years
old. This group also performed fairly well in the external testing
cohort with an AUC of 0.686 (95% CI, 0.567–0.806). Therefore,
for older patients with a high incidence of breast cancer, referring
to the diagnosis of our model not only can improve the diagnosis
confidence of malignant tumors but also can further obtain the
subtype information of classification, which improve
patient satisfaction.

Overall, our DCNN models performed moderately in
stratified studies based on ages and nodule sizes. This could be
attributed to the large variety of image acquisition machines in
this study and the single modality of US images. However, from
another point of view, it also shows the good applicability of our
model to different machines. Due to the small amount of data,
the external testing results of the subgroups of our DCNN model
Frontiers in Oncology | www.frontiersin.org 7
were unstable. In the subsequent experiments, we will try to add
multi-modal information based on larger sample size for
exploration, and the diagnostic performance is expected to be
further improved.

There are several limitations to this study. Firstly, compared
with other imaging examinations, in the application research of
artificial intelligence technology, the high noise, low resolution,
non-uniform image standard, and other deficiencies have
seriously affected its performance on this tough task of
differentiating breast cancer molecular subtypes. Secondly,
based on the retrospective collection of two-dimensional US
image datasets, there are still deficiencies of inconsistent image
quality and limited sample size in this study.

In conclusion, our study has demonstrated that the DCNN
model based on US images has the potential to provide a non-
invasive method to preoperatively predict the breast cancer
molecular subtypes, which could be a reference for clinical
treatment arrangement. Specifically, our model could be more
valuable in the classification of luminal A from non-luminal A
subtypes for patients older than 50 years or whose tumor
sizes ≤20 mm. For young patients ≤50 years, our model could
be helpful in detecting triple-negative breast cancer more
accurately. Future work on expanding the sample size and
imaging modalities could further optimize our model and
eventually assist radiologists and oncologists in real-world
clinical practice.
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TABLE 6 | Diagnostic performance of deep convolutional neural network model for differentiating luminal A and non-luminal A subtypes based on tumor sizes in the
main cohort.

Experiment Model AUC (%) ACC (%) SEN (%) SPC (%) YI (%)

Long diameter ≤ 20 mm EfficientNet-B0 80.8 75.9 78.8 68.8 47.5
DenseNet-121 81.8 80.4 82.5 75.0 57.5
VGGNet-19 77.3 74.1 76.2 68.8 45.0

Long diameter > 20 mm EfficientNet-B0 32.6 85.4 100 0 0
DenseNet-121 43.4 21.3 7.9 100 7.9
VGGNet-19 34.1 25.8 15.8 84.6 0.4
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AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPC, specificity; YI, Youden’s index.
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