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PET/CT-based radiomics
analysis may help to predict
neoadjuvant chemotherapy
outcomes in breast cancer
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Background: The aim of this study was to evaluate the clinical usefulness of

radiomics signature-derived 18F-fluorodeoxyglucose (18F-FDG) positron

emission tomography–computed tomography (PET-CT) for the early

prediction of neoadjuvant chemotherapy (NAC) outcomes in patients

with (BC).

Methods: A total of 124 patients with BC who underwent pretreatment PET-

CT scanning and received NAC between December 2016 and August 2019

were studied. The dataset was randomly assigned in a 7:3 ratio to either the

training or validation cohort. Primary tumor segmentation was performed,

and radiomics signatures were extracted from each PET-derived volume of

interest (VOI) and CT-derived VOI. Radiomics signatures associated with

pathological treatment response were selected from within a training

cohort (n = 85), which were then applied to generate different classifiers

to predict the probability of pathological complete response (pCR).

Different models were then independently tested in the validation cohort

(n = 39) regarding their accuracy, sensitivity, specificity, and area under the

curve (AUC).

Results: Thirty-five patients (28.2%) had pCR to NAC. Twelve features consisting

of five PET-derived signatures, four CT-derived signatures, and three

clinicopathological variables were candidates for the model’s development.

The random forest (RF), k-nearest neighbors (KNN), and decision tree (DT)
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classifiers were established, which could be utilized to predict pCR to NAC with

AUC ranging from 0.819 to 0.849 in the validation cohort.

Conclusions: The PET/CT-based radiomics analysis might provide efficient

predictors of pCR in patients with BC, which could potentially be applied in

clinical practice for individualized treatment strategy formulation.
KEYWORDS

breast neoplasms, Positron Emission Tomography-Computed Tomography,
neoadjuvant therapies, pathological complete response, artificial intelligence
Introduction

The pathological staging system suggested by the

International Association is taken as the reference standard in

therapeutic strategy decision for patients with breast cancer

(BC). Stages IIB and IIIC BC are categorized as locally

advanced stages, and radical surgical resection is not currently

preferred (1). Presently, neoadjuvant chemotherapy (NAC) is

recommended for patients with these cancers. Thus, NAC has

become a standard option for potentially surgically resectable BC

(2). As a preoperative treatment plan, the main advantage of

NAC lies in reducing the size of the primary tumor and down-

staging the tumor burden before surgery (3).

To date, pCR has been used as an alternative prognostic

endpoint in clinical trials of neoadjuvant drugs for BC patients

(4). A series of works have investigated the potential association

of pCR with the long-term survival outcomes in patients with

BC. An earlier randomized clinical trial revealed that pCR was

correlated with prolonged disease-free survival (DFS) in BC (5).

Another previous study has demonstrated that pCR in human

epidermal growth factor receptor 2 (Her-2)-positive BC is

associated with substantially longer times to recurrence and

death (6). However, other clinical trials indicated that there

was no significant benefit in terms of overall survival (OS) (p =

0.51) and recurrence-free survival (p = 0.80) between the pCR

and non-pCR groups (7). The conflicting results achieved from

different studies might raise strong demands for a biomarker

that could be applied to select candidates who would derive

added benefit from NAC treatment.

Currently, the therapeutic effect during NAC (pCR or non-

pCR) was mainly evaluated through pathological analysis of

surgical specimens at the end of NAC, but it failed to reflect the

tumor changes in the early stage and to monitor the treatment

response in real time (8). In contrast, imaging examinations are

noninvasive and reproducible. A pCR with NAC can be assessed

with various imaging modalities, such as mammography, breast

ultrasound, magnetic resonance imaging (MRI), and positron
02
emission tomography-computed tomography (PET-CT).

Several clinical trials and meta-analyses have investigated the

diagnostic efficacy of various imaging modalities after NAC

treatment and compared the accuracy of preoperative

measurements with the final pathologic size of the tumor;

however, there is no conclusion yet regarding the most reliable

and accurate modality (9–11). Many of them have shownMRI to

be highly sensitive but rather have low specificity for identifying

pathological complete response (pCR = ypT0N0). Another

previous study has shown that PET-CT may more accurately

predict the pCR because of the functional imaging ability for

viable tumor cells compared with anatomic tumor size (12).

However, there remains a shortage of reliable clinical pCR

indicators based on conventional imaging modalities due to

the great heterogeneity of BC. Radiomics analysis provides

significant clinical usefulness and enables researchers to non-

invasively assess tumor heterogeneity, which is an important

step towards personalized treatment (13, 14). To that end,

radiomics shows great prospects in evaluating treatment

response of NAC regimens in patients with BC. However, the

current status is that almost all previous works concentrated on

x-ray, computed tomography, and MRI. Very few radiomics

studies have involved the predictive value of PET-CT imaging

(15, 16). The goal of this study was to develop and validate

radiomics predictive models for personalized pCR assessment

during NAC in patients with BC.
Materials and methods

Study population

Specific inclusion criteria were listed as follows: (i)

histological diagnosis of primary BC, (ii) performance of 18 F-

FDG PET/CT for staging purposes before any treatment, (iii)

NAC as primary treatment followed by surgery, and (iv) a single

lesion with a maximum diameter ≥ 1 cm and had no difficulty in
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tumor margin delineation. The research protocol was reviewed,

approved, and overseen by the institutional review board of

Harbin Medical University Cancer Hospital. Informed consent

permission was not required in line with the local ethics

committee’s regulations for retrospective research.
Image acquisition

PET/CT images were acquired using the Discovery VCT 64

PET/CT system (GE Healthcare, Milwaukee, USA). All patients

were requested to fast for 4–6 h prior to PET-CT scans. In

addition, there are strict regulations on the blood glucose level of

each patient, which must be controlled below 11.1 mmol/L

ahead of 18F-FDG, which is injected intravenously. All patients

must lie still and rest for at least 1 h before starting the scans after

an injection of 7.4 MBq (0.2 mCi)/kg 18F-FDG. Firstly, low-dose

CT scans (free-breathing state and unenhanced images) were

performed before whole-body PET-CT examination. Image

reconstruction was performed based on the 3D ordered subset

expectation–maximization algorithm (two iterations and 17

subsets). The baseline PET-CT scans were performed before

NAC administration, and all PET-CT examinations were

completed in the case of the same institution with the same

equipment and acquisition parameters, which were listed as

follows: tube voltage, 140 kV; tube current, 150 mA; slice

thickness, 3.75 mm; matrix size, 512 × 512; and field of

view, 450 mm.
Image analysis

Image analyses were performed using an advanced post-

processing software (PET VCAR; GE Healthcare). Two nuclear

medicine physicians with more than 10 years of diagnostic

experience, blinded to the outcome of surgery and pathology,

independently assessed the images. Final results were re-checked

by a senior radiologist and any disagreement was settled by

discussion. Each PET-derived volume of interest (VOI) was

defined with a threshold of 40% of the maximum standardized

uptake value (SUVmax), and then corresponding metabolic

parameters were automatically calculated by PET VCAR software.
NAC regimen and pathological
assessment

A paclitaxel-based NAC regimen was performed in 112

patients (90.3%). As for the remaining 12 patients (9.7%), a

recommended NAC protocol with anthracycline plus paclitaxel

was administrated. Anti-Her2 therapeutic strategy (trastuzumab,

starting dose of 8 mg/kg, maintenance dose of 6 mg/kg) was added

for patients with Her2 amplification. Surgery was performed
Frontiers in Oncology 03
within 4 weeks of the end of NAC. According to the routine

pathological results when NAC treatment was completed,

corresponding pathological response to NAC was assessed by

one pathologist with more than 10 years of work experience. No

residual invasive cancer was identified in the initial lesion area and

both axillary lymph nodes after surgery resection, which was

defined as pCR; otherwise, non-pCR (17).
Image segmentation and
feature extraction

An overview of radiomics workflow is displayed in Figure 1.

The tumor lesion was delineated on axial PET and CT images

using LIFEx software (open-source software; www.lifexsoft.org/

index.php). A VOI that covered the entire tumor was delineated

by segmentation on each axial slice of CT and PET. All 3D

segmentation was first delineated automatically by means of

thresholding or clustering, which were corrected by a radiologist

manually afterwards. The VOI of the breast lesion was defined

on PET images with a threshold of 40% of the SUVmax. Tumor

segmentation was done by a nuclear medicine physician with

more than 15 years of diagnostic experience in BC, blinded to

surgical and pathological results.

We adopted three steps to preprocess the PET and CT images

prior to feature extraction. Firstly, we resampled all images to a

uniform voxel size of 1 mm × 1 mm × 1 mm using linear

interpolation to minimize the influence of different layer

thicknesses. Secondly, based on the gray-scale discretization

process (bin width for CT = 25, bin width for PET = 0.1), we

convert the continuous image into discrete integer values. Finally,

we use the Laplacian of Gaussian and wavelet image filters to

eliminate the mixed noise in the image digitization process in

order to obtain low- or high-frequency features. Radiomics

signatures were extracted from each PET-derived VOI and CT-

derived VOI by applying dedicated AK software (Artificial

Intelligence Kit; GE Healthcare, China, Shanghai). Each

radiomic signature was applied with a Z-score normalization to

transform the data into standardized intensity range. All patients

enrolled were randomly assigned in a 7:3 ratio to either the

training cohort or validation cohort. Synthetic minority

oversampling technique was adopted due to the imbalance

number of pCR- and non-pCR patients in the training cohort.

Next, the feature selection was carried out within the training

cohort by using a step-by-step selection method.
Radiomics signature selection

After the radiomics features extraction, all missing data were

replaced by the median value in the training set. Z-score

normalization was done on each radiomics feature. In

addition, the same preprocessing procedure was also applied
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to the validation set. Intra- and inter-class correlation

coefficients (ICCs) were computed to evaluate the intra- and

inter-observer reproducibility of radiomics signature extraction.

For the 40 cases of PET-derived and CT-derived VOIs selected

randomly (20 cases of pCR to NAC and 20 cases of non-pCR to

NAC), radiologists A and B extracted the signatures

independently. All radiomics signatures were re-extracted by

radiologist A 2 weeks later, and radiomics signatures with ICC

lower than 0.80 were considered as the poor reproducibility of

the signature and then were excluded.

After the intra- and inter-operator agreement evaluation,

radiomic features with ICC > 0.80 were selected for further

analysis. Next, the following three steps were carried out within

the training cohort to screen radiomic features related to

pathological status after receiving NAC therapy. Firstly,

univariate logistic regression analysis test was applied to select

features with p-value < 0.05 for the subsequent analysis.

Secondly, multivariate logistic regression analysis was utilized
Frontiers in Oncology 04
to choose features closely related to pathological status. Finally, a

subset of the most robust and non-redundant radiomic

signatures was retained using the least absolute shrinkage and

selection operator (LASSO) method.
Models building and predictive
performance assessment

All cases in the training set were used to train the predictive

model, while cases in the test set were utilized to independently

evaluate the model’s performance. Three different machine

learning classifiers, namely, k-nearest neighbors (KNN),

random forest (RF), and decision tree (DT), were developed

separately. All radiomics models were trained in the training

cohort, and then tested in the validation cohort. The predictive

performance of the developed models was assessed using

receiver operating characteristic (ROC) curve.
B

CD

A

FIGURE 1

The radiomics analysis workflow. (A) Tumor segmentation. (B) Feature extraction. (C) Feature selection. (D) Model building.
frontiersin.org

https://doi.org/10.3389/fonc.2022.849626
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2022.849626
Statistical analysis

Statistical analysis was performed using R-studio and

GraphPad Prism software. Radiomics parameters between pCR

group and non-pCR groups were tested by Mann–Whitney U

test. Statistical analysis was performed using SPSS software

(version 23.0, Chicago, IL, USA). In addition, two-sided p-

value below 0.05 was considered statistically significant.

Results

Patient demographics and pathological
outcomes

A total of 124 patients who met the inclusion and exclusion

criteria shown above were studied. The baseline demographic

characteristics are displayed in Table 1. There were 85 cases (24

patients with pCR and 61 with non-pCR) in the training group

and 39 cases (11 patients with pCR and 28 with non-pCR) in the

validation group. In univariate logistic regression analysis and

multivariate logistic regression analysis, three parameters,

namely, Ki-67, tumor grade, and TLG, were demonstrated to

be independent predictors of pCR by multivariate logistic

regression analysis (Supplementary Table 1).

The median follow-up duration was 14.7 months (range,

4.2–25.9 months). When the follow-up ended, one patient died

and seven patients had disease progression. pCR to NAC

treatment was observed in 35 patients, and the overall

pathologic response rate was 28.2%. Table 2 displays the

therapeutic effect to NAC. Representative PET/CT images of a

patient with pCR and a patient with non-pCR after NAC are

demonstrated in Supplementary Figure 1.
Intra- and inter-observer reproducibility
of feature extraction

The intra-observer ICC ranged from 0.802 to 0.923, and

inter-observer ICC ranged from 0.761 to 0.902, which

demonstrated that intra- and inter-observer reproducibility of

radiomics feature extraction was agreeable.
Radiomics signature screening

In the training cohort, a sum of 2,632 radiomics features were

extracted from each VOI (1,316 for CT, 1,316 for PET), including

(i) first-order feature, (ii) shape feature, (iii) gray-level co-

occurrence matrix (GLCM) feature, (iv) gray-level size zone

matrix (GLSZM) feature, (v) gray-level run length matrix

(GLRLM) feature, (vi) neighborhood gray tone difference matrix

(NGTDM) feature, and (vii) 14 gray-level dependence matrix

(GLDM) features. We finally screened out 2,162 features with 470
Frontiers in Oncology 05
features excluded due to relatively poor reproducibility (ICC

range: 0.76–0.79). Then, the optimized subsets of nine radiomics

features were selected based on the univariate logistic regression

analysis, the multivariate logistic regression analysis, and the

LASSO method. The heatmap of the model in the training and

validation samples is displayed in Figure 2.
Radiomics model building and evaluation

The predictive performance of radiomics models in the

training and validation samples is shown in Tables 3, 4, 5, and

corresponding ROCs of different models in the training and

validation cohorts are demonstrated in Figures 3 and 4.
RF model

The areas under the curve (AUCs) of the RF model in the

training set and validation set were 0.894 and 0.849, respectively.

The accuracy, precision, sensitivity, and specificity were 0.824,

0.946, 0.714, and 0.952 in the training set, and 0.805, 0.818,

0.818, and 0.789 in the validation set, respectively.
DT model

The AUCs of the RF model in the training set and validation

set were 0.824 and 0.819, respectively. The accuracy, precision,

sensitivity, and specificity were 0.802, 0.792, 0.857, and 0.738 in

the training set, and 0.780, 0.810, 0.773, and 0.789 in the

validation set, respectively.
KNN model

The AUCs of the KNN model in the training set and

validation set were 0.843 and 0.830, respectively. The accuracy,

precision, sensitivity, and specificity were 0.769, 0.818, 0.735,

and 0.810 in the training set, and 0.829, 0.857, 0.818, and 0.842

in the validation set, respectively.
Discussion

In the present study, we demonstrated the clinical usefulness

of radiomics features based on pretreatment 18F-FDG PET in

predicting pathologic response to NAC treatment in BC patients.

Three different machine learning classifiers, namely, KNN, RF,

and DT, were developed in order to obtain the best diagnostic

efficacy. In addition, glucose metabolic parameters and clinico-

pathological parameters were incorporated into the radiomics

model to optimize the predictive performance.
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Tumor metabolic heterogeneity assessment based on 18F-

FDG PET has been investigated previously (18). Regarding the

non-invasive assessment of NAC pathological response using

metabolic metrics derived from pretreatment 18F-FDG PET, in

particular, the predictive potential of the primary tumor’s

SUVmax was reported in various cancers. In a meta−analysis

for FDG PET/CT, the predictive value of SUVmax was reported

to have a pooled sensitivity of 0.847 and a pooled specificity of

0.661, which indicated that FDG PET/CT has reasonable

sensitivity in assessing therapeutic efficacy to NAC in BC,
TABLE 2 The results of pathological response of all patients.

Histopathologic response No. of patients (%)

Pathological complete response 35 (28.22%)

Minimal residual disease 17 (13.71%)

Gross residual disease 72 (58.06%)
TABLE 1 Demographic information and clinicopathological characteristics of selected patients with NSCLC.

Variable Training cohort (n = 85) Validation cohort (n = 39) p-value

Sex, n (%) 0.334

Female 83 (97.65) 39 (100%)

Male 2 (2.35%) 0 (00.00%)

Age (years) 28.00 (23.75, 39.00) 31 (25.75, 46.00)0.452

Tumor Histology, n (%) 0.199

Invasive ductal carcinoma 64 (75.29%) 25 (64.10%)

Invasive lobular carcinoma 21 (24.71%) 14 (35.90%)

Tumor Grade, n (%) 0.986

Moderately differentiated 32 (37.65%) 15 (38.46%)

Poorly differentiated 30 (35.29%) 14 (35.90%)

Well differentiated 23 (27.05%) 10 (25.64%)

Pathological T stage, n (%) 0.859

1 0 (00.00%) 0 (00.00%)

2 18 (21.18%) 10 (25.64%)

3 23 (27.06%) 10 (25.64%)

4 44 (51.76%) 19 (48.72%)

Pathological N stage, n (%) 0.030

2 42 (49.41%) 12 (30.77%)

3 23 (27.06%) 20 (51.28%)

4 0 (00.00%) 0 (00.00%)

Molecular subtype, n (%) 0.379

Luminal A 7 (8.24%) 3 (7.69%)

Luminal B 10 (11.76%) 9 (23.08%)

HER2 38 (44.71%) 13 (33.33%)

TNBC 30 (35.39%) 14 (35.90%)

ER (%)
Her-2 status, n (%)

76.00 (0.00, 90.00) 72.00 (5.00, 80.00) 0.348

Positive 40 (47.06%) 20 (51.28%) 0.662

Negative 45 (52.94%) 19 (48.72%)

PR (%) 14.00 (0.00, 75.00) 16.00 (5.00, 80.00) 0.552

Ki-67 (%) 20.00 (10.00, 50.00) 15.00 (5.00, 40.00) 0.249

CEA (ng/ml) 2.73(1.34, 5.20) 2.55 (1.34, 4.95) 0.496

CAI53 (ng/ml) 10.95 (7.42, 14.25) 12.10 (8.22, 16.65) 0.310

SUVmax 5.65 (2.96, 7.85) 5.40 (2.60, 7.79) 0.420

SUVmean 3.87 (3.36, 5.42) 3.79 (3.19, 5.04) 0.395

TLG 20.95 (9.03, 52.68) 22.01 (9.03, 58.75) 0.406
Continuous variables are expressed as median (IQR). SUVmax, maximum standardized uptake value; SUV mean, mean standardized uptake value; TLG, total lesion glycolysis; CEA,
carcinoembryonic antigen; CA153, carbohydrate antigen 153; ER, estrogen receptor; PR, progesterone; TNBC, triple-negative breast cancer; Her-2, human epidermal growth factor receptor
2; Ki-67, antigen Ki-67.
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which indicated that FDG PET/CT has reasonable sensitivity in

assessing therapeutic efficacy to NAC in BC; however, the

specificity is relatively low (19). However, champion et al.

demonstrated that SUVmax on baseline PET scan, interim

PET scan, and post-treatment PET scan did not statistically

differ between the pCR and non-pCR groups. Meanwhile, our

data provided concordant results to a previous study that

SUVmax did not appear to be a predictor of pCR to NAC

(20). On the basis of this fact, we guessed that the opposite

findings observed may be caused by the intrinsic property of

SUVmax as a PET parameter. SUVmax could be used to reflect

only the most aggressive part instead of the entire tumor

microenvironment. However, it is of vital significance to assess

the tumor microenvironment due to the fact that the

nonhomogeneous microenvironment perplexed the therapeutic

response. Additionally, the intrinsic property of BC patients with

relatively low FDG uptake at baseline or whose level of glucose

metabolism cannot be altered by the NAC is not suitable for

FDG PET-CT examination to evaluate the treatment effect. In

our study, three standard PET/CT parameters, namely,

SUVmax, SUVmean, and TLG, were analyzed; only baseline

TLG was demonstrated to be a predictor of pCR to NAC
Frontiers in Oncology 07
treatment (p < 0.05), and was added to improve the radiomics

model’s diagnostic power.

The ability of radiomics features derived from baseline 18 F-

FDG PET to predict treatment response was recently reported in

several works (21–24). In a previous study, Antunovic et al.

developed a radiomics model by multiple logistic regression

analysis to investigate the feasibility of using PET-CT radiomics

analysis to assess the role of radiomics parameters in predicting

pCR to NAC in patients with BC (25). However, firstly, it was

carried out on a relatively small sample size (79 patients) and

only PET-derived radiomics signatures were extracted. Secondly,

the area under the curve value analysis for predicting therapeutic

effect displayed limited discrimination performances (only

ranging from 0.70 to 0.73), probably due to the small sample

size, which was further reduced due to the missing data and the

complete case approach used in the main analysis. Furthermore,

advanced radiomics features were not extracted for all patients

for technical reasons and there was a lack of validation set to

assess the models’ diagnostic efficacy. In contrast, the AUCs of

radiomics signatures ranged from 0.894 to 0.843 in the current

study, which might provide a higher diagnostic performance.

The current study used a relatively larger sample size, higher-

order features, and advanced radiomics analysis methods, as well

as high-dimensional radiomics signatures extracted up to 2,632.

Its related engineering features were crucial for high-

dimensional radiomics to avoid overfitting. Eventually, only

optimal parameters were chosen to set up a diagnostic model.

Overfitting is an inevitable issue that resulted from the high

dimensionality of the radiomic signatures; thus, the population

was randomly assigned in a 7:3 ratio to either the training cohort

or the validation cohort to alleviate this problem. A previous

study was designed to assess the clinical usefulness of textural

signatures for predicting pCR to NAC. They found that the early
TABLE 3 Evaluation of the RF model in the training and validation
samples.

Item Training Validation

Accuracy 0.824 0.805

Precision 0.946 0.818

AUC 0.894 0.849

Sensitivity 0.714 0.818

Specificity 0.952 0.789
FIGURE 2

Heatmap of the model in the training and validation samples. For both the training samples and the validation samples, the numbers on the x-
axis stand for different parameters; right to left represent Kurtosis, Gray-Level Variance, Gray-Level Non-Uniformity, Large Area Emphasis,
Coarseness, Long-Run Low Gray-Level Emphasis, Busyness, Joint Entropy, and Complexity.
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changes in the textural signatures based on 18F-FDG PET images

are predictive of pCR (26). The inconsistency between these

results and our own specifically lies in the study cohort and in

the approaches utilized for the analysis. Additionally, only SUV

histogram (skewness), NGLCM (entropy), and NGTDM

(coarseness) were available for textural analysis in the above

study. Neither D %MTV nor D %TLG was an independent

predictor of pCR in any group. It should be noted that the

HER2-positive group is more likely to have a pCR to NAC than

the HER2-negative group in our study, which agreed with

previous works. In the HER2-positive group, all patients

gained a greater benefit from trastuzumab. Baseline TLG

demonstrated a potential predictive ability in our research,

which is in line with the research results of Chen et al. They

reported that pretreatment TLG can differentiate pCR from non-

pCR to NAC in spite of the fact that the BC subtype was not

mentioned. TLG represents the overall glucose metabolism level

of tumor, which is related to the active level of tumor cell

proliferation (27). Although all the data came from BC patients,

there were still differences in the differentiation degree of tumor

cells. The higher the level of glucose metabolism, the more active

the proliferation of tumor cells, and the less the probability of

pCR. However, some studies obtained discrepant findings.

Lemarignier et al. confirmed that baseline TLG showed no

predictive value in pCR assessment in BC patients (28).

Discrepancies between studies may be due to the relatively

small sample size and the limited number of events (i.e., pCR).

Ki-67 is a nuclear protein related to cell division and

proliferation, which plays a key role in malignant tumor

occurrence and development. Most NAC drugs can inhibit

tumor cell proliferation and induce tumor cell apoptosis;

thereby, tumor cell proliferation slows down, and the
Frontiers in Oncology 08
expression of Ki-67 decreases (29). Other investigators also

have confirmed the clinical usefulness of Ki-67 as a predictive

marker in the NAC response assessment, and they reported that

a high pretreatment Ki-67 value instead of a low one was

correlated with a higher pCR rate (30). Consistent with the

previous study, our data also demonstrated the role of

pretherapeutic Ki-67 as a predictive marker of pCR to NAC.

Currently, many different types of machine learning

approaches can be applied to radiomics analysis; in this work,

we constructed three multivariable classifiers, namely, KNN, DT,

and RF, using pretreatment radiomics features of the primary

tumor to predict pathological response to NAC, and we found

that the RF model demonstrated the highest diagnostic

performance (AUC of 0.894 vs. 0.843 vs. 0.824 in the training

cohort; AUC of 0.849 vs. 0.830 vs. 0.819 in the validation cohort).

The possible reasons are as follows: On the one hand, the RF

machine learning algorithm is an outcome-driven machine

learning approach and is composed of a set of decision trees,

each of which is trained with randomly selected training data,

and a random subset of radiomics signatures was applied to

make decisions. Therefore, the data randomness guarantees low

relevance and high diversity among the decision trees of the RF,

which, in turn, ensures high stability in dealing with data

disturbance and model generalizability (31). On the other

hand, the RF algorithm also promotes the derivation of the

prognostic factor. It is an inevitable truth that the number of

algorithm calculations has increased exponentially due to the

high-dimensional feature space. The RF machine learning

algorithm is capable of selecting discriminative features from

each cluster to build the radiomics model based on consensus

clustering. Thus, the overall performance of the RF algorithm is

better than other classifiers (32). Furthermore, no obvious

difference in AUC values of all models between the training

and the validation sets was observed; the possible reason might

be that disadvantages such as overfitting and unbalanced data

distribution are avoided in this study.

To summarize, our study still has some limitations. Firstly,

although PET/CT-based radiomics analysis demonstrated a

favorable performance in predicting the efficacy of NAC

therapies, controversy still exists in relation to the application

of PET/CT in clinical practice, mainly because of its high cost.

However, we believed that potential savings are also associated

with PET-CT scans as a result of avoiding additional imaging

examinations or invasive procedures and by helping clinicians

make the optimal treatment decisions. Secondly, although the

final results achieved are ideal, the study population was still

limited; a prospective study with a greater sample size should be

conducted to further demonstrate our results. Thirdly, all the

data were obtained from one single center; a multicenter trial

with a much larger study cohort deserves further investigation in

the near future. Lastly, tumor lesions were segmented using the

manual method; an automated approach can be used to provide

higher stability.
TABLE 5 Evaluation of the KNN in the training and validation
samples.

Item Training Validation

Accuracy 0.769 0.829

Precision 0.818 0.857

AUC 0.843 0.830

Sensitivity 0.735 0.818

Specificity 0.810 0.842
TABLE 4 Evaluation of the DT model in the training and validation
samples.

Item Training Validation

Accuracy 0.802 0.780

Precision 0.792 0.810

AUC 0.824 0.819

Sensitivity 0.857 0.773

Specificity 0.738 0.789
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FIGURE 4

ROC of the different models in the validation cohort.
FIGURE 3

ROC of the different models in the training cohort.
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Conclusion

In conclusion, we demonstrated that radiomics analysis based

on pretreatment 18F FDG PET/CT scans can predict treatment

response to NAC in BC. This approach shows great prospect for the

early assessment of therapeutic effect non-invasively and accurately,

which could potentially facilitate personalized precision medicine

and avoid unnecessary treatment.
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Glossary

18F-FDG 18F-fluorodeoxyglucose

PET/CT positron emission tomography

NAC neoadjuvant chemotherapy

LABC locally advanced breast cancer

VOI volume of interest

Pcr pathological complete response

AUC area under the curve

RF random forest

DT decision tree

KNN k-nearest neighbors

BC breast cancer

DFS disease-free survival

Her-2 human epidermal growth factor receptor 2

OS overall survival

SUV max maximum standardized uptake value

ICCs intra- and inter-class correlation coefficients

LASSO least absolute shrinkage and selection operator

ROC receiver operating characteristic

TLG total lesion glycolysis

GLCM gray-level co-occurrence matrix

GLSZM gray-level size zone matrix

GLRLM gray-level run length matrix

NGTDM neighborhood gray tone difference matrix

GLDM gray-level dependence matrix

GLNU gray-level non-uniformity

ER estrogen receptor

PR progesterone receptor

CEA carcinoembryonic antigen

CA153 carbohydrate antigen 153
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