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Esophageal squamous cell carcinoma (ESCC), is the most common type of esophageal
cancer worldwide, mainly occurring in the Asian esophageal cancer belt, including
northern China, Iran, and parts of Africa. Phosphatidlinositol 3-kinase (PI3K)/protein
kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway is one of the
most important cellular signaling pathways, which plays a crucial role in the regulation of
cell growth, differentiation, migration, metabolism and proliferation. In addition, mutations
in some molecules of PI3K/Akt/mTOR pathway are closely associated with survival and
prognosis in ESCC patients. A large number of studies have found that there are many
molecules in ESCC that can regulate the PI3K/Akt/mTOR pathway. Overexpression of
these molecules often causes aberrant activation of PI3K/Akt/mTOR pathway. Currently,
several effective PI3K/Akt/mTOR pathway inhibitors have been developed, which can play
anticancer roles either alone or in combination with other inhibitors. This review mainly
introduces the general situation of ESCC, the composition and function of PI3K/Akt/
mTOR pathway, and regulatory factors that interact with PI3K/Akt/mTOR signaling
pathway. Meanwhile, mutations and inhibitors of PI3K/Akt/mTOR pathway in ESCC are
also elucidated.

Keywords: PI3K/Akt/mTOR pathway, ESCC, inhibitor, drug resistance, mutation
1 INTRODUCTION

Esophageal cancer is the sixth leading cause of cancer death worldwide. According to statistics, there
are more than 604,000 new cases of esophageal cancer diagnosed in 2020, of which about 544,000
died from it. In developed countries, the 5-year survival rate of ESCC is less than 20%, and in many
developing countries, the 5-year survival rate is less than 5% (1). Esophageal cancer is mainly
March 2022 | Volume 12 | Article 8523831

https://www.frontiersin.org/articles/10.3389/fonc.2022.852383/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.852383/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.852383/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.852383/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.852383/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:lixiang@zzu.edu.cn
https://doi.org/10.3389/fonc.2022.852383
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.852383
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.852383&domain=pdf&date_stamp=2022-03-22


Luo et al. Chemotherapy in Esophageal Cancer
divided into esophageal squamous cell carcinoma (ESCC) and
esophageal adenocarcinoma (EAC), among which ESCC is the
most common histological type in the “Asian esophageal
carcinoma belt”, including Iran, Kazakhstan and northern
China. Risk factors for ESCC mainly include gender, race,
smoking, alcohol, diet, nutrition and gene alteration, etc. (2).

The phosphatidlinositol 3-kinase (PI3K)/protein kinase B
(Akt)/mammalian target of rapamycin (mTOR) signaling
pathway is one of the most vital and most frequently altered
signaling pathways in organisms. Studies have pointed out that
the major components dysregulation of this signaling pathway
led to aberrant activation of the downstream pathways, which
ultimately promoted occurrence of cancer.

PI3Ks, members of the lipid kinase family, are usually
activated by receptor tyrosine kinases (RTK) and G-protein
coupled receptors (GPCR). Moreover, phosphatidylinositol (PI)
is a membrane phospholipid, which occupies a small proportion
in the composition of cell membrane. The inositol ring of PI can
be phosphorylated at several sites, especially 4 and 5. These two
sites are phosphorylated by various kinases, leading to the
formation of PIP2 (phosphatidylinositol 4, 5 -biphosphate) (3).
PI3Ks can be divided into three categories, namely class I, class II
and class III. The most widely studied class I PI3Ks is a
heterodimer, composed of a catalytic subunit (p110) and a
regulatory subunit (p85). Class II PI3Ks include PI3K-Ca,
PI3K-Cb and PI3K-Cg; Class III PI3Ks PIK3C3, also known as
vacuolar protein sorting 34 (VPS34). Upon receiving signals
from RTKs and GPCRs, the p85 regulatory subunit of PI3K is
recruited to the adjacent plasma membrane, where the p110
subunit binds to the p85 subunit to convert the substrate
phosphatidylinositol 2 phosphate, PtIns (4, 5)P2(PIP2) into
PtIns (3–5)P3(PIP3) for subsequent reactions (4).

Akt is a serine/threonine kinase and a key regulator of the
PI3K/Akt/mTOR signaling pathway. There are three subtypes of
Akt (Akt1/PKBa, Akt2/PKBb, and Akt3/PKBg), which are
encoded by different genes and differ greatly in their
distribution. PIP3 binds to the N-terminal pH domain of
protein kinase B (PKB, Akt) to transfer Akt from the
cytoplasm to the cell membrane. Akt is activated by
phosphorylation of the threonine phosphorylation site
(Thr308) and serine phosphorylation site (Ser473) with the
help of phosphoinositide-dependent protein kinase-1 (PDK1)
and phosphoinositol-dependent protein kinase-2 (PDK2). Most
interestingly, Akt is also activated by mTOR feedback, this
activation of Akt is regulated by the mammalian target of
rapamycin complex 2 (mTORC2), and it does not require
PDK1 participation (5). Phosphatase and tensin homolog
deleted on chromosome ten (PTEN) is a classical tumor
suppressor involved in the regulation of the PI3K/Akt
pathway. Its main function is to hydrolyze PIP3 into PIP2 and
prevent Akt activation.

mTOR is a serine/threonine kinase that typically assembled
into a variety of complexes, such as mammalian target of
rapamycin complex 1(mTORC1) and mammalian target of
rapamycin complex 2(mTORC2). In addition to its core
protein component, mTOR, mTORC1 also includes raptor
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(mTOR regulatory related protein), mLST8 (GbL), PRAS40
(proline-rich Akt substrate) and DEPTOR (protein containing
the DEP domain).Interestingly, mTORC2 contains the same
mTOR, DEPTOR and mLST8 as mTORC1, and it also
contains own unique components, PROTOR, rictor and
mSIN1. Activated Akt can activate its substrate mTOR through
direct and indirect pathways, such as direct phosphorylation of
mTOR, or through inactivation of tuberous sclerosis complex 2
(TSC2), and then enhance activation of mTOR (6).
2 MUTATIONS OF PI3K/AKT/MTOR
PATHWAY IN ESCC

There are many abnormal mutations in PI3K/Akt/mTOR
pathway, such as PIK3CA and Akt subtype mutations, which
can activate PI3K/Akt/mTOR pathway and affect the occurrence
of ESCC. Among them, mutations in the PIK3CA gene encoding
p110a are common in ESCC (3). A study demonstrated that
PIK3CA mutations were detected in exon 9 or exon 20 in 46
(21%) of 219 cases of ESCC (7). Moreover, Chang et al.
comprehensively analyzed the genomic changes of 94 ESCC
tumor samples through whole genome sequencing, and found
that the amplification rate of PIK3CA in these samples was
38.3%(36/94). However, both PIK3CA mutation and PIK3CA
amplification were present in only 2 samples. Surprisingly, the
study also analyzed the mutant spectrum of HNSCC, LUSCC
and EAC, and found that the mutations of ESCC were similar to
HNSCC and LUSCC, but quite different from EAC. This means
that mutations in cancers of the same tissue are largely similar,
regardless of whether they are the same organ (8). Wang and his
colleagues also showed that this is the case. When they analyzed
the epithelial cell genomes of advanced ESCC and EAC, they
found that the genomes of ESCC and EAC were different. The
mutation rate of PIK3CA in 71 ESCC cases was up to 24%,
mainly including amplification, base substitution and short
indels. Likewise, PTEN mutation rate could be up to 11%,
including truncated mutations, base substitutions and short
indels. However, the mutation rate of PIK3CA in EAC was
only 10%, and that of PTEN was 4%. It was worth noting that
Akt1 was only slightly amplified in EAC (9). Moreover, a study
by Zhang et al. found that PIK3CA was the most frequently
altered gene in the PI3K/Akt/mTOR pathway, with about 17%
mutation rate. Hot spot mutation of PIK3CA (c.1624G&gt; A
[p.Glu542Lys] and c. 1633 g & gt; A [P.Glu545lys]) was enriched
in ESCC with the characteristics of APOBEC (10). In addition to
PIK3CA mutations, single nucleotide polymorphisms (SNPs) of
several genes in the Akt signaling pathway are also associated
with susceptibility to ESCC. Zhu et al. showed that there were
significant gene-gene interactions among the three Akt1 SNPs.
Akt1 rs2294750 alone or in combination with two other Akt1
SNPs (rs2494752, rs10138277) can jointly combat ESCC,
especially in women and non-alcoholic ESCC patients (11).
Michelle A.T et al. identified mutations in Akt1, Akt2,
PIK3CA, PTEN, and FRAP1 in 174 resectable adenocarcinoma
and 36 squamous cell carcinoma patients. Additionally, this
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study demonstrated a significant association between these
common genetic variations and clinical outcomes (12). In 1116
patients with ESCC and 1117 non-cancer controls, Zhu et al.
found that three SNPs of mTOR were significantly associated
with increased risk of ESCC, highlighting the influence of gene-
gene and gene-environment interactions (13). Similarly,
Hongping Yu et al. identified 8 functional SNPs of mTORC1
that individually or collectively contribute to ESCC risk in 1126
patients with ESCC and 1131 non-cancer controls (14). Yang
et al. sequenced the genomes of 24 ESCC specimens and found
that the probability of mTOR gene alteration was 25% (6/24). Of
the 115 genes detected, only Akt2 and PIK3CA amplification
were found, and the frequency of amplification was 4.2% (1/24).
These genetic alterations provide potential targets for future
therapies of ESCC (15).
3 ROLE OF PI3K/AKT/MTOR SIGNALING
PATHWAY IN ESCC

PI3K/Akt/mTOR pathway is essential for the growth and
development of ESCC cells. It is involved in multiple stages of
cell growth and differentiation, in the meantime, related to many
aspects such as cell metastasis, proliferation and apoptosis. In
order to understand the specific role of PI3K/Akt/mTOR
pathway in ESCC, Lee et al. knocked down mTOR, raptor,
rictor and applied mTOR inhibitors respectively. Knocking
down raptor and rictor in TE8 cells significantly reduced the
proliferation of the cells compared with non-silencing siRNA
(16). Rapamycin, an inhibitor of mTOR. It can also inhibit
proliferation of ESCC cells, but to a lesser extent than mTOR
knockdown. In addition, knockdown of mTOR, raptor, and
rictor induced G1 phase cell arrest. Interestingly, both
downregulation of raptor or administration of rapamycin
induced mild apoptosis. However, downregulation of mTOR
and rictor were not associated with apoptosis (16). Hou et al.
conducted similar studies and found that siRNA could
significantly down-regulate the level of mTOR and its
downstream factors, p-p70S6K and p-4E-BP1, promoting their
non-phosphorylation (17). Another study showed that siRNA
inhibited the expression of Akt in TE-1 and TE-5 cells, leading to
a decrease in MDM2 levels. MDM2 has been shown to form a
tight complex with wild-type p53. Hence, the function of wild-
type p53 can be inhibited by changing the level of MDM2 (18).

In addition to the above effects, the PI3K/Akt/mTOR
pathway has been reported to be closely related to the
prognosis of ESCC. A study conducted by Wu et al. showed
that mTOR, p-mTOR and p70S6K1 were prognostic factors for
progression-free survival (PFS). The expression of mTOR, p-
mTOR, p70S6K1 and PTEN were associated with lymph node
metastasis and late TNM staging of ESCC (19). Another study
showed a positive correlation between periostin and mTOR in
locally advanced ESCC, which are independent risk factors for
overall survival (OS) and PFS in ESCC patients (20). Moreover,
Lee et al. demonstrated that p-mTOR/mTOR is inversely
proportional to disease-specific survival, meanwhile it is a
Frontiers in Oncology | www.frontiersin.org 3
more powerful prognostic factor for ESCC than p-mTOR (16).
Apart from mTOR, PI3Ks has also been reported to affect the
prognosis of ESCC. The expression of PI3K was positively
correlated with the degree of clinical stage, depth of invasion
and differentiation. But PI3K can only be used as a reference for
poor prognosis of ESCC, rather than an independent prognostic
indicator (21). One study showed that the level of p-Akt was the
only independent factor affecting the prognosis of ESCC patients
with chemotherapy. The level of p-Akt increased significantly
after chemotherapy, while p-mTOR did not change. It was also
pointed out that p-Akt was correlated with the depth of tumor
invasion before chemotherapy, while it was not correlated with
any clinicopathological parameters after chemotherapy (22).
However, Shan et al. believed that p-Akt was associated with
lymph node metastasis and tumor differentiation degree, and
cumulative survival was significantly higher in p-Akt negative
patients than in p-Akt positive patients (23). Additionally, a
study have showed that both expression level of RNF2 and p-Akt
can affect the OS of patients with ESCC, and RNF2 positive/p-
Akt-positive ratio was an independent prognostic factor for
ESCC (24).
4 MOLECULES REGULATING PI3K/AKT/
MTOR PATHWAY IN ESCC

The PI3K/Akt/mTOR pathway is always activated and plays
critical roles in the development and progression of ESCC. As
shown in Figure 1, in ESCC, many molecules can participate in
regulating the activity of this pathway, finally facilitating cell
proliferation, metastasis and chemoradiosensitivity.

4.1 Molecules Regulating
ESCC Proliferation
4.1.1 Positive Regulators of PI3K/Akt/mTOR
Pathway on ESCC Proliferation
SDCBP was a crucial promoter of tumor proliferation.
Meanwhile, it is also a downstream factor of AURKA. PDZ2
domain of SDCBP can directly bind with EGFR, thereby
activating EGFR and PI3K/Akt pathway (25). CDF15, P63 and
SOX2 significantly enhanced proliferation of ESCC cells that was
mediated, at least in part, through activation of Akt pathway.
Notably, overexpression of P63 observably increased the level of
p-Akt without affecting Akt (26–28). Moreover, it has been
reported that ectopic expression of MAEL promoted tumor cell
growth. The mechanism was that MAEL upregulated IL-8 by
activating the Akt1/RelA signaling pathway (29). BRE is a stress-
responsive gene, and its overexpression significantly promoted
the proliferation of ESCC cells. One study indicated that BRE
could negatively regulate the expression of PTEN to activate the
Akt pathway and promote the occurrence and development of
tumors (30). It is interesting to note that TRIM27 was a pro-
proliferation factor in ESCC and it could also interact with PTEN
to promote poly-ubiquitination. Thus, the activity of PI3K/Akt
pathway was increased (31).
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4.1.2 Negative Regulators of PI3K/Akt/mTOR
Pathway on ESCC Proliferation
In the process of tumor development, there are also many tumor
suppressors, which inhibit the proliferation of cells through
inactivating PI3K/Akt/mTOR pathway. IGFBPL-1 belonged to
IGFBP family and was a tumor suppressor in ESCC. It inhibited
proliferation and induced apoptosis in esophageal cancer cells by
attenuating PI3K/Akt signaling pathway (32). Additionally, it
has been reported that DNAJB6a suppressed ESCC cell
proliferation by inhibiting Akt signaling and the activity of
functional protein phosphatase 2A (PP2A). It’s worth noting
that PP2A was required for DNAJB6a to regulate Akt
signaling (33).

4.2 Molecules Regulating
ESCC Metastasis
4.2.1 Positive Regulators of PI3K/Akt/mTOR
Pathway on ESCC Metastasis
Epithelial-mesenchymal transition (EMT), an embryonic
program, loosens cell-cell adhesion complexes and enhances
cell migration and invasion. In cancer, EMT is associated with
tumor initiation, invasion, metastasis, and resistance to
treatment (34). Id-1 and HERG1 can regulate EMT, at least in
part by activating the PI3K/Akt pathway to promote migration
and invasion of ESCC cells. Their mechanisms are that HERG1
participates PI3K/Akt pathway by targeting TXDC5, while Id-1
can directly affect PI3K/Akt pathway (35, 36). Furthermore, we
found that many proteins have similar effects. For example,
Rap1A and KRT17-induced EMT are driven by the Akt
signaling in ESCC. Their overexpression could accelerate cell
metastasis by enhancing cell migration and invasion (37, 38).
Moreover, TGF-b1 mediated EMT via PTEN/PI3K pathway
(39). TIM-3 induced EMT is driven by Akt/GSK-3b/snail
signaling pathway (40). Additionally, fibrinogen and MIF can
Frontiers in Oncology | www.frontiersin.org 4
mediate EMT via p-AKT/p-mTOR and Akt/GSK-3b/b-catenin
pathway, respectively (41, 42). In addition to above molecules,
there are other molecules that promote metastasis through this
pathway, such as SLC39A6, a member of ZRT, IRT-like protein
(ZIP) family. At the same time, SLC39A6 is a zinc importer
whose roles on promoting migration and invasion of ESCC cells
might be related to intracellular zinc accumulation. The
underlying mechanism is that SLC39A6 and cellular zinc could
active the PI3K/Akt and MAPK/ERK signaling pathways, thus
promoting the occurrence and development of ESCC (43). PKCi
and PAFR can promote metastasis of esophageal cancer by
indirectly regulating the PI3K/Akt pathway. This is because
PKCi and PAFR can directly target SKP2 and FAK, thereby
affecting the PI3K/Akt signaling pathway (44, 45). On the
contrary, MCM10 and CCR3-CCR5 axis induce migration and
invasion of ESCC cells through direct regulation of Akt and
PI3K/Akt pathways, respectively (46, 47). Not only that, DGKa
can also stimulate metastasis of ESCC. The mechanism is that
DGKa actives Akt/NF-kB signaling pathway by directly binding
with the FERM domain of FAK via its catalytic domain.
Moreover, DGKa-mediated phosphatidic acid (PA) production
can inhibit the activity of CAMP/PTEN and improve the Akt
activation (48).

4.2.2 Negative Regulators of PI3K/Akt/mTOR
Pathway on ESCC Metastasis
In addition to the above-mentioned molecules that can positively
regulate PI3K/Akt/mTOR pathway to promote EMT, there are
also some negative regulatory molecules. For instance,
upregulation of NDRG2 inhibited Akt/XIAP signaling pathway
and the expression of EMT-related proteins, thereby suppressing
the migration, invasion and tumor formation of esophageal
cancer cells (49). More interestingly, Nm23H1 can also
suppress cell invasion and EMT by negatively regulating Akt
FIGURE 1 | Various regulatory molecules of PI3K/Akt/mTOR signaling pathway and physiological functions of these molecules. The PI3K/Akt/mTOR signaling
pathway is usually regulated by various signaling molecules. By targeting major molecules in the PI3K/Akt/mTOR signaling pathway, these molecules play positive or
negative roles in regulating cancer proliferation, metastasis, angiogenesis, stemness and chemoradiosensitivity.
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activation (50). GPX3 is another negative regulator of FAK/Akt
signaling pathway. GPX3 can inhibit expression of MMP9, a
substance that contributes to invasion, through deactivating
FAK/Akt pathway and suppressing tumor metastasis (51).

4.3 Molecules That Regulate
Chemoradiotherapy Sensitivity
Chemotherapy and radiotherapy are two common cancer
treatments in ESCC. But they are often limited by intrinsic
factors of tumor cells. Some proteins can affect the
radioresistance and chemoresistance of tumor cells by
regulating the PI3K/Akt/mTOR pathway.

4.3.1 Positive Regulators of PI3K/Akt/mTOR
Pathway to Increase Chemoradiotherapy Sensitivity
BMI-1, the core component of PcG, is abnormally expressed in
various kinds of cancers, including ESCC. BMI-1 regulated the
expression of proteins related to DNA damage repair, such as
gH2AX, MDC1 and 53BP1. Moreover, in ESCC,BMI-1 could also
involve in the regulation of radiosensitivity. Downregulation of
BMI-1 significantly decreased the proportion of G2/M phase cells
by inhibiting the PI3K/Akt/mTOR pathway, and reduced the
chance of DNA damage repair, and ultimately increased
radiosensitivity (52). ERBB3 is a gene that has been reported to
be associated with the PI3K/Akt signaling pathway. One study
revealed that HOXC10 could directly bind with Ku70 and the
promoter region of ERBB3 to facilitate DNA damage repair and
upregulate ERBB3 transcription, thereby activating the PI3K/Akt
signaling pathway and inducing resistance to chemoradiotherapy
(53). Moreover, IC50 value of cisplatin was positively connected
with HOXC10 expression, suggesting that HOXC10 was involved
in chemotherapy resistance (53). In addition, IDH2 and SIX1 have
also been reported to be involved in the regulation of
radiosensitivity. The increased radiosensitivity induced by IDH2
knockdown that depends on the decreased phosphorylation of
Akt. Likewise, overexpression of SIX1 induced radioresistance
through activation of the Akt signaling pathway (54, 55).

4.3.2 Negative Regulators of PI3K/Akt/mTOR
Pathway to Induce Chemoradiotherapy Sensitivity
Cisplatin is a well-known chemotherapeutic drug. It has been
used to treat numerous cancers such as lung, ovarian, and
testicular cancers. However, it also has drug resistance and
many undesirable side effects. CACNA2D3 is a gene that is
located at 3p29.1 on the short arm of chromosome 3. It has been
found to have potential anticancer function in many kinds of
tumors. IC50 value of cisplatin was negatively correlated with
CACNA2D3 expression in ESCC cells, in the meantime,
CACNA2D3 can enhance cisplatin sensitivity by inhibiting the
PI3K/Akt pathway (56).

4.4 Other Molecules
Both IQGAP1 and CCL3 could promote angiogenesis in ESCC,
and their mechanisms were similar. IQGAP1 facilitated tumor
angiogenesis by targeting the VEGF-VEGFR2 signaling pathway
mediated via Akt and ERK (57). CCL3-CCR5 axis upregulated
Frontiers in Oncology | www.frontiersin.org 5
the level of VEGF-A through activating PI3K/Akt and MEK/
ERK signaling pathway, thereby promoting ESCC angiogenesis
(47). Moreover, ALDH1A1 is a marker of cancer stem-like cells.
One study indicated that overexpression of ALDH1A1 could
maintain the cancer stem-like cells characteristics of ESCC and
enhance the levels of Akt1, p-Akt (T308), p-Akt(S473) and b-
catenin by activating the Akt signal pathway and binding with b-
catenin (58).
5 TARGETING THE PI3K/AKT/MTOR
PATHWAY IN ESCC THERAPEUTICS

Aberrant activations of the PI3K/Akt/mTOR signaling pathway
are common in human cancers, including ESCC. It has been
reported that the abnormal activations of this pathway were
closely related to the dysregulated expression of PI3K, Akt and
mTOR, which lay foundations for targeted therapy. In this
review, three types of inhibitors in ESCC will be introduced,
namely Akt inhibitors, PI3K inhibitors and mTOR inhibitors
(Figure 2 and Supplementary Table S1).

5.1 Akt Inhibitors
Oridonin, a diterpenoid compound extracted from Rabdosia
rubescens, has been used to treat a variety of diseases, with
cancer being the most notable one. A study conducted by Song
et al. found that oridonin can directly interact with Akt1/2, inhibit
the activity of Akt1/2 kinase and competitively bind with ATP.
Thus, the proliferation of ESCC cells was inhibited, apoptosis and
G2/M phase arrest were induced (59). Another compound,
triciribine (TCN), was a highly effective radiation sensitizer for
ESCC cells in vitro and in vivo. In ESCC cells and xenograft models,
TCN enhanced the radiation sensitivity of ESCC cells by inhibiting
hypoxia-induced Akt and HIF-1a expression (60). Xanthohumol is
an ATP-competitive Akt kinase inhibitor. It was reported that
xanthohumol can induce apoptosis and G1 phase cell arrest.
Furthermore, it can suppress phosphorylation of GSK3b, mTOR
and ribosomal protein S6, which are downstream targets of Akt, by
directly inhibiting Akt 1/2 (61). The scutellarin extracted from
scutellaria barbata is another ATP-competitive Akt inhibitor. A
recent study has demonstrated that scutellarin can induce G2 cell
cycle arrest and show anticancer effects in vitro and in vivo.
Furthermore, it suppressed GSK3-b phosphorylation by directly
targeting Akt1 and Akt2 (62). Unlike ATP-competitive inhibitors,
allosteric Akt inhibitors including MK-2206 do not cause
hyperphosphorylation of Akt at Ser473/Thr308. In vitro
phenotypic and xenograft mouse models of ESCC, the
combination of MK-2206 and BEZ235 was found to be more
effective than monotherapy (63, 64).

5.2 PI3K Inhibitors
BEZ235 is an ATP-competitive dual pan-PI3K and mTORC1/
mTORC2 inhibitor. Because it can target more than one
molecule at the same time, it shows a brighter future in cancer
therapy. As mentioned earlier, BEZ235 can be used in
combination with MK-2206 to inhibit the progression of
March 2022 | Volume 12 | Article 852383
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ESCC. In addition, it also worked in combination with histone
deacetylase inhibitor, trichostatin A (TSA). Wu et al. revealed
that co-treatment with BEZ235 and TSA improved effects of
single drug on cell proliferation, apoptosis and autophagy in
ESCC. Moreover, the combination treatment significantly
suppressed the phosphorylation of mTOR, Akt, and p70S6K
(65). LY294002 is described as the first-generation pan-PI3K
inhibitor. Some studies have shown that LY294002 inhibited the
proliferation of ESCC cells not only through decreasing the levels
of PI3Kp85a, p-Akt (Thr308) and p-p70S6K, but also increasing
the expressions of p-Akt (Ser473) and PRAS40 (Thr246) (66).
Another study demonstrated that knockdown rictor was capable
of inhibiting LY294002-induced Akt compensatory activation, as
well as synergically suppressing PI3Kp85a, p-Akt (Thr308) and
p-P70S6K. Therefore, the sensitivity of ESCC cells to LY294002
was effectively improved (67). Additionally, AZD8186 is a
specific inhibitor of PI3Kb and PI3Kd, which was currently in
clinical trials and has shown strong anticancer effects. A recent
study found that combining DTX and AZD8186, with a disulfide
cross-linked micelle (DCM) -based approach, significantly
increased the phosphorylation of PI3K and Akt. Meanwhile,
the levels of p53, Bax, and Bcl-2 were up-regulated. Thus, the
occurrence and development of ESCC can be inhibited in vivo
and in vitro (68). Not only that, CYH33, a novel selective PI3Ka
inhibitor, showed a strong inhibitory effect on ESCC. The
combination of CYH33 and IR can effectively inhibit tumor
growth in vivo and in vitro. This was because co-treatment with
CyH33 and IR further increased the levels of cleaved caspase 3
and gH2AX. Moreover, the quantity of G2/M phase cells were
also increased. Hence, accelerating cell apoptosis and DNA
damage. Notably, constitutively activated Akt disrupted the
synergistic interaction between CyH33 and IR (69, 70)
Frontiers in Oncology | www.frontiersin.org 6
5.3 mTOR Inhibitors
Rapamycin, an mTORC1 inhibitor, is the first mTOR inhibitor
discovered in humans. Rapamycin has been shown to have
inhibitory effects on a variety of cancers. It has the flexibility to
work either alone or in combination with other drugs. For
example, one study has demonstrated that both rapamycin and
cisplatin alone can significantly suppress tumor growth, but the
combination of them has the strongest anti-cancer effect. At the
same time, rapamycin can also inhibit DNA synthesis, thus
slowing the progression of cancers (71). It is worth noting that
everolimus is an analogue of rapamycin, which has similar
chemical properties to rapamycin. In one study, everolimus
reduced phosphorylation of p70S6K and 4E-BP1 in TE4 cells
with the highest p-mTOR content and TE11 cells with the lowest
p-mTOR content. Moreover, in a mouse subcutaneous xenograft
model, the combination of everolimus and cisplatin was found to
have an additive effect on tumor growth inhibition, similar to
rapamycin (72, 73). Temsirolimus is a selective mTOR inhibitor
that is essentially a novel analog of rapamycin. In a mouse model
of subcutaneous xenograft, temsirolimus has been shown to
significantly reduce subcutaneous tumor growth in a dose-
dependent manner (74). Moreover, several mTOR kinase
inhibitors had inhibitory effects both on mTORC1 and
mTORC2, and these drugs were known as dual mTORC1 and
mTORC2 inhibitors, such as PP242. One study showed that both
PP242 and rapamycin can affect the proliferation and cell cycle
arrest of Eca-109 and TE-1 cell lines, but the efficiency of PP242
was higher than rapamycin. Furthermore, compared with
rapamycin, PP242 inhibited the phosphorylation of Akt (S473)
and p70S6K (T389), while rapamycin acted only on the latter.
Additionally, PP242 had a synergistic effect with cisplatin, and
PP242 could increase the apoptosis induced by cisplatin (75).
FIGURE 2 | PI3K/Akt/mTOR signaling cascade and its corresponding inhibitors. The PI3K/Akt/mTOR pathway is one of the most frequently altered pathways in
cancer, and plays an important role in the regulation of cell growth, differentiation, proliferation, apoptosis and metastasis. Abnormal signal transduction in this
pathway is closely related to the progression of cancer. Arrows indicate activation and bars indicate inhibition. The various inhibitors targeting PI3K/Akt/mTOR
pathway proven to have inhibitory effects in ESCC.
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5.4 PI3K/Akt/mTOR Inhibitors and
Drug Resistance
ESCC is a kind of cancer with a high degree of malignancy.
Although there are many available drugs that can inhibit ESCC,
the efficacy, toxicity and prognosis of drugs are not ideal. This is
largely due to the existence of multiple resistance mechanisms that
reduce the sensitivity of drugs to cancer. How to overcome drug
resistance is a difficult point in cancer treatment. Studies have
shown that monotherapy can often induce resistance through
compensatory activation of downstream molecules. However,
simultaneous targeting of multiple targets in the same signaling
pathway may overcome this compensation. For example, the above
mentioned PI3K inhibitor, LY294002, can inhibit the occurrence
and development of ESCC by inhibiting the PI3K/Akt/mTOR/
p70S6K signaling pathway. Nevertheless, compensatory activation
of Akt Ser473 and PRAS40 at Thr246 might limit the inhibitory
effect of LY294002 on ESCC cells, leading to resistance of ESCC to
LY294002. In addition, they found that knockdown of rictor
inhibited LY294002-induced Akt compensatory activation and
reduced its resistance in ESCC cells. Thus, the anti-proliferation,
metastasis and clone formation ability of LY294002 were improved
(67). The dual mTORC1 and mTORC2 inhibitor PP242 had a
similar effect, which was considered to be a sensitizer of cisplatin. In
ESCC, PP242 can inhibit mTORC1 and mTORC2 pathways and
regulate the constitutive activation of Akt induced by cisplatin, thus
enhancing the anti-tumor effect of chemotherapy drug cisplatin.
Ultimately, the sensitivity of ESCC cells to cisplatin chemotherapy
was enhanced (75). Additionally, Moshe Elkabets et al. observed
the levels of EGFR and S6 phosphorylation were increased in
BYL719 resistant cells. At the same time, they demonstrated that
BYL719, a specific PI3Ka inhibitor, was resistant through
activation of mTOR activity (76). The underlying mechanism
was as follows: AXL was a membrane-bound receptor tyrosine
kinase, which was the most highly expressed gene in genomic
analysis of drug-resistant cells. It can activate and phosphorylate
EGFR in a ligand-independent manner. Furthermore, it caused the
activation of PLCg and PKC, which in turn led to the activation of
mTOR independent of PI3K/Akt. In addition, they demonstrated
that the combined inhibition of PI3Ka, EGFR, and PKC was far
more effective on ESCC cells than monotherapy (76, 77).
Researchers also found the resistance to rapamycin in ESCC
patients, the reason is that rapamycin induced a large number of
negative feedback loops from p70S6K to PI3K or mTORC2, which
significantly activated the PI3K/Akt signaling pathway and
weakened the anticancer effect of rapamycin (71, 75). OP16, a
derivative of a novel NT-kaurene diterpene isolated from
rubescens, significantly inhibited rapamycin-activated PI3K and
reversed rapamycin-reduced rictor phosphorylation. Therefore,
combined inhibition of PI3K and mTORC2 may be another way
to circumvent the rapamycin-induced feedback loop (78).
6 PI3K/AKT/MTOR INHIBITORS IN
CLINICAL STUDIES
Multiple PI3K/Akt/mTOR inhibitors have been shown to be
effective in vitro and in vivo in ESCC. However, they are not yet
Frontiers in Oncology | www.frontiersin.org 7
used in clinical practice for ESCC treatment. Here we introduce
the PI3K/Akt/mTOR inhibitors which have been under clinical
evaluation in other gastrointestinal cancers, including gastric
cancer (GC) and colorectal cancer (CRC). A lot of patients have
received complete response (CR) or partial response (PR) under
the PI3K/Akt/mTOR inhibitors treatment, providing important
indications and possibilities for ESCC therapy (Supplementary
Table S2).

6.1 Akt Inhibitors
Capivasertib (AZD5363) is a novel inhibitor of Akt. AZD5363 in
combination with paclitaxel has been utilized in a phase II
clinical trial in patients with PIK3CA mutation and PIK3CA
amplification in advanced gastric adenocarcinoma.

MK-2206, an allosteric Akt inhibitor, has been tested in
several clinical trials and showed good outcomes. These
include advanced GC and esophagogastric junction cancers, as
well as previously treated metastatic or locally advanced
colorectal cancer that cannot be surgically removed. Stable
disease (SD) was observed in 20% of GC and esophagogastric
junction cancer patients treated with MK-2206, and the rate of
radiation PR was 10%. Moreover, MK-2206 can also be used in
combination with selumetinib in CRC. However, due to its low
efficiency in targeting p-Akt and p-ERK, and high toxicity, these
led to various adverse events (AEs), such as acneiform rash,
blurred vision, nausea, etc. (79, 80).

GDC-0068 is a selective Akt inhibitor. GDC-0068 combined
with paclitaxel was found to improve PFS in the intent-to-treat
(ITT) population in metastatic triple-negative breast cancer. The
researchers compared the efficacy of GDC-0068 with placebo in
combination with 5-fluorouracil, calcium folinolate, and
oxaliplatin in advanced metastatic gastric cancer (MGC) and
gastroesophageal junction cancer. They observed median PFS of
7.5 months in the placebo group and 6.6 months in the GDC-
0068 group. This suggested that GDC-0068 did not improve PFS
in GC patients who were not selected or biomarker selected (81).

6.2 PI3K Inhibitors
BKM120 (Buparlisib) is a pan-class I PI3K inhibitor. It has been
reported to inhibit the growth of a variety of cancers, particularly
in PIK3CA mutant and KRAS wild-type tumor cells. Currently,
BKM120 has been tested in phase II clinical trials in CRC
patients with PIK3CA-activated mutations. In addition, three
clinical trials of BKM120 in combination with mFOLFOX6,
panitumumab or irinotecan in patients with metastatic
colorectal cancer (MCRC) or advanced CRC have been
completed. In a phase I clinical trial, the combination of
BKM120 and mFOLFOX6 was shown to have a maximum
tolerated dose (MTD) of 40mg/day, significantly lower than
the 100mg/day alone. Due to the lack of targeting action of
MTD at 40mg/day, the combination is not recommended
(82, 83).

BYL719 (Alpelisib) is a selective oral inhibitor of PI3Ka. In
the phase II clinical trial of BRAF mutation MCRC, the overall
response rate (ORR) and PFS in the combined treatment with
BYL719, LGX818, and cetuximab were 18% and 4.2 months,
respectively. But this is also accompanied by many AEs such as
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fatigue, vomiting, diarrhea, dermatologic AEs (rashes, dermatitis
acneiform, dry skin, melanocytic nevus) and hyperglycemia. At
present, this study has been completed, but the efficacy of
BYL719 still needs further experimental evaluation (84).

PX-866 is a specific PI3K inhibitor. Currently, the clinical
trial of PX-866 combined with cetuximab in incurable MCRC
has entered the phase I clinical trial and demonstrated stunning
anticancer effects. In the 9 patients evaluated for efficacy, both
the patients with PR and SD accounted for 44.4% (85).

6.3 mTOR Inhibitors
Temsirolimus (CCI-779) is an inhibitor of mTOR that has been
extensively studied in different clinical trials. It is currently
approved for the treatment of advanced renal cell carcinoma,
but its treatment for CRC is still in clinical trials. The
combination of temsirolimus and irinotecan in MCRC patients
with KRAS mutations has entered phase II clinical trials and a
significant increase in the proportion of patients with SD and
reduced tumors was observed (86).

Everolimus has shown strong anticancer activity in many
cancers. The safety and efficacy of everolimus plus best
supportive care (BSC) in patients with advanced GC has
entered phase III clinical trial. They found a tendency to
reduce the risk of death with everolimus and found that the
estimated median survival with everolimus combined with BSC
was 5.4 months, compared with 4.3 months in the placebo group.
Moreover, everolimus has often been studied in combination
with other drugs, such as bevacizumab, irinotecan, cetuximab,
mFOLFOX-6, OSI-906, AV-951 and panitumumab, which have
been extensively studied in MCRC, RMCRC, and advanced CRC,
while mitomycin C and capecitabine have been primarily studied
in GC (87–98).
7 CONCLUSION

The PI3K/Akt/mTOR pathway is one of the most complex
regulatory networks in the human body, and the abnormality
of main components stimulated the occurrence of cancer.
Currently, most studies have focused only on a few common
forms of aberrations, such as PIK3CA, PTEN, Akt1, and Akt2.
Abnormal changes in these genes have provided potential targets
for cancer treatment. Therefore, in order to explore more
effective therapeutic approaches, it is necessary to investigate
other aberrations about this pathway. At the same time, in order
to achieve the desired clinical benefit, we also need to understand
the various molecules that regulate the oncogenic function of this
pathway. These molecules can directly or indirectly regulate the
PI3K/Akt/mTOR pathway through a variety of ways, thereby
affecting the proliferation, metastasis, chemoradiotherapy
sensitivity and angiogenesis of ESCC.

Several PI3K/Akt/mTOR pathway inhibitors have been
investigated to be effective against a variety of cancers, and
sufficient clinical data have been obtained. For example, the
pan-PI3K inhibitor buparisib (BKM120) has shown antitumor
activity in estrogen receptor (ER) positive breast cancer and
xenograft tumors, either alone or in combination, and has been
Frontiers in Oncology | www.frontiersin.org 8
studied in phase III clinical trials in breast cancer. Similarly,
everolimus has shown a strong antitumor effect in advanced
HER2-positive breast cancer and advanced GC, which have also
progressed to phase III clinical trials (93, 99). Unfortunately,
while many targeted inhibitors of ESCC (such as MK226 and
everolimus) have been discovered, no drugs have been approved
for clinical use due to severe side effects and drug resistance.
Because monotherapy often leads to compensatory activation of
other pathways, such as LYZ294002, rapamycin, and
cisplatin.LYZ294002 is a pan-PI3K inhibitor that induces
compensatory activation of Akt during its inhibitory action,
thereby reducing its inhibitory effect. Similarly, BYL719 is a
specific PI3K inhibitor that has been shown to have inhibitory
effects in head and neck squamous cell carcinoma. BYL719 has
also been found to be effective in ESCC but its efficacy is often
limited by drug resistance (76). Dual inhibitors can effectively
reduce compensatory activations and enhance therapeutic
effects. Therefore, in order to overcome this redundant
pathway activation, new drugs or multi-drug combinations
should be vigorously developed. Therefore, future research
should focus on the study of other forms of mutations, the
exploration and discovery of new regulatory molecules, and the
combination therapy or the development of dual inhibitors to
overcome the resistance problems caused by monotherapy.

PI3K/Akt/mTOR pathway is one of the most vital pathway
regulating the basic physiological functions of cells. Abnormal
activation of this pathway are usually caused by the regulation of
its upstream molecules and mutations or amplification of major
components (e.g. PIK3CA, Akt1, PTEN, etc.). Although many
inhibitors have been shown to be effective in PI3K/Akt/mTOR
signaling pathway, clinical studies are still lacking. Moreover,
drug resistance has been a persistent problem. The efficacy of a
multi-drug combination is superior to that of medication alone
in preventing the compensatory activation of other pathways.
Therefore, the research focus should be on multi-drug
combination therapy and search for multi-inhibitors.
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