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A complex relationship exists between rheumatic diseases and cancer. This delicate
balance between chronic inflammation and malignant cell transformation in hematologic
neoplasms has been observed, but is not well defined. Large Granular Lymphocyte (LGL)
leukemia is at the intersection of a clonal lymphoproliferative disease, chronic
inflammation, and autoimmunity. The association between rheumatoid arthritis (RA) and
the spectrum of Felty’s Syndrome is well-known. Other rheumatic disorders have been
reported including systemic lupus erythematosus (SLE), Sjogren’s Syndrome (SS),
vasculitis, Behcet’s Disease (BD) and systemic sclerosis. The association between T-
LGLL and rheumatic disease pathogenesis has been hypothesized, but has not yet been
fully understood. Components of a shared pathogenesis includes chronic antigen
stimulation, JAK-STAT pathway activation and overlap of various cytokines. We will
summarize current knowledge on the molecular understanding between T-LGLL and
rheumatic disease. There are many potential areas of research to help meet this need and
lead to development of targeted therapeutic options.

Keywords: LGL, rheumatology, pathogenesis, T-LGLL, SLE (or Lupus), Behcet disease, Scleroderma (or systemic
sclerosis), vasculitic, Sjogren's syndrome
INTRODUCTION

A complex relationship exists between rheumatic diseases and cancer. This delicate balance between
chronic inflammation and malignant cell transformation in hematologic neoplasms has been
observed, but is not well defined. Large Granular Lymphocytic (LGL) leukemia is at the intersection
of clonal lymphoproliferative disease, chronic inflammation, and autoimmunity (1). LGL leukemia
is a rare type of mature T cell and NK cell neoplasm that was first characterized by McKenna et al. in
1977 (2). It was given its current name following discovery of lymphocyte clonality by Loughran
et al. in 1985 (3). In 1989, the French–American–British cooperative group identified LGLL as a
distinct entity among T cell leukemias (4). Based on theWHO classification, this clonal proliferation
can be divided into three distinct conditions: T-LGLL, chronic lymphoproliferative disorder of NK-
cells (CLPD-NK or NK-LGLL), and aggressive NK-cell leukemia, of which T-LGLL is the most
common accounting for 85% of cases (5). T-LGLL is frequently described in patients with
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rheumatologic disease (6). 15-40% of LGL leukemia patients
have concomitant rheumatoid arthritis (RA) with Felty’s
Syndrome representing the most well-known association (7).

Other concomitant rheumatic disorders with LGLL have been
reported including systemic lupus erythematosus (SLE),
Sjogren’s Syndrome (SS), vasculitis, Behcet’s Disease (BD) and
systemic sclerosis (SSc), but the true frequency is difficult to
assess due to the rarity of T-LGLL. There is a link in the
pathogenesis between T-LGLL and rheumatic disease though
the exact pathobiology underlying this has yet to be fully
elucidated. Further, concomitant T-LGLL with rheumatic
disease is likely underreported, as flow cytometry and testing
for the T-cell receptor (TCR) are not currently standard of care
for patients with rheumatic diseases. Currently, it is thought that
chronic T cell activation in the setting of an antigen trigger,
dysregulation of apoptosis and hyperactivation of Janus kinase
(JAK) signal transducer activator of transcription (STAT)
pathway as well as other molecular survival pathways (1, 8)
drives the development of T-LGLL. Typical disease features of T-
LGLL include splenomegaly, and cytopenias, most commonly
neutropenia with increased susceptibility to infection, and
anemia, often with transfusion dependence. Large granular
lymphocytes bear CD3+CD8+CD57+ surface phenotypes on T
cells with clonal rearrangement of TCR genes (9). These LGLs
have antibody-dependent and natural killer cell-mediated
cytotoxicity and make up 5-10% of total lymphocytes in
healthy patients (10). Currently, treatment is based on
immunosuppressive therapies, which may produce an
insufficient long-term response, and make targeted therapies
an ideal next step for treatment (11). Due to the rarity of
T-LGLL, a significant knowledge gap exists regarding the
pathogenesis and management options of T-LGLL in the
setting of rheumatic disease.

The pathogenesis of LGL leukemia is thought to be due to an
unknown chronic antigen trigger that leads to increased
activation of the JAK-STAT pathway and emergence of a
clonal population (1). Hyperactivation of the JAK-STAT
pathway can be due to STAT3 mutations that are present in
30-40% of LGL cases and mainly in patients affected by CD8+
T-LGLL subtype (12). STAT3 mutations have been reported in
patients with T-LGLL and RA (13). In a study by Rajala et al,
T-LGLL patients with one STAT3 mutation (23%) and multiple
STAT3 mutations (43%) had higher incidence of RA compared
to those without mutations (6%) (14). The JAK-STAT pathway is
known to play a role in the pathogenesis of other rheumatic
diseases as well as provide a target for new therapies. The
development of a monoclonal cytotoxic lymphocyte population
is the hallmark of T-LGLL and leads to production of
inflammatory cytokines resulting in disease manifestations
such as cytopenias (1). Some patients with LGL leukemia can
present with clinical features of rheumatic disease before the
diagnosis of leukemia. It is unclear if this manifestation is related
to the autoimmune disease itself or occurring as a secondary
lymphoproliferative process. This review will discuss the overlap
of pathogenic mechanisms and treatment between T-LGLL and
rheumatic diseases other than RA.
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CHRONIC ANTIGENIC STIMULATION

LGL leukemia cells represent a population of cytotoxic effector
memory T cells, suggesting chronic antigen stimulation (15). The
role of Epstein Barr Virus (EBV), Human T-lymphotropic Virus
(HTLV-1) and Hepatitis C Virus (HCV) have been suggested (1,
16–18). As in T-LGLL, various rheumatic diseases are thought to
be the result of immune activation due to chronic antigen
stimulation. Studies link EBV infection with autoimmune
disease and some lymphoid malignancies (19). EBV has been
studied extensively in RA and SLE. In SLE, the hypothesis of
defective control of EBV infection in a genetically predisposed
individual leads to EBV-reactive T cells, autoantibody production
and resultant tissue damage (19). EBV has been found in salivary
glands of patients with Sjogren’s Syndrome and EBV infected
plasma cells have been shown to produce anti-Ro52 and anti-La
antibodies (20). Other viral syndromes including HTLV-1, human
immunodeficiency virus (HIV) and HCV share clinical features of
Sjogrens (21). Currently, there is no conclusive evidence LGLs are
activated by HCV, but the hypothesis of chronic self-antigen
stimulation is supported by immunohistochemical studies
showing LGL clusters in contact with dendritic cells in bone
marrow (22). Chronic antigen stimulation from HCV has been
extensively studied in the setting of cryoglobulinemia. The
hepatitis C E2 envelope glycoprotein interacts with CD81
expressed on lymphocytes (23) which has been shown to result
in increased T cell proliferation (24) and chronic B cell stimulation
resulting in clones that produce monoclonal IgM (23), underlying
the pathogenesis of cryoglobulinemia. In type II mixed
cryoglobulinemia, the evolution from polyclonal to oligoclonal B
cell expansion due to chronic antigen stimulation is considered to
be a transition between autoimmunity and neoplasia (25). It is
possible similar pathways are involved in the development of
lymphoma and cryoglobulinemia in Sjogren’s Syndrome (25).
LGL leukemia was associated with indolent B cell lymphoma in
two patients with HCV who were successfully treated with
antiviral therapy. In one case, LGL expansion correlated with
viral replication and anti-viral treatment controlled LGL leukemia
(26). In another example, a case of T-LGLL in a patient with
concomitant hepatitis B, C and HIV was successfully treated with
anti-viral therapy (27). In epidemiologic studies, HTLV-1 has
increased incidence in patients with Sjogren’s Syndrome and
HTLV-1 transgenic mice have shown rheumatic disease
manifestations (28). The role of HTLV-1 in LGL remains
unclear, but initial studies revealed HTLV seroreactivity in some
LGL leukemia patients (29). In other diseases such as vasculitis,
myositis and scleroderma the role of potential viral trigger is less
clear and other antigenic stimulation may be result of bacterial,
environmental or other triggers.
INHERITED SUSCEPTIBILITY/
HLA PREDISPOSITION

In rheumat ic d iseases , the human class I I major
histocompatibility complex (MHC) human leukocyte antigen
June 2022 | Volume 12 | Article 854499
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(HLA) plays an important role in predisposing an individual to
develop an autoimmune response. Most notable is the HLA-DR
region in RA, SS, SLE and vasculitis including Giant Cell Arteritis
(GCA) and anti-neutrophil cytoplasmic antibody (ANCA)
associated vasculitis (AAV) (30–32). In LGLL, the HLA-DR4
marker has been shown to be prevalent in patients with Felty’s/
RA, but the frequency in patients with LGL leukemia that is not
associated with RA is unknown (33, 34). In a small series of
patients with T-LGLL, HLA-DR4 was observed in 32% of
patients, in those with associated RA this was 90% (34). In
another series, HLA-DR4 was highly predictive of responsiveness
to cyclosporine in patients with T-LGLL supporting an
immunologic mechanism underlying cytopenias (35).
ACTIVATION OF THE
JAK-STAT PATHWAY

In T-LGLL and rheumatic disease mutations of the JAK-STAT
pathway play a vital role (Image 1). Gain of function mutations
have been associated with autoimmunity as well as hematologic
malignancies (36). In T-LGLL, mutation in STAT3 gene is
described most commonly leading to enhancement in anti-
apoptotic pathways (37). Inhibition of the JAK pathway has
been a therapeutic target for a variety of rheumatic diseases. JAK
inhibitors (JAKi) have been approved for use in RA, ankylosing
spondylitis (AS) and psoriatic arthritis (PsA), but studies are still
ongoing for use in other rheumatic diseases such as SLE,
vasculitis and SS. In T-LGLL, the JAK inhibitors ruxolitinib
and tofacitinib have been applied to patients with refractory
T-LGLL and related RA with some success. In a small cohort of
patients receiving tofacitinib, hematologic response was observed
in 67% of patients and 89% had improvement in RA symptoms
(38). This has not been evaluated in cases of T-LGLL and other
associated rheumatic diseases.

Systemic Lupus Erythematosus
The role of the JAK-STAT pathway in SLE has extensively been
studied with ongoing randomized controlled trials evaluating use
of JAK inhibition in the treatment of SLE (39–41).
(NCT03616912), (NCT03616964), (NCT03252587). It is well
known the interferon (IFN) signature plays a key role in SLE
pathogenesis and activation of the IFN-receptor leads to signal
transduction through the JAK-STAT pathway (42). Genes
including STAT4 have been associated with high levels of IFN-
alpha. This may predispose patients to SLE as overexpression of
IFN-alpha genes has been found to be elevated in serum of patients
with lupus (43–45). The proposed effect of STAT4 inhibition is
immune suppression and inhibition of Th1 cell differentiation
(42). T-LGLL is more commonly associated with STAT3 gain of
function mutation which is associated with early-onset
lymphoproliferation as well as autoimmunity (46). In lupus, the
role of STAT3 has been identified in the pathogenesis of lupus
nephritis. In a lupus murine model, STAT3 knockout mice had a
markedly reduced renal inflammatory infiltrate, as well as less
pronounced renal IgG and C3 deposition, compared to controls
(47). There has also been association of SLE development with
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polymorphisms in TYK2, another member of the JAK family,
identified in a large Swedish and Finnish population (48). While
the relationship between T-LGLL and SLE remains unclear the
JAK-STAT pathway has been shown to play a role in the
pathogenesis of both disease entities and may represent a
potential treatment target.

Vasculitis
The JAK-STAT pathway has also been evaluated in various
vasculidites, and has been reported in patients with T-LGLL.
In a series of eleven patients with vasculitis, 91% of patients had
small vessel involvement presenting with purpura and histologic
evidence of leukocytoclastic vasculitis. Cryoglobulinemic
vasculitis was most frequently observed followed by ANCA
negative microscopic polyangiitis and one case of GCA. Biopsy
of the temporal artery and renal biopsy showed no LGL
infiltration (49). In this series, most cases of T-LGLL were
diagnosed simultaneously with vasculitis. Thus, screening for
LGL in patients with new diagnosis of vasculitis should
be considered.

In a study of patients with Behcets Disease (BD), total STAT3
expression was significantly higher compared to controls,
suggesting this signaling pathway is also activated (50). In a
Han Chinese population with BD, a significantly increased
frequency of the STAT3 polymorphism was also observed
suggesting susceptibility to BD (51). In LGLL patients, STAT3
mutations have been associated with gene alterations on
TNFAIP3 which is a gene responsible for encoding an NF-kB
s igna l ing inhib i tor ca l l ed A20 (52 , 53) . Notably ,
haploinsufficiency of A20 protein can also result in a BD
phenotype (54). Atas et al. hypothesized that there may be a
pathogenetic association between BD and T-LGLL, due to the
fact that upregulation of IL-18 and STAT3 pathways, along with
a reduction in A20 protein result in reduced NF-kB inhibition
(55). This overlap suggests IL-18, STAT3 and TNFAIP3 may
play important roles in the pathogenesis of both BD and
T-LGLL.

In large and medium vessel vasculidites, cytokine signaling
dependent on JAK1 and JAK3 has been shown to be critically
important in chronic inflammation (56, 57). In GCA and
Takayasu Arteritis (TAK), vessel wall inflammation is induced
by Th1 and Th17 cells (56). The cytokines released by these cells
are known to activate the JAK-STAT pathway (36). In mouse
models, temporal artery biopsy samples have shown
upregulation of STAT1 and STAT2 genes (57, 58). A cohort
study of patients with TAK revealed increased expression of
various genes related to the JAK-STAT pathway (59). There are
case reports of use of successful JAK inhibition in treatment of
refractory TAK (60, 61).

The relationship of T-LGLL and ANCA-Associated Vasculitis
(AAV) is unknown. In a cohort study of patients with AAV and
nephrotic syndrome, molecular profiling of tissue samples
revealed shared STAT1 activation identifying these two
histopathologically different diseases have a common molecular
pathway (62). Currently no clear association with STAT3
mutations has been described in AAV. There are many
unknowns for other types of vasculitis including polyarteritis
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nodosa (PAN) and IgA vasculitis owing to the rarity of these
diseases. It is possible that advances in molecular profiling
technology will increase understanding of these disease
processes and identify future treatment targets.

Sjogren’s Syndrome
In Sjogren’s Syndrome (SS), studies of JAK-STAT profiling are
limited. STAT4 polymorphisms have been identified as a genetic
risk factor for SS development (63). In a study of monocytes from
patients with primary SS, increased expression of JAK3 and
STAT4 was detected by polymerase chain reaction (PCR)
compared to controls (64). In a cohort of patients with SS,
stimulation of peripheral blood monocytes by IL-6 revealed
increased activation of STAT3 (65). A phenotype of LGL that
has been described in association with SS represents the TemRA

subset, which can be seen in the setting of chronic inflammation,
but is classically associated with low cell proliferation and high
cell death rate compared to LGLs which have prolonged survival
due to STAT pathway activation (66). Overall, these findings
highlight overlap between chronic inflammation and
autoimmunity as well as the difficulty associated with
determining which process is the primary etiology. Further
studies are needed to better assess the role of the JAK-STAT
pathway in development of concomitant T-LGLL and SS. There
are ongoing clinical trials evaluating the use of JAK pathway
inhibition for treatment of sicca symptoms. (NCT04496960,
NCT05087589, NCT04916756, NCT03100942)

Systemic Sclerosis
Reports of T-LGLL and systemic sclerosis (SSc) are exceedingly
rare. In a small cohort of patients with T-LGLL and autoimmune
diseases, one patient with a diagnosis of systemic sclerosis was
described (67). Cytokine analysis on T-LGLL cells was
performed and showed increased levels of IL-6, IL-8, IL-10,
soluble IL-12 and TNF alpha suggesting role of cytokine
release related to the immune phenomena observed in LGLL
(67). The JAK-STAT pathway has been shown to play a crucial
role in differentiation of autoreactive cells and the extracellular
matrix remodeling that occurs in SSc (68). IL-6 is thought to
exert it profibrotic effect through JAK2/STAT3 signaling (69).
Skin biopsies from SSc patients have also shown abnormal IL6/
JAK/STAT3 and tofacitinib gene signatures (70). The role of JAK
inhibition is also ongoing in clinical trials for skin and lung
manifestations of SSc (NCT03274076, NCT04206644).
CYTOKINES

Many cytokines involved in the pathogenesis of rheumatic
disease and hematologic malignancies utilize the JAK-STAT
pathway to transduce intracellular signals. Increased levels of
cytokines are known to contribute to disease activity. Many
different cytokines have been evaluated in the pathogenesis of
T-LGLL and autoimmune disease. Leukemic LGL survival is
promoted by elevated levels of IL-6 resulting in activation of
STAT3 (12). Other cytokines including IL-2, IL-12, IL-15, IL-18,
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EGF, IP-10, G-CSF have been identified (71, 72). IL-15 has been
shown to cause chromosomal instabili ty and DNA
hypermethylation acting as a key “activation switch” for
survival and expansion of LGLL in both humans and mice
(73). In rheumatologic disease, many cytokines use the Type 1
and 2 cytokine receptor family which has been implicated in
disease pathogenesis (74, 75). The PRECISE Systemic
Autoimmune Diseases (PRECISEADS) study identified a pro-
inflammatory cytokine network shared by four distinct
rheumatic diseases including SLE, SS, RA and SSc. Patients
were found to primarily have increases in CXCL10, IL-2, IL-6,
and tumor necrosis factor (TNF). The pro-inflammatory profile
was also characterized by an abnormal B cell distribution, a CD8
cytotoxic T cell signature, and more severe clinical features (76).
In vitro study suggested upregulation of this cytokine signature
associated with B cell enhancement of Th1 differentiation and
proliferation of activated naive T cells (76). While there is
overlap between certain cytokines involved in rheumatic
diseases as well as T-LGLL, whether these cytokine profiles
imply a causative role is still unknown. It may be inferred that
increased levels of these various cytokines support a cellular
immune mechanism in rheumatic diseases and an ongoing
expansion of T cells.
ROLE OF IL-15 IN T-LGLL AND
AUTOIMMUNE DISEASE

Interleukin-15 (IL-15) is a proinflammatory cytokine expressed
by a broad range of tissues and contributes to chronic
inflammation and autoimmunity (77). IL-15 has been
implicated in the pathogenesis of several autoimmune diseases
as well as LGLL. IL-15 is a member of the IL-2 family of
cytokines, which use receptor complexes containing the
common gamma-chain for signaling (77). IL-15 promotes
activation of T cells, NK-cells, neutrophils, macrophages, and
is critical to dendritic cell function (78). Importantly related to
development of autoimmune disease, IL-15 enhances activation
and maintenance of IL-17 producing T Cells (75). The role of IL-
15 in autoimmune disease comes extensively from studies of
rheumatoid arthritis. IL-15 has been evaluated in other
rheumatic diseases including SLE, SS, BD and SSc, but its exact
role remains obscure (See Table 1 and Supplement).

Clinical trials targeting IL-15 in rheumatic disease are scarce
and limited to RA. In a proof-of-concept study in rheumatoid
arthritis patients, the use of human IgG1 anti-IL-15 monoclonal
antibody (HuMaxIL15) showed suitable drug tolerability with no
significant effects on T lymphocyte subset and NK cell numbers.
By week eight, 63% of patients achieved an improvement of 20%
in both the number of tender and swollen joints (79). Following,
a phase II trial of the anti-IL 15 human monoclonal antibody,
AMG 714, for RA did not show efficacy (NCT00433875). AMG
714 has also been evaluated in other diseases with autoimmune
basis including psoriasis (NCT00443326) and celiac disease, but
failed to meet its primary endpoint (80).
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In T-LGLL, excess IL-15 is thought to play a part in the link
between inflammation and cancer. Initial clinical trials targeting
IL-15 had been unsuccessful (81, 82), but recent positive clinical
data from a phase 1/2 clinical study (NCT03239392) of BNZ-1, a
multi-cytokine inhibitor was presented at the 62nd American
Society of Hematology (ASH) Annual Meeting suggests that
IL-15 inhibition can induce clinical responses in patients with
T-LGLL, particularly those with transfusion dependence (83).
LINKING AUTOIMMUNITY AND CANCER:
IL-15 REGULATORY PATHWAYS

A common feature of CD8+ T cells and NK cells is their
dependence on IL-15 for homeostasis (84, 85). Zhou et al.
describe the deubiquitinase, Otub1 which was shown to be a key
regulator of IL-15R signaling. Otub1 deficiency was associated
with anti-cancer immunity and loss of self-tolerance (86). This
highlights the role of Otub1 as a potential novel checkpoint target
for cancer therapy. Other clinical trials using IL-15 in treatment of
cancer have shown increased activation of NK and CD8+ T cells,
but when administered as monotherapy have been ineffective (87).
This is thought to be due to the action of immunologic
checkpoints and there are ongoing trials evaluating the use of
IL-15 in combination with checkpoint inhibitors for patients with
metastatic solid cancers (NCT03388632). Combination therapy of
IL-15 with rituximab in a mouse model of lymphoma and
alemtuzumab in a model of adult T cell leukemia revealed that
IL-15 enhanced efficacy of both rituximab and alemtuzumab (88).
This led to development of the phase 1 trial of IL-15 combined
with alemtuzumab for patients with adult T cell leukemia
(NCT02689453) as well as ongoing trials in chronic lymphocytic
leukemia (NCT03759184, NCT03905135).
ROLE OF OTHER CYTOKINES IN T-LGLL
AND RHEUMATIC DISEASE

Systemic Lupus Erythematosus
SLE has been considered a dominant Th2 cytokine disease
though, increased levels of both Th1 and Th2 cytokines can be
seen (89). An association between IL-18, SLE and T-LGLL has
been proposed. IL-18 is a cofactor for Th1 cell development and
cytotoxic T cell induction (90). Ogata et al. describe a case of SLE
and T-LGLL with levels of IL-18 correlating with lupus
symptoms as well as the number of T-LGLs in serum
suggesting IL-18 may activate T-LGLL (91). In a study of 40
patients with SLE, plasma IL-18 and IL-12 concentrations were
significantly higher in SLE patients than in controls (92). In
mouse models, CD8+ cytotoxic T cells have been found to be
elevated in IL-18 transgenic mice and aberrant expression of IL-
18 resulted in the increased production of both Th1 and Th2
cytokines (90). The MRL/lpr mouse, used as a clinical model in
SLE, has been found to have higher serum levels of IL-18
compared to wild-type mice (93). In the same study, injections
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of IL-18 lead to presentat ions of malar rash and
glomerulonephritis. This highlights the important role IL-18
plays in SLE and possibly the development of T-LGLL, but
also as a potential therapeutic target.

Sjogren’s Syndrome
Levels of different cytokines in association with T-LGLL and SS
have been evaluated in a series of 12 patients which revealed
significantly increased levels of soluble interleukin-2 receptor,
TNF-alpha, IL-6 and IL-8 compared with healthy controls (94).
This increase was common to LGL leukemia patients with or
without Sjogren’s syndrome.

Vasculitis
Cytokine profiles in vasculitis vary based on the specific
underlying diagnosis and the connection with T-LGLL is still
not clearly characterized. In large vessel vasculitis such as GCA,
key cytokines identified include IFN-gamma, IL-6, IL-12, IL-17,
IL-18 and IL-21 (56, 95) which promote Th1 and Th17 cell
differentiation (96). In patients with granulomatosis with
polyangiitis (GPA), monocytes have been shown to release
high levels of IL-12 leading to induction of Th1 cytokines
including TNF-alpha and IFN-gamma (97). In Behcet’s
Disease, most studies have shown evidence of a Th1
predominant response, but Th2 and Th17 involvement have
also been demonstrated (55). Levels of IL-2, IL-12, IL-18 and
IFN-g (Th1 proinflammatory cytokines) have been shown to be
increased in BD (98) and elevated levels of IL-18 have also been
linked with disease activity (99).

Systemic Sclerosis
Increased levels of IL-1, IL-2, IL-2R, IL-4, IL-8, IL-17, TNF-
alpha, interferon, and antibodies to IL-6 and IL-8 have been
found in sera of patients with SSc (100, 101). The role of IL-6 has
been highlighted as increased levels have been linked to more
severe skin and lung disease (102). The IL-6 inhibitor,
tocilizumab is approved for use in SSc related interstitial lung
disease. While a variety of cytokines are involved in
autoimmunity and malignancy the question of whether anti-
cytokine therapies may play a preventative role in T-LGLL is
unknown. Chronic stimulation by proinflammatory cytokines
including IL-6 is responsible for sustained LGL proliferation as
well as an important STAT3 activating factor (103). Studies have
revealed increased levels of IL-6 in plasma of patients with LGLL
compared to healthy controls (67, 104). IL-6 inhibitors are also
used as treatment for other rheumatic conditions including
GCA, RA and Castleman disease, but its role as use for
prevention or treatment of T-LGLL is lacking clinical data.
Based on the role of IL-6 in pathogenesis of LGLL, there has
been consideration to use of tocilizumab as salvage therapy in T-
LGLL (105). In addition to anti-cytokine therapies, similar
questions arise for the role of JAK-STAT inhibitors, as this
pathway plays a central role in LGLL pathogenesis. This class
of drugs is more commonly being used to treat inflammatory
arthritis, but due to lack of clinical data the role as preventative
therapy for T-LGLL is lacking and it is unknown if patients with
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inflammatory arthritis treated with these drugs are less likely to
develop LGLL.
ROLE OF SPHINGOLIPIDS IN T-LGLL AND
RHEUMATIC DISEASE

Sphingolipids have been shown to play a part in long term
survival of cytotoxic lymphocytes (106). Dysregulation of the
sphingolipid pathway in rheumatic diseases has rarely been
described. In SLE, a cohort study revealed clinical and renal
disease activity were associated with elevated levels of circulating
sphingolipids (107). In another study of patients with biopsy
proven lupus nephritis, serum levels of sphingolipids were higher
compared to controls (108). As dysregulation of pro-apoptotic
(ceramide, sphingosine) and pro-survival sphingolipids
(sphingosine-1-phosphate) has been shown to play a role in
T-LGLL (106, 109) it would be of interest to evaluate the value of
sphingolipids in patients with rheumatic disease.
TREATMENT:

JAK Inhibitors in the Management of
T-LGLL and Rheumatic Disease
The discovery of JAKs as targeted therapy led to improvements
in treating many rheumatic diseases including RA, polyarticular
juvenile idiopathic arthritis (JIA) and psoriatic arthritis. There
are currently three JAK inhibitors (JAKi) approved for use in
patients with rheumatic disease in the United States. Tofacitinib,
baracitinib and updacitinib are approved for use in active RA in
patients who have had inadequate response to methotrexate,
traditional disease modifying anti-rheumatic drugs (DMARDs)
and tumor necrosis factor inhibitors (TNFi). Tofacitinib is also
approved for use in polyarticular JIA, psoriatic arthritis and
ankylosing spondylitis. The pan-JAKi, Peficitinib is approved for
RA in Japan, South Korea, and Taiwan (110). Filgotinib, a Jak 1
inhibitor is approved for RA in Japan and Europe (111).

It can be speculated that due to improvements in earlier RA
diagnosis and initiation of treatment this may lead to an overall
decrease in clonal expansion and development of T-LGLL. Many
therapeutic options are available for RA, but their specific role in
driving clonal expansion is unknown. In a study of 529 patients
with RA, 19 (3.6%) patients exhibited T-LGL expansion. There
was a significant association with the T-LGL clone and duration
of TNF inhibitor use suggesting long term exposure may be
associated with increased clonal T-LGL cells in RA patients
(112). Similar results were demonstrated in a cross-sectional
analysis of patients with psoriatic arthritis and ankylosing
spondylitis (113). A variety of in vitro and murine studies have
shown mechanisms of potential benefit for use of JAK inhibition
in rheumatic diseases including SS, SLE, large vessel vasculitis,
dermatomyositis and SSc though overall data is limited. Most
clinical evidence comes from case reports however there are
ongoing randomized trials with a variety of JAKi for other
rheumatic disease indications.
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In Sjogren’s Syndrome, a phase II trial of filgotinib failed to
meet its primary endpoint (NCT03100942) and there are
ongoing trials evaluating the use of tofacitinib and baracitinib.
Notably in SLE, a phase 2 trial of baricitinib was successful in
patients with active skin and joint disease and phase 3 trials are
ongoing (41). Evidence for use of JAKi in vasculitis is scarce.
Most data from in vitro, murine models and clinical experience
suggest a pathogenic basis that JAKi may be beneficial, but
clinical trials are needed. Data has come primarily from studies
involving large vessel vasculitides such as GCA and TAK (36).
There are ongoing clinical trials evaluating the efficacy of JAK
inhibitors in both of these diseases (NCT04299971,
NCT03026504, NCT03725202, NCT04161898). In other
vasculitides such as Behcet’s and Polyarteritis Nodosa, JAKi
has been reported in cases of refractory disease with some
success (114). In a study of 13 patients with refractory BD,
patients who were treated with tofacitinib showed improvement
in vascular and joint symptoms (115). A pilot study of 10
patients with AAV treated with tofacitinib were found to have
improvements in clinical symptoms and reduction in steroid
requirements (116), but larger randomized trials are needed to
confirm these findings. There are also ongoing trials of use of
JAKi in SSc and dermatomyosi t i s (NCT03274076,
NCT03002649, NCT04966884, NCT04613219).

The role of JAK inhibitors as targeted therapy in T-LGLL
associated with rheumatic disease is not known. In a study of
nine patients with rheumatoid arthritis and refractory T-LGLL,
tofacitinib led to hematologic response in six patients and
improvement in synovitis in eight patients (38). This may
suggest a role for earlier use of JAKi in patients with
concomitant RA and T-LGLL, but larger studies are needed.
JAKi use in other rheumatic conditions associated with T-LGLL
have not been reported.

The use of JAKi in T-LGLL is currently being evaluated,
though early promising data from a Phase I basket study suggests
there may be some efficacy. Targeted therapy with Ruxolitinib, a
JAK 1 and 2 inhibitor, was evaluated in five cases of refractory
T-LGLL with partial response observed in two patients, and
improvement in cytopenias in 4 patients (117). There is an
ongoing trial of Ruxolitinib in relapsed or refractory T or NK
cell lymphoma (NCT02974647) and this study is being evaluated
in a multi-center phase II trial. Ruxolitinib safety, tolerability and
efficacy was also evaluated in a four-week trial in patients with
RA (NCT00550043), but there are no published results. Another
targeted therapy, BNZ-1, is a multi-cytokine inhibitor that
targets the gamma chain receptor subunits of IL-2, IL-9, and
IL-15 leading to reduction of cytokine-mediated cell survival
(118). First clinical data with BNZ-1 in LGL was completed in a
phase I/II trial with 20% ORR (3PR, 1 CR), particularly in
patients with transfusion-dependent anemia (83). In regard to
other autoimmune disease, there is a phase II trial ongoing for
alopecia, but no other active trials in rheumatic disease at this
time (NCT03532958).

While standard therapies used in symptomatic T-LGLL include
steroids, methotrexate, cyclosporine and cyclophosphamide, these
are effective in only 30-40% of cases (11, 119). No clear treatment
guidelines have been established due to a lack of clinical trial data.
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In patients with T-LGLL and associated rheumatic disease co-
management with a rheumatologist is key. Treating the underlying
rheumatic process may be the best initial step to alleviate T-LGLL.
While methotrexate is often a first line therapy in the setting of
inflammatory arthritis and other rheumatic diseases, initial
treatments used in T-LGLL including cyclophosphamide are
often reserved for severe organ or life-threatening manifestations
of rheumatic disease. There is a clear need to develop better
therapies for the treatment of T-LGLL and T-LGLL in the
setting of rheumatic disease.
SUMMARY

Chronic inflammation and immune activation are central to the
bidirectional relationship between cancer and rheumatic disease.
Components of a shared pathogenesis between T-LGLL and
rheumatic disease includes chronic antigen stimulation, JAK-
STAT pathway activation and overlap of various cytokines. Due
to the rarity of T-LGLL in the setting of rheumatic disease this
complex relationship remains difficult to define. It is important
to evaluate the presence of T-LGLL in patients with rheumatic
Frontiers in Oncology | www.frontiersin.org 7
disorders, as T-LGLL is likely under-reported in this population.
While T-LGLL and rheumatic conditions may share clinical and
lab features, a complete history and examination by a
rheumatologist is key for appropriate serologic evaluation and
diagnosis of rheumatic disease. In the setting of cytopenia, early
evaluation with peripheral blood flow cytometry and TCR testing
would likely improve recognition and early detection of T-LGLL.
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95. Espıǵol-Frigolé G, Planas-Rigol E, Lozano E, Corbera-Bellalta M, Terrades-
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