
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Wenwen Guo,
Nanjing Medical University, China

REVIEWED BY

Jing Ni,
Nanjing Medical University, China
George Ansstas,
Washington University in St. Louis,
United States

*CORRESPONDENCE

Weiming Huang
weiming.huang@pkufh.com

SPECIALTY SECTION

This article was submitted to
Thoracic Oncology,
a section of the journal
Frontiers in Oncology

RECEIVED 14 January 2022
ACCEPTED 05 August 2022

PUBLISHED 30 September 2022

CITATION

Shang X, Qi K, Liu X, Liu Q, Zhang X,
Wang D and Huang W (2022)
Signatures associated with
homologous recombination deficiency
and immune regulation to improve
clinical outcomes in patients with lung
adenocarcinoma.
Front. Oncol. 12:854999.
doi: 10.3389/fonc.2022.854999

COPYRIGHT

© 2022 Shang, Qi, Liu, Liu, Zhang, Wang
and Huang. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which
does not comply with these terms.

TYPE Original Research
PUBLISHED 30 September 2022

DOI 10.3389/fonc.2022.854999
Signatures associated with
homologous recombination
deficiency and immune
regulation to improve clinical
outcomes in patients with lung
adenocarcinoma

Xueqian Shang1, Kang Qi1, Xiangzheng Liu1, Qinghao Liu1,
Xining Zhang1, Dongliang Wang2 and Weiming Huang1*

1Department of Thoracic Surgery, Peking University First Hospital, Beijing, China, 2ChosenMed
Technology Co., Ltd., Beijing, China
PARP inhibitors can be used to treat solid tumors that often have mutations in

important homologous recombination (HR) genes, such as BRCA1/2. While

other kinds of tumors could also experience HR deficiencies, including those

associated with lung cancer, there is little information on the frequency of

these occurrences. Homologous recombination deficiency (HRD) was used to

induce particular DNA aberration profiles and related transcriptome alterations.

Their presence can identify whether an HR deficiency is present or absent in a

particular tumor sample, even without observed HR gene changes. From

whole-exome sequencing data in lung adenocarcinoma obtained from

TCGA, we obtained several mutational signatures associated with HRD and

determined that these HRD-associated mutational signatures are related to

genomic installability. We then constructed a prediction model, which found

that 11 genes associated with HRD scores could be used as predictors of

survival outcomes in LUAD patients. These genes are related to PI3K-Akt, T cell

receptors, and the Chemokine pathway. Other GEO datasets validated the

survival prediction, which was independent of the PD1/PDL1 treatment.

Collectively, our study provides transcriptome biomarkers of lung

adenocarcinoma complementary to the HRD score and introduces a novel

method of identifying prognostic biomarkers of immunotherapy.

KEYWORDS

LUAD, HRD score, transcriptome, prognostic model, immune
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2022.854999/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.854999/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.854999/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.854999/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.854999/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.854999/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.854999&domain=pdf&date_stamp=2022-09-30
mailto:weiming.huang@pkufh.com
https://doi.org/10.3389/fonc.2022.854999
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.854999
https://www.frontiersin.org/journals/oncology


Shang et al. 10.3389/fonc.2022.854999
Introduction

Lung cancer is the most common type of cancer, accounting

for 18.4% of worldwide deaths associated with cancer (1). Lung

cancer can be grouped into one of two categories: SCLC and

NSCLC (of which the most common subgroup is LUAD) (2).

Providing a patient with an accurate prognosis can more

accurately identify a patient’s risk and guide subsequent

treatments, significantly affecting survival rates. One promising

new method of cancer treatment includes PARP inhibitors,

which work best against tumors with compromised

homologous recombination (HR)-mediated DNA repair.

PARP inhibitors have been approved to treat ovarian,

pancreatic, breast, and prostate cancers, all of which have solid

tumors related to loss of function mutations in important HR

genes, including BRCA1/2 (1). PARP inhibitor therapy can also

benefit other kinds of tumors with HR deficiencies. As such,

identifying the incidence of HR deficiencies in these tumor types

can significantly benefit clinical outcomes, since they are not

often related to germline BRCA1/2 mutations. In 5-10% of

NSCLC cases, there are somatic mutations in the BRCA1/2

genes (3, 4); there are also mutations in DNA damage

checkpoint genes (5, 6). However, it is unclear whether these

mutations can inactivate the HR pathway in patients with lung

cancer, though analyzing next-generation sequencing-based

DNA aberrations profiles of NSCLC cases can help answer

this question.

Loss of function in the HR genes BRCA1 and BRCA2 are

related to several mutational characteristics, including (1) a

single nucleotide mutational characteristic known as

“Signature 3,” the “BRCAness” signature, or SBS3 in COSMIC

signatures v3 (7, 8); (2) a mutational profile based on short

deletions or insertions which are typically characterized by

microhomology deletions and different repair mechanisms

joining double-strand breaks when HR is not present (9); (3)

large-scale rearrangements, including non-clustered tandem

duplications within a particular range of sizes (primarily

related to loss of BRCA1 function) or deletions in a 1-10kb

range (primarily related to loss of BRCA2 function) (10). Some

of these DNA aberration profiles can be specifically induced by

loss of function in BRCA1 or BRCA2 in experimental models

(9). Composite mutational signatures related to HR deficiency,

like the HRD score, can be calculated by assessing the frequency

and presence of these mutational events.

Recent studies have demonstrated that gene mutations

related to the HR signaling pathway, such as BRCA gene

mutations, account for 20% of ovarian cancer patients with

HRD (11) (2). As such, additional studies on the traits of
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transcriptomes in HRD patients can help close these

knowledge gaps. While some research has assessed the

association between the instability of the tumor genome and

the transcriptome (11, 12), there is little information about

RNAs associated with HRD or the role they play in lung

cancer. Additionally, the BRCA1/BRCA2 genes, which are

related to HRD, account for less than 10% of lung

adenocarcinoma cases (13). Therefore, additional biomarkers

are needed to molecularly type lung adenocarcinoma patients

with HRD scores.

We analyzed all available data from the TCGA lung

adenocarcinoma (LUAD) cohort and determined which of the

above-listed mutational signatures are present in these cases.

Based on the HRDscore of the TCGA datasets (3), we estimated

the frequency of potential HR deficiency in lung cancer cases.

We chose the top 15% and bottom 15% HRD scores differ in

their survival rates. We then compared the two group mutation

genes and other omics data. Furthermore, we compared

epigenetics methylation profiles, transcriptomes (including

mRNA and miRNAs), and proteomics. We constructed a

geneset prognostic signature model using Cox lasso, which was

validated using several independent datasets.
Methods

Collection of data

Data on patient multi-omics and related follow-up info were

obtained from the publicly available Cancer Genome Atlas

(TCGA) database (https://portal.gdc.cancer.gov), while SNV

data were obtained from the NCBI Gene Expression Omnibus

(GEO) database and the TCGA MC3 groups (4). R was used to

normalize the RNA sequencing data as transcripts per million

(TPM), while the copy number variation (CNV), number of

somatic mutations, fraction genome altered scores (FGA: the

ratio of the copy number altered chromosome regions out of the

measured regions), and the MSIsensor score (microsatellite

instability detection using paired tumor-normal sequence data)

were obtained from the TCGA database (3). Data from the GEO

samples, including GSE30219 (5), GSE31210 (6), and

GSE135222 (7), were used for validation.

We obtained HRD scores from TCGAhrd (https://github.com/

GerkeLab/TCGAhrd) (3). Homologous recombination deficiency

(HRD) was considered responsible for genomic scarring with large-

scale genome instability (14). An HRD score was calculated from

the HRD-LOH (8) and LST (large-scale state transitions) (9). Table

S1 displays the HRD scores for each patient.
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Processing of data

To identify other effects, we filtered patients with OS times

less than 40 days. Remaining patients were categorized by high

HRD scores (n = 74, top 15%) and low HRD scores (n = 70,

bottom 15%). Differences in prognostic time were compared

using log-rank tests and Kaplan-Meier analysis.

The expression of each gene in the RNA-seq data was

normalized using the fragment per kilobase million method

and converted according to the Z score. An Illumina Human

Methylation 450k array and reverse-phase protein arrays

(RPPA) were used for the proteins. Gene expression profiles

from the GEO database were processed according to the

following: when a gene was mapped to more than one probe,

the gene expression was considered the median. We removed

probes that were not mapped to a gene ID or that were mapped

to more than one gene ID.

We compared the TCGA LUAD data, including mRNA,

miRNA, protein, and methylation 450k array. Methylation array

analysis was performed via ChAMP (10), while other omics were

analyzed by DESeq2 (15). RNA-seq data (raw counts) analysis

was performed using the “DESeq2” R package. Fold change >

1.5, adj. p< 0.05, were set as the cutoffs to screen for differentially

expressed genes (DEGs). The R package cluster profile was used

to analyze the functional enrichment of differentially expressed

genes and HRD-related DEGs, including GO (11), KEGG (12),

and cancer hallmarks (16). We performed a hypergeometric test

to assess the significance of our enrichment results; the FDR

values were adjusted by GSEA and BH (28).
Frontiers in Oncology 03
Generating risk assessment scores
related to HRD scores

We combined different expressions of miRNA, mRNA,

methylation, and protein regions as candidate omics genes.

We first performed a univariate Cox proportional hazards

regression analysis to identify genes significantly associated

with OS (P ≤ 0.05). We then established the LASSO Cox

regression model using the “glmnet” package (17) and

identified genes with beta values that were not zero as possible

biomarkers to be used in prognosis. The following formula was

used to generate the risk score:

Riskscore =oN
i=1Coefficient(Genei) ∗ Expression(Genej)

The median risk score was used as a cutoff to categorize

patients as low risk (n=234) or high risk (n=233). Differences in

prognostic time were assessed using log-rank tests and Kaplan-

Meier analyses. Figure 1 displays the screening process.
Immune cell infiltration in bulk tumor
gene expression data

To study the enrichment of immune cells, we used cibersort

(18) and xcell (19), which are efficient algorithms for predicting

immune cell infiltration of bulk tumor gene expression data to

estimate the abundance of immune cells. We used the

CIBERSORT approach to quantify the relative abundance of

immune cells using samples from each group, which were then

compared between the low and high groups. Additionally,
FIGURE 1

Computational workflow of HRD-related multi-omics detection. HRD-related omics were detected by comparing the RNA expression profile of
the highest 15% of patient HRD scores with the bottom 15% of patient HRD scores.
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information relevant to immune properties was obtained from

the TCGA-LUAD cohort and analyzed between the low and

high groups.
Statistical analysis

We performed Kaplan-Meier survival analysis and the log-

rank test using the “survival” R package. Wilcox tests were used

to analyze the statistical significance of the differences in two

groups, while a Kruskal-Wallis test was used when there were

more than two groups. A Mann-Whitney U test was used to

analyze the immune cell fraction, TMB, overall survival (OS),

and abundance among the low and high groups. The

contingency table was analyzed with a Chi-square test and a

Fisher’s exact test, while the correlation analysis was performed

using Spearman’s correlation coefficient. Survival analysis was

performed using the KM method and the log-rank test, where

the sirvminer package was used to identify the cutoff ranges for

each cohort based on the survival ratio and the ES for each

pathway, using maximally selected rank statistics. The level of

pathway activation was identified using the median value, after

which differences in the number of responders were compared

between groups. The hazard ratio was calculated using the

univariate Cox proportional hazard regression model, while

independent prognostic characteristics were calculated using a

multivariate Cox regression model. Results were considered

statistically significant when p<0.05, and all statistical tests

were two-tailed. We used the ggpubr package (32) to generate

the box plots. R software was used to produce all statistical

analyses and visualizations (https://www.r-project.org/;

version 4.0.0).
Results

The instability of each patient’s genomics
can be determined with the HRD score,
which can be used as a prognostic
marker for LUAD patients

LST, TAI, and LOH were used to calculate the HRD score

based on the HRD algorithm, while lung cancer patients were

classified according to their ascending HRD scores to identify

the prognostic capabilities of the HRD score. The bottom 15%

and the top 15% of the patients were selected. As shown in

Figure 2A and Tables 1, S1, the homologous recombination

deficiency (HRD) score was significantly correlated with the

prognosis and molecular characteristics of the TCGA-LUAD

cohort (p-value = 0.046). We compared the mutation signature

and genome doubling with the chi-square test (Figures 2B, E)

and found that it differs for these two groups. The high group is

enriched with cosmic signature 4, which has a similar mutational
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pattern seen in experiments dealing with tobacco carcinogens

(e.g., benzo[a]pyrene) and is related to smoking. Tobacco

mutagens are likely responsible for signature 4, while the low

group is enriched with cosmic signature 5. The high group

experienced more genome doubling, and the low group

experienced less genome doubling (Figure 2E). We

subsequently investigated the correlation between the HRD

score and other characteristics of genomic instability,

including somatic mutation counts for TMB, CNA, LOH,

ploidy, and subclone fractions. The median value of somatic

cumulative mutations in the HRD group was significantly higher

in the HRD high group than in the HRD low group (Wilcoxon

signed-rank test, p<.0001) (Figures 2C, D, F, G and

Supplementary Figure 1). This indicates that the genome

mutation profiles differ between these two groups. Lastly, we

compared the mutation genes between these two groups and

found that TTN, TP53, MUC16, CSMD3, RTR2, and KEAP1

have higher mutation rates in the high group, while KRAS is

higher in the low group (Figure 2H).
HR deficiency-associated DEGs in lung
adenocarcinoma patients

To explore the multi-omics signatures associated with HRD,

we compared the difference of the whole transcriptome between

the top 15% HRD-score group and the bottom 15% HRD-score

group (Figure 1). Utilizing the DESeq2 method, a total of 494

different methylation sites, 1,348 differentially expressed genes

(DEGs), 36 DE miRNAs, and 9 RPPA differentially expressed

proteins were screened out in lung cancer patients (Figures 3A–D,

Supplementary Figures 3, 4 and Table S2). KEGG and GO cluster

plots revealed that immune-related signaling pathways, including

human T−cell leukemia virus 1 infection and DNA repair

pathways, the p53 signaling pathway, homologous

recombination, mismatch repair, and nucleotide excision repair

were observed in the top 15% HRD-score group, while cAMP

signaling pathway and cell adhesion molecules are enriched

pathways in the bottom 15% HRD-score group (Figure 3E).

Furthermore, in the hallmark GSEA result, the PI3K AKT

mTOR is downregulated, while angiogenesis and reactive

oxygen are upregulated in the top 15% groups (Figure 3F).
Establishment of risk assessment
signature

A total of 1,348 genes, 28 miRNAs, 8 proteins, and 79

methylation sites were integrated into a gene set, which was

subjected to a univariate Cox regression analysis. 241 potential

candidate genes were pinpointed (P ≤ 0.05), including 85

markers. In LASSO regression, the optimal l value pointed to

the most robust prognosis signatures, after 10-fold cross-
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validation with 1000 repeats. The remaining 11 genes had non-

zero LASSO coefficients, including B3GALT2, C17orf44,

CCT6A, CD40LG, FKBP4, GNG7, H2AFZ, IGF2BP1, IVD,

RCBTB2, and SLC34A2 (Figure 4A). Their corresponding

LASSO coefficients are displayed in Figure 4 (Supplementary

Table S3). Finally, the risk score was calculated using the formula

in the “Construction of Risk Assessment Signature” section.

There was a significant difference in the survival rate between

the low-risk group and the high-risk group (P = 2.37e−06)

(Figure 4B). We used multi-cox analysis to analyze the PD1,

PDL1, HRD score, and signature score and found that the

signature score p-value< 0.05 (Figure 4C). For these signature

genes, FKBP4, H2AFZ, CCT6A, and IGF2BP1 are positively

related to the signature score, while the HRD score, IVD,
Frontiers in Oncology 05
SLC34A2, RCBTB2, CD40LG, GNG7, B3GALT2, and C17orf44

are negatively related to signature and HRD score (Figure 4D).

These genes are related to the immune system and tumors:

GNG7 is related to PI3K-Akt and Chemokine, FKBP4 is related

to Estrogen, and IGF2BP1 is related to miRNA in the cancer

pathway, and CD40LG is related to the NF-kappa B and T cell

receptors (Figure 4E). There is a significant correlation between

the signature score and cibersort cell abundance. B memory cells,

resting dendritic cells, resting mast cells, monocytes, and resting

memory CD4 T cells are positively associated with the signature

score (p< 0.05), while regulatory T cells are negatively associated

with the signature score. Macrophages, M0 cells, Macrophages

M1 cells, activated mast cells, neutrophils, resting NK cells,

activated memory CD4 T cells, CD8 T cells, and follicular
A B

D E

F G H

C

FIGURE 2

The HRD score reflects a patient’s genomic instability and can be used as a prognostic marker in LUAD patients. (A) Kaplan-Meier estimates of
overall survival of patients with the top 15% HRD or bottom 15% HRD in the TCGA-LUAD cohort. (B, E) Bar plot of mutation signature (B) and
genome doubling (D) in the top 15% HRD-score group and the bottom 15% HRD-score group. (C, D, F, G) Violin plot of somatic mutations
(TMB), CNA, LOH, ploidy, and subclonal fractions, in the top 15% HRD-score group and the bottom 15% HRD-score group. Somatic mutations in
the top 15% HRD-score group were significantly higher than those in the bottom 15% HRD-score group (Wilcoxon signed-rank test).
(H) Comparison of mutation genes between the top 15% and bottom 15% HRD groups.
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helper T cells are positively associated with signature scores

(p< 0.05).
Validation in other lung cancer datasets

An independent external cohort was used to confirm the

prognostic efficacy of the 11 gene signatures. Similarly, the OS

and RFS of patients with higher risk scores are significantly

worse than that of patients with lower risk scores (p = 0.0011,

Figures 5A, B GSE30219 datasets). In the GSE31210 dataset, the

high-risk group had more relapsed samples (Fisher’s exact test,

p< 0.001) (Figure 5C). The relapsed status was different: the high

signature score groups had more relapsed patients and the

mutation genes differed between these two groups (Fisher’s

exact test, p< 0.01) (Figure 5D). Furthermore, we compared

the cell fraction between these two groups and found several

different immune cells in the high and low signature score

groups. CD4 T memory cells, CD8 T cells, macrophages, and

immune scores were all significantly higher in the low group in

the GSE30219 datasets (Figure 5E). CD4 naïve T cells, CD4

central memory cells, classical dendritic cells, and mast cells were

all higher in low groups in GSE31210 datasets (Figure 5F).
Comparison of signature scores with
immune therapy PD1 drugs

We further estimated the signature score in PD1/PDL1

treatment patients (GSE135222 dataset, which is PD1/PDL1

treatment patients), and we grouped patients by drug
Frontiers in Oncology 06
response. This means that there are no-response patients in

“no benefit groups” and response patients in “benefit groups.”

For the response groups, the OS was better, and was considered

the benefit group; in the no-benefit samples (the no-benefit

group), we grouped patients by the median of their signature

scores into high signature score groups and low signature score

groups. The high-risk group was worse than the low-risk group

(Figures 6A, B). Under PD1/PDL1 treatment, the gene

expression of PDCD1 (PD1) and CD274 (PDL1) had no

significant different survival prognostics for PD1/PDL1

expression, and the signature score high and low groups

(Figure 6A). We then compared the fractions of other immune

cells between the four groups (LowN, low signature scores, and

no benefit; HighN, high signature scores, and no benefit; HighY,

high signature scores, and benefit; LowY, low signature scores,

and no benefit.). There were more B cells, CD4 T cells, mast cells,

and regulatory T cells in the signature score low and benefit

groups. The immune score was relatively high for the high

signature score and benefit groups (Figure 6C).

Additionally, the Human Protein Atlas database was used to

obtain the hub genes, while IHC was used to determine their

expression. Our results indicate that expression levels were

related to transcription levels, though there was no IHC data

available for B3GALT2, C17orf44, CD40LG, GNG7, and

IGF2BP1 (Figure 7).
Discussion

In this study, we analyzed the molecular characteristics of

LUAD patients with different HRD scores and identified
TABLE 1 The characteristics of samples in the TCGA-LUAD dataset.

Variant High Low p

74 70

FEMALE 32 (43.2) 39 (55.7) 0.184

MALE 42 (56.8) 31 (44.3)

age 62.18 (10.43) 66.88 (9.43) 0.006

Former smoker for< or = 15 years 29 (39.2) 16 (23.9) <0.001

Former smoker for > 15 years 11 (14.9) 24 (35.8)

Former Smoker, Duration Not Specified 0 (0.0) 1 (1.5)

Current smoker 32 (43.2) 13 (19.4)

Lifelong Non-smoker 2 (2.7) 13 (19.4)

Stage I 38 (51.4) 43 (62.3) 0.470

Stage II 23 (31.1) 16 (23.2)

Stage III 12 (16.2) 8 (11.6)

Stage IV 1 (1.4) 2 (2.9)

HRD TAI 20.91 (4.02) 2.74 (1.73) <0.001

HRD LST 18.12 (5.29) 1.66 (1.21) <0.001

HRD LOH 12.32 (3.92) 1.61 (1.23) <0.001

HRD Score 51.35 (8.52) 6.01 (3.20) <0.001
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biomarkers that can be used to complement the HRD score. A

comprehensive analysis of the genomic landscape of the HRD

score group demonstrated a high abundance of TMBs and a

difference in genome doublings, and mutation signatures. We

performed univariate Cox proportional hazards analysis and

LASSO COX regression analysis to screen multi-omics genes

associated with the HRD score prognosis. The prediction model

was established using 11 mRNA genes. Our study provides a

robust model and candidate biomarkers for personalized therapy

of LUAD patients. The 11 gene signature model is a potential
Frontiers in Oncology 07
reliable biomarker for assessing prognosis, while the predictive

effect of the signature model was independent of PD-1/PD-L1.

While lung cancer is not typically related to germline

BRCA1/2 mutations, there have been a few instances (32, 33):

there are somatic in the BRCA1 or BRCA2 gene in

approximately 5-10% of non-small cell lung cancer cases

(4). We determined that HRD scores are suitable for use as

a biomarker when complementing the mutation status of

genes associated with HR. We observed higher rates of

cosmic mutation signature 4 in the high HRD score group,
A B

D

E F

C

FIGURE 3

DEGs and related pathways associated with HRD. (A–D) Heatmap of DEGs in the top 15% HRD-score group and the bottom 15% HRD-score
group. (E) KEGG enrichment analysis of DEGs. The heights of the columns indicate DEG counts in the total number of genes in the signaling
pathway and the color depth represents the pathways. (F) GSEA Enrichment plot (cancer hallmark pathways) in the top 15% HRD-score group
and the bottom 15% HRD-score group.
frontiersin.org

https://doi.org/10.3389/fonc.2022.854999
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shang et al. 10.3389/fonc.2022.854999
which is associated with tobacco. Additionally, we observed

more genome doubling in the high group. The TMB, CNA,

LOH, and ploidy were all high in the high group, which

indicates the presence of additional genome-wide mutations

and alternations and could introduce additional tumor
Frontiers in Oncology 08
antigens to induce an immune response. These genes

include TTN, TP53, MUC16, CSMD3, RYR2, KRAS, and

KEAP1, while TP53 had higher mutation rates in the high

group, and KRAS had higher mutation rates in the low group.

There could be different evolutionary pathways for these two
A B

D

E F

C

FIGURE 4

Results of the prognostic signature model. (A) The correlation between log(l) and deviance. (B) Kaplan-Meier estimates of overall survival of
patients with high- or low-risk scores in the TCGA-LUAD cohort. (C) Multivariate Cox regression analysis of the signature with PD1/PDL1 and
HRDscore were taken into account (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001). (D) Heatmap displaying the relationship between the signature genes.
(E) Chord plot depicting the relationship between genes and immune-related signaling pathways. Genes marked in red fonts refer to the most
frequently repeated genes in immune-related signaling pathways. (F) Scatterplot displaying the signature score with immune cell fractions,
including positively related and negatively related.
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groups, though KRAS is significantly mutually exclusive with

TP53 (20).

We performed a multi-omics comparison of the high and

low groups, epigenetics, transcriptome, and proteomics, and

found thousands of differentially expressed features in various
Frontiers in Oncology 09
methylation sites. These genes are involved in DNA repair-

related pathways in the high HRD score group, which is

consistent with genome-level modifications. In these cases, the

high HRD score activates the DNA repair and immune response.

The 11 signature genes are associated with the immune
A B

D

E

F

C

FIGURE 5

The prognostic signature can be used as a potential biomarker for LUAD. (A, B) Curve for OS (overall survival) (A) and DFS (disease-free survival)
(B) are shown for the high and low signature scores in lung cancer. (C) The curve for OS (overall survival) is shown for the high and low
signature scores in lung adenocarcinomas. (D) Summary of clinical and mutation burden differences across the two groups for the high and low
signature scores in lung cancer. Testing differences of corresponding P-values in relapse and mutation genes. (E) Summary of differences in
immune cell fractions between the two groups for the high and low signature scores in the lung cancer GSE30219 dataset. This includes CD4 T
memory cells, CD8 T cells, macrophages, and immune scores. (F) Summary of differences of immune cell fractions between the two groups for
a high and low signature score in the lung cancer GSE31210 dataset. This includes CD4 naïve T cells, CD4 central memory cells, classical
dendritic cells, and mast cells.
frontiersin.org

https://doi.org/10.3389/fonc.2022.854999
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shang et al. 10.3389/fonc.2022.854999
pathways NF-kappa B, T cell receptor, and chemokine.

Regulation of the immune system can be further validated

when estimating immune cell abundance, which is similar to

the HRD score and immune checkpoint blockade (14, 21).

Furthermore, the signature score of 11 genes is unrelated to

the PD1/PDL1 treatment. There were no significant differences

in prognosis for PD1/PDL1 benefit patients, while there were

significant differences in prognosis for PD1/PDL1 no benefit

patients. Previously, we assessed the difference between PD1/

PDL1 expression with the signature and found that it is

independent of PD1/PDL1. However, these genes are

associated with various immune regulatory pathways, meaning
Frontiers in Oncology 10
that these genes could be changing immune-regulatory pathways

and could represent potential targets for immune therapy.

Our study had a few limitations. There was no transcriptomic

data of LUAD with PARP inhibitors treatment, which limited our

direct validation of 11 genes. Therefore, we used CRISPR/Cas9 and

pharmacodynamic data to assess the ability of the 11 genes to

predict the HRD population and its susceptibility to PARP

inhibitors. Additionally, we were unable to identify the co-

inhibition effect with PARP inhibitors using public data since

there are few studies assessing HJURP and CDCA2 inhibitors.

These results were produced by analyzing bioinformatics and would

benefit from additional clinical verification of the 11 genes and the
A B

C

FIGURE 6

The prognostic signature is independent of PD1/PDL1 treatment. (A) The overall survival curve is shown for high and low signature scores in the
PD-L1 treatment cohort. (B) Heatmap displaying the expression of signature genes and PD1/PDL1. (C) Summary of immune cell fractions
differences across the 4 groups. LowN, low signature scores, and no benefit; HighN, high signature scores, and no benefit; HighY, high signature
scores, and benefit; LowY, low signature scores, and no benefit. This includes B cells, CD4 naïve cells, CD4 T cells, immune score, mast cells,
and regulated T cells.
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validation of using the cell cycle pathway and PARP co-inhibition in

animal and cell line experimental models.

In conclusion, this study provides a novel perspective on the

molecular traits of the genomics and transcriptomes of LUAD

patients. We determined that HRD scores can be used as

prognostic biomarkers in LUAD patients. Additionally, we

found that the 11 gene expression signature model can predict

the survival outcome of LUAD patients and could serve as a

potential biomarker for assessing the effectiveness of immune

signatures. This study possesses high value for applications in

clinical settings and lays the groundwork for onboarding LUAD

patients in precision medicine programs.
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