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Objectives: To systematically review, assess the reporting quality of, and discuss
improvement opportunities for studies describing machine learning (ML) models for
glioma grade prediction.

Methods: This study followed the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses of Diagnostic Test Accuracy (PRISMA-DTA) statement. A systematic
search was performed in September 2020, and repeated in January 2021, on four
databases: Embase, Medline, CENTRAL, and Web of Science Core Collection.
Publications were screened in Covidence, and reporting quality was measured against
the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or
Diagnosis (TRIPOD) Statement. Descriptive statistics were calculated using GraphPad
Prism 9.

Results: The search identified 11,727 candidate articles with 1,135 articles undergoing
full text review and 85 included in analysis. 67 (79%) articles were published between
2018-2021. The mean prediction accuracy of the best performing model in each study
was 0.89 ± 0.09. The most common algorithm for conventional machine learning
studies was Support Vector Machine (mean accuracy: 0.90 ± 0.07) and for deep
learning studies was Convolutional Neural Network (mean accuracy: 0.91 ± 0.10). Only
one study used both a large training dataset (n>200) and external validation (accuracy:
0.72) for their model. The mean adherence rate to TRIPODwas 44.5% ± 11.1%, with poor
reporting adherence for model performance (0%), abstracts (0%), and titles (0%).

Conclusions: The application of ML to glioma grade prediction has grown substantially,
with ML model studies reporting high predictive accuracies but lacking essential metrics
and characteristics for assessing model performance. Several domains, including
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generalizability and reproducibility, warrant further attention to enable translation into
clinical practice.

Systematic Review Registration: PROSPERO, identifier CRD42020209938.
Keywords: machine learning, deep learning, artificial intelligence, glioma, systematic review
1 INTRODUCTION

Gliomas are the most common primary brain malignancy (1).
They are classified according to histopathologic and molecular
World Health Organization (WHO) criteria: grades 1/2 (low-
grade gliomas (LGG) and grades 3/4 [high-grade gliomas
(HGG)] (2). Glioblastomas, WHO grade 4 tumors, are the
most aggressive with a 15-month median overall survival (3).

Because prognosis (3, 4) and treatment (5) vary with glioma
grade, accurate classification is essential for guiding clinical
decision-making and mitigating risks posed by unnecessary or
delayed surgery due to misdiagnosis (6). The gold standard for
diagnosis, histopathology, requires surgical resection or stereotactic
biopsy for analysis. These invasive procedures, however, carry
significant risks and complications (7). Gliomas also exhibit
intratumoral heterogeneity with associated sampling error (8).
Therefore, a need exists for timely pre-operative whole-glioma
grading. As a non-invasive tool for analyzing entire lesions,
imaging overcomes the limitations of diagnostic surgical
procedures. Although conventional MRI has had modest success
in glioma grading (sensitivity 55-83%) (9), the diagnostic potential
of imaging has expanded with the use of advanced imaging,
radiomics, and artificial intelligence.

Radiomics quantitatively characterizes medical images using
image-derived features that serve as biomarkers for tumor
phenotypes (10). Artificial intelligence technologies, such as
machine learning (ML), have augmented radiomics. By
leveraging robust high-dimensional data, ML enhances
predictive performance (11). Deep learning (DL) is a subtype
of ML that has sparked recent interest given its superior
performance in image analysis and suitability for high volumes
of data (12). For imaging applications, DL generates useful
outputs from input images using multilayer neural networks.
Convolutional Neural Networks are the primary DL architecture
for image classification (13).

In clinical practice, ML models may increase the value of
diagnostic imaging and enhance patient management, for
example, by motivating earlier grade-appropriate interventions
(14, 15). Despite these opportunities, ML has not been
implemented clinically because of numerous technical (data
requirements, need for training, low standardization and
interpretability) and non-technical (ethical, financial, legal,
educational) barriers (16).

High-quality scientific reporting is necessary for readers to
critically interpret or replicate studies and encourage translation
into practice. Prior work indicates that reporting quality in
prediction studies is poor (17). To address this, the Transparent
Reporting of a multivariable model for Individual Prognosis or
Diagnosis (TRIPOD) Statement was published in 2015 (18).
2

Most of TRIPOD is applicable to ML-based prediction model
studies; however, ML-specific guidelines are lacking. The need for
such guidelines has initiated development of a TRIPOD extension
for ML-based prediction models (TRIPOD-AI) (19, 20).

While ML demonstrates promise for accurate glioma grading,
few works have characterized the state of ML in glioma grade
prediction (21–23). A systematic review of the literature can
identify potential ML methods for clinical use and generate
insights for implementation. This study aims to (1)
systematically review and synthesize the body of literature
using ML for classification of glioma grade, (2) evaluate study
reporting quality using TRIPOD, and (3) discuss opportunities
for bridging the ML bench-to-clinic implementation gap.
2 MATERIALS AND METHODS

This study followed the guidelines in the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses of Diagnostic
Test Accuracy (PRISMA-DTA) statement (24) and was registered
with the International Prospective Register of Systematic Reviews
(PROSPERO, CRD42020209938). An institutional librarian
searched the literature published through September 18, 2020,
using four databases: Cochrane Central Register of Controlled
Trials, EMBASE, Medline, and Web of Science Core Collection. A
multi-database approach was pursued because prior work has
demonstrated that a single database search may omit pertinent
studies (25). Keywords and controlled vocabulary included the
following terms and combinations thereof: “artificial intelligence,”
“machine learning,” “deep learning,” “radiomics,” “magnetic
resonance imaging,” “glioma,” and related terms. The search
was repeated on January 29, 2021, to gather additional articles
published through this date. A full search strategy is provided in
Appendix A1 (Supplementary). A second institutional librarian
reviewed the search prior to execution.

Only peer-reviewed studies were imported into Covidence
(Veritas Health Innovation Ltd) for screening. Covidence is an
online tool designed to streamline the systematic review process.
Duplicate studies were identified and removed. Study abstracts
were then screened for relevance to neuro-oncology by two of
three independent reviewers: an experienced board-certified
neuroradiologist, radiology resident, and graduate student in
artificial intelligence. The board-certified neuroradiologist
resolved discrepancies in screening recommendations. Relevant
articles were subsequently assessed for eligibility. To ensure
completeness, appropriateness, and understandability of eligible
studies, the following exclusion criteria were established:
(1) abstract-only; (2) not primary literature; (3) non-English;
(4) unrelated to artificial intelligence; (5) unrelated to gliomas;
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(6) unrelated to imaging; (7) non-human research subjects; and
(8) duplicates. Studies were not excluded based on publication
year in order to have comprehensive analysis of historical and
contemporary literature. Eligible studies underwent full text
review to identify those using ML to classify gliomas by grade.
Studies exclusively developing predictive models with distinct
focuses (e.g., predicting glioma IDH status, glioma segmentation)
were not included in analysis. A PRISMA flow diagram describing
our study selection process is depicted in Figure 1.

Whole data was independently extracted by two trained
medical student researchers using a standardized Microsoft
Excel (Microsoft Corporation) form. Conflicts were resolved
through team discussion and consensus. When necessary,
articles were carefully re-reviewed to obtain missing information
after data extraction. The following data points were extracted:
article characteristics (title, lead author, country of lead author,
publication year), data characteristics (data source, country
(or countries) of data acquisition, dataset size, types and number
of tumors for training/testing/validation, model validation
technique), grading characteristics (study definition of HGG and
LGG, gold standard for glioma grading), model characteristics
(best performing ML classifier, classification task, supervised/
semi-supervised/unsupervised learning, types of features in
Frontiers in Oncology | www.frontiersin.org 3
classifier, imaging sequences used by classifier, measures of
classifier performance) and reporting characteristics (TRIPOD
items, explained below).

Reporting quality was assessed against the TRIPOD statement
in agreement with the TRIPOD adherence assessment form (26)
and author explanations (18, 27). TRIPOD contains 20 main items
(e.g., main item 5) that apply to studies developing prediction
models, 10 of which contain subitems (e.g., 5a, 5b, 5c). Among the
30 total items that can be evaluated and scored, three (item 5c, 11,
14b) were excluded because they were not applicable to our
studies. The remaining 27 items were scored for every study.
Each item includes one or more elements, all of which must score
a “yes” for the item to score “1.” To calculate a study’s adherence
rate to TRIPOD, the number of items scoring “1” was divided by
the total number of scored items for the study. Adherence rate for
a given TRIPOD item across all studies was calculated by dividing
the number of studies scoring “1” for that item by the total number
of studies scored.

TRIPOD adherence rates and descriptive statistics (e.g.,
frequencies, mean ± standard deviation) were calculated and
displayed with GraphPad Prism 9 (GraphPad Software).
GraphPad Prism 9 is a scientific graphing and statistical
software supporting data analysis. Descriptive statistics were
FIGURE 1 | PRISMA flow diagram of study search strategy. ML, machine learning; PRISMA, Preferred Reporting Guidelines for Systematic Reviews and
Meta-Analyses.
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obtained to summarize study characteristics, dataset and model
characteristics, features, imaging modalities, and model
prediction performance, among other domains. Only the best
performing classifiers’ performance metrics (accuracy, AUC,
sensitivity, specificity, positive predictive value, negative
predictive value, and F1 score) defined in each study are
presented. Best performing classifiers were determined based
on accuracy results. In the few instances when accuracy was not
reported, AUC determined the best performing classifier. All
studies meeting our inclusion criteria ((1) identified by search
strategy; (2) relevant to neuro-oncology; (3) not excluded
during eligibility assessment; and (4) clearly evaluate ML-
based classification of glioma grade) contributed to the
sample size of our study. References for included studies are
listed in Appendix A4 (Supplementary).
3 RESULTS

3.1 Study Characteristics
The search identified 11,727 candidate articles, with 11,637
studies screened for relevance to neuro-oncology. Agreement
Frontiers in Oncology | www.frontiersin.org 4
between screeners was substantial [(Cohen’s kappa: 0.77 ± 0.04,
see Table A1 (Supplementary)]. 1,135 articles underwent full
text review, and 85 articles were included in analysis (Figure 1).

67 articles (79%) were published between 2018 and 2021, with
26 articles (31%) published in 2019 alone (Figure 2). Based on
lead author affiliations, most articles were from China, the US, or
India (n=45, 51%) (Figure 3).

36 articles (42%) defined HGG as grade 3 and 4 and LGG as
grade 1 and 2. 17 articles (20%) defined HGG as grade 4 and
LGG as grades 2 and 3. 32 articles (38%) didn’t define grades for
HGG and LGG (Figure 4).

3.2 Study Findings
3.2.1 Dataset and Model Characteristics
Among the 84 articles with identifiable patient data sources, data
was most commonly acquired multi-nationally (n=38, 45%),
entirely in China (n=15, 18%), or entirely in the US (n=10,
12%) (Figure 3). BraTS (28) and TCIA (29) datasets, which are
publicly available multi-institutional datasets containing multi-
parametric MRI scans, were used in 45% (n=38) of studies.
Conventional ML was the primary ML model for glioma grade
prediction in 59 (69%) studies and DL in 26 (31%) studies. Of all
FIGURE 2 | Number of studies published per year from 1995-2020.
A B

FIGURE 3 | (A) Number of studies by first author’s country of affiliation and respective continent. (B) Number of studies by country (or countries) of data acquisition.
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85 studies included, 80 (94%) reported the number of patients in
their datasets (mean: 177 ± 140). Studies developing
conventional ML models reported mean dataset sizes of 168 ±
150 patients. DL studies reported mean dataset sizes of 199 ± 109
patients. Among the 67 studies whose best performing models
were binary classifiers of HGG and LGG and reported the
number of HGG and LGG used in model development, 58
(87%) had imbalanced datasets characterized by an unequal
number of HGG and LGG patients. Most studies (n=44, 66%)
used datasets containing more HGG than LGG patients (i.e.,
HGG : LGG ratio >1). 14 studies (21%) had fewer HGG than
LGG patients (HGG : LGG ratio <1).

Only 5 (6%) studies reported external validation. Of the 80
other studies, 68 (85%) reported internal validation and 12 (15%)
did not clearly report validation methods. 82 (96%) of studies
had supervised learning algorithms and 3 (4%) used semi-
supervised learning. No studies reported unsupervised learning
algorithms. The gold standard for glioma grading was
histopathology in all studies.

3.2.2 Features
Texture (second-order) features and first-order features were the
most common feature subsets, extracted in 45 (53%) and 42
(49%) studies, respectively. Shape and/or size features (n=28,
33%) and DL extracted features (n=20, 24%) were also common.
Hemodynamic (n=5), qualitative (n=6), higher-order (n=4) and
spectroscopic features (n=8) were observed in less than 10% of
studies. Definitions for feature types are provided in Table
A7 (Supplementary).

3.2.3 Imaging Modalities
T1-weighted contrast-enhanced (T1CE) imaging was the most
common sequence used in best performing models (n=54, 64%),
Frontiers in Oncology | www.frontiersin.org 5
followed by T2 (n=46, 54%) and FLAIR (n=40, 47%). T1 pre-
contrast was less common (n=35, 41%). Perfusion-weighted
imaging (n=15), MR Spectroscopy (n=9) and diffusion-
weighted imaging (n=12) were used in 11-18% of models. PET
and fMRI were only used in one model each.

3.2.4 Prediction Performance
A summary of model performancemeasures across studies is shown
in Table 1. The mean glioma grade prediction accuracy of the best
performing algorithm per study was 0.89 ± 0.09. This parameter
was determined by taking the prediction accuracy of the best
performing algorithm in each study for all studies and calculating
a mean value and standard deviation. Lower accuracies were
reported for models undergoing external validation (mean: 0.82 ±
0.09, n=5). DL models had a mean prediction accuracy of 0.92 ±
0.08 and conventional ML models 0.88 ± 0.09.

The most common best performing conventional ML model
was Support Vector Machine (mean accuracy: 0.90 ± 0.07) and
DL model was Convolutional Neural Network (mean accuracy:
0.91 ± 0.10) (Figure 5).

We grouped all studies by data source into 4 categories:
BraTS, TCIA, single center, and multicenter (excluding BraTS
and TCIA) data. Studies which used BraTS as a data source had a
mean accuracy of 0.93 ± 0.04 (n=27) and studies using TCIA had
a mean accuracy of 0.91 ± 0.08 (n=12). Single center datasets
were the most common (n=43) with a mean accuracy of 0.88 ±
0.07, and multicenter hospital datasets the least common (n=6,
mean accuracy: 0.80 ± 0.18).

We additionally identified studies whose models were built on
relatively large (n≥200) datasets and externally validated, two
characteristics indicating potential generalizability. Only one
study (1%) had both characteristics (accuracy: 0.72) (30).
Further analysis of model performance by dataset source,
dataset size, validation technique, and glioma grade classification
task can be found in Appendix A2 and Tables A2-A5
(Supplementary). Characteristics of the 10 studies reporting the
highest accuracy results for their best performing algorithms are
summarized in Table 2. Characteristics of all included studies may
be seen in Table A6 (Supplementary).

3.3 Quality Assessment
The mean adherence rate to TRIPOD was 44.5% ± 11.1%, with
poor reporting adherence in categories including model
performance (0%), abstract (0%), title (0%), justification of
sample size (2.4%), full model specification (2.4%), and
participant demographics and missing data (7.1%). High
reporting adherence was observed for results interpretation
(100%), background (98.8%), study design/source of data
(96.5%), and objectives (95.3%) (Figure 6).
FIGURE 4 | Classification systems used across studies for defining HGG vs.
LGG by grade 1-4. HGG, high-grade gliomas; LGG, low-grade gliomas.
TABLE 1 | Mean (± standard deviation) aggregate performance metrics across studies.

Accuracy (n=82) AUC (n=48) Sensitivity (n=55) Specificity (n=51) Positive Predictive Value (n=12) Negative Predictive Value (n=6) F1 Score (n=7)

0.89 ± 0.09 0.92 ± 0.07 0.89 ± 0.09 0.88 ± 0.11 0.90 ± 0.09 0.82 ± 0.08 0.89 ± 0.11
(0.53-1.00) (0.73-1.00) (0.63-1.00) (0.55-1.00) (0.68-1.00) (0.73-0.94) (0.67-0.98)
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Titles (0%) did not identify the development of prediction
models. Abstracts (0%) frequently lacked source of data, overall
sample size, and calibration methods. Regarding model
performance (0%), very few studies reported measures for
model calibration or confidence intervals. Most studies failed
to specify model regression coefficients (2.4%) or provide
justifications of sample size (2.4%), e.g., how sample size was
arrived at according to statistical or practical grounds. More
detailed explanations of TRIPOD items and their adherence rates
can be found in Table A8 (Supplementary).
4 DISCUSSION

Our systematic review analyzed 85 articles describing ML
applications for glioma grade prediction and revealed several
trends. First, the number of studies published per year grew
steadily between 2016 and 2019. Second, imaging sequences and
ML models became less conventional, with the emergence of
advanced MRI sequences (MR Spectroscopy, Perfusion) in the
early 2000s (41) and DL models in 2018 (42). Third, datasets
recently expanded to encompass multiple institutions, with
BraTS and TCIA datasets appearing in 2017. While ML model
studies report high predictive accuracies, they underreport
critical model performance measures, lack a common
validation dataset, and vary remarkably in glioma classification
systems, ML algorithms, feature types and imaging sequences
Frontiers in Oncology | www.frontiersin.org 6
used for prediction, etc., limiting model comparison. Here, we
identify several opportunities for improvement to prepare
models for multicenter clinical adoption.

4.1 Study Datasets, Validation
Techniques, Classification Systems,
and Reporting Quality
Prior to broad clinical use, ML models must be trained and
validated on large, multi-institutional datasets to ensure
generalizability (43). Dataset sizes, however, were low in our
study, and most publications lacked external validation. These
findings are consistent with those from a similar systematic
review by Tabatabaei et al. (23). Moreover, while studies based
on highly curated datasets, including BraTS or TCIA, showed
consistently high accuracy results, algorithms trained on these
datasets without external validation may not have reproducible
results in clinical practice, where imaging protocols are less
standardized, image quality is variable, and tumor presentations
are heterogeneous. To show that models perform well across
distinct populations and are fit for broad clinical implementation,
future works should use sizable, less-curated, multicenter datasets
and externally validate their models.

ML models should also be trained according to standardized
definitions of glioma grade. Interestingly, definitions were
variable for HGG and LGG, with some studies considering
grade 3 gliomas to be high-grade and others low-grade. Lack of
a unified classification system may hinder predictive model
FIGURE 5 | Prediction accuracy of most common algorithm types, measured in the best performing algorithm of each study. Circle at mean. Error bars indicate
standard deviation.
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performances on external datasets, given that the images used for
segmentation, feature extraction, and model training/testing are
labeled HGG or LGG based on non-uniform definitions. As
glioma grade guides clinical management, it is essential that
algorithm outputs of “HGG” and “LGG” reflect a universal
definition consistent with current WHO criteria.

An alternative to binary high-or-low grading is to report
numerical glioma grades (1, 2, 3, or 4) and tumor entities.
Importantly, grade and entity classifications are evolving. In
Frontiers in Oncology | www.frontiersin.org 7
2016, purely histopathological classification was succeeded by
classification based on both molecular and histopathologic
parameters (44). In 2021, cIMPACT-NOW established further
changes to glioma grading, for example, by redefining GBM to be
an IDH (Isocitrate Dehydrogenase)-wild-type lesion distinct
from IDH-mutant grade 4 astrocytomas (45, 46). Classification
changes may have led to inconsistencies in tumor entities and
grades reported in glioma grade prediction studies across the
years, limiting model comparison. As WHO criteria continue to
TABLE 2 | Characteristics of the 10 studies reporting the highest accuracy results for their best performing models, including: glioma grade classification task, dataset
source and size, ratio of high- to low-grade gliomas, validation technique, imaging sequences used in prediction, feature types used in prediction, best performing
algorithm (based on accuracy results), and performance metrics.

Paper Glioma Grade
Classification

Task

Dataset HGG : LGG Ratio Validation
Technique

Imaging
Sequences

Features Best
Algorithm

Performance Metrics

Hedyehzadeh
et al. (2020)
(31)

2/3 vs. 4 TCIA (n=461
patients)

1.3:1 (262 HGG, 199
LGG in total set)

Internal (4-
fold cross-
validation)

T1, T1CE, T2,
FLAIR

Texture Support
Vector
Machine

Accuracy = 1.00 Sensitivity =
1.00 Specificity = 1.00

BashirGonbadi
and Khotanlou
(2019) (32)

1/2 vs. 3/4 BraTS
(n=285
patients)

2.8:1 (210 HGG, 75
LGG in total set)

Internal
(Holdout,
15% of
dataset)

T1, T1CE, T2,
FLAIR

Deep
learning
extracted

Convolutional
Neural
Network

Accuracy = 0.9918

Polly et al.
(2018) (33)

HGG vs. LGG
(unclear)

BraTS
(n=160
images)

1:1 (50 HGG, 50 LGG
in testing set)

Unspecified T2 First-
order,
Shape,
Texture

Support
Vector
Machine

Accuracy = 0.99 Sensitivity =
1.00 Specificity = 0.9803

De Looze et al.
(2018) (34)

HGG vs. LGG
(unclear)

Single
center
hospital
(n=381
patients)

Unclear Internal (5-
fold cross-
validation)

T1, T1CE, T2,
FLAIR, Diffusion

Qualitative Random
Forest

Accuracy = 0.99 AUC = 0.99
Sensitivity = 1.00 Specificity =
0.92

Sharif et al.
(2020) (35)

HGG vs. LGG
(unclear)

BraTS (n=30
patients)

2.3:1 (7 HGG, 3 LGG
in testing set)

Internal
(Holdout,
10-fold
cross-
validation)

T1, T1CE, T2,
FLAIR

Deep
learning
extracted

Convolutional
Neural
Network

Accuracy = 0.987

Muneer et al.
(2019) (36)

1 vs. 2 vs. 3
vs. 4

Single
center
hospital
(n=20
patients)

1.3:1.6:1:1.5 (39 grade
1, 51 grade 2, 31
grade 3, 47 grade 4
images in testing set)

Internal
(Holdout,
30% of
dataset)

T2 Deep
learning
extracted

VGG19 (Deep
Convolutional
Neural
Network)

Accuracy = 0.9825 Sensitivity =
0.9272 Specificity = 0.9813
Positive Predictive Value =
0.9471 F1 Score = 0.9371

Dandil and
Bicer (2020)
(37)

1/2 vs. 3 vs. 4
vs. meningioma

INTERPRET
(n=179
patients)

Unclear Unspecified MR
Spectroscopy
(Time of Echo
20ms and
136ms)

First-
order,
Shape
and size,
Texture

Long Short-
Term Memory
(Neural
Network)

Accuracy = 0.982 AUC =
0.9936 Sensitivity = 1.00
Specificity = 0.9753

Tian et al.
(2018) (38)

2 vs. 3/4 Single
center
hospital
(n=153
patients)

2.6:1 (111 HGG, 42
LGG in total set)

Internal
(10-fold
cross-
validation)

T1, T1CE, T2,
Diffusion,
Perfusion (3D
Arterial Spin
Labeling)

Texture Support
Vector
Machine

Accuracy = 0.981 AUC = 0.992
Sensitivity = 0.987 Specificity =
0.974

Lo et al. (2019)
(39)

2 vs. 3 vs. 4 TCIA (n=130
patients)

1:1.4:1.9(30 grade 2,
43 grade 3 and 57
grade 4 in total set)

Internal
(10-fold
cross-
validation)

T1CE Deep
learning
extracted

Deep
Convolutional
Neural
Network

Accuracy = 0.979 AUC =
0.9991

Kumar et al.
(2020) (40)

1/2 vs. 3/4 BraTS
(n=285
patients)

2.8:1 (210 HGG, 75
LGG in total set)

Internal (5-
fold cross-
validation)

T1, T1CE, T2,
(T2W)-FLAIR

First-
order,
Shape,
Texture

Random
Forest

Accuracy = 0.9754 AUC =
0.9748 Sensitivity = 0.9762
Specificity = 0.9733 F1 Score
= 0.983
April 202
Testing or validation metrics are reported when available, otherwise training metrics are reported. HGG, high-grade gliomas; LGG, low-grade gliomas; ML, machine learning; PRISMA-
DTA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses of Diagnostic Test Accuracy; T1CE, T1-weighted contrast-enhanced; TRIPOD, Transparent Reporting of a
multivariable prediction model for Individual Prognosis Or Diagnosis.
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evolve and affect generalizability of study results, we recommend
that studies clearly reference the criteria used in glioma grading,
report the glioma entities and corresponding grade used in
model development, and describe the predictive performances
by both entity and grade. This will promote comprehensible and
traceable results over time. Moreover, integrated techniques that
characterize disease according to both radiological and biological
features are emerging in neuro-oncology (47). We advise future
researchers to consider the implementation of these techniques
into ML model development studies predicting glioma grade,
molecular markers, response to treatment, prognosis, and other
applications within neuro-oncology.

Finally, reporting of ML models should be transparent,
thorough, and reproducible to facilitate proper assessment for
use in clinical practice (48). Several comprehensive checklists are
used to assess reporting quality of diagnostic models, including
Checklist for Artificial Intelligence in Medical Imaging (49) and
TRIPOD. In our study, mean adherence to TRIPOD was low,
with key assessment elements such as model performance
scoring poorly. These findings reflect inadequate study
reporting. To address this, we recommend future studies use
appropriate reporting frameworks to guide all phases of study
execution, from initial design through manuscript writing. For
ML studies, the relevance of TRIPOD as a benchmark for
reporting quality may be questioned. Published explanations
and elaborations of TRIPOD focus on regression-based
models, a shortcoming that TRIPOD authors have recently
acknowledged (19). We support their initiative to create a
Frontiers in Oncology | www.frontiersin.org 8
TRIPOD Statement specific to ML (TRIPOD-AI) (19, 20), and
in the context of this work, to improve the reporting quality of
literature concerning ML in glioma grade prediction.

4.2 Limitations
This study has several limitations. First, the timing and criteria of
our search may have missed relevant studies (e.g., recent and
unpublished works). Moreover, 191 of the 1,135 (16.8%) studies
assessed for eligibility were excluded because they were abstracts
(n=169, 14.9%) or not in English (n=22, 1.9%), creating a potential
selection bias. However, full texts were required for complete data
extraction and quality of reporting analysis, and we unfortunately
did not have the resources to translate non-English articles.
Second, we determined best performing algorithms based on
accuracy, which excluded the three studies that did not report
accuracy results for their models. Accuracy, furthermore, may be
considered a flawed performance metric for ML models applied to
imbalanced datasets (50), which constituted most datasets in our
study. With imbalanced datasets, ML models intrinsically overfit
toward the majority class, risking higher misclassification rates for
minority classes (51, 52). Because accuracy may be high even if a
minority class is poorly predicted, we recommend study authors
consistently report a full slate of model performance metrics.
Including metrics sensitive to performance differences within
imbalanced datasets (e.g., AUC) (53) will enable a more
thorough assessment of ML model performance. Third, the
inconsistent definitions for HGG and LGG, evolving grading
criteria, high heterogeneity of our included articles and low
FIGURE 6 | TRIPOD adherence of machine learning glioma grade prediction studies. Adherence rate for individual items represents the percent of studies scoring a
point for that item: 1 – title. 2 – abstract. 3a – background. 3b – objectives. 4a – study design. 4b – study dates. 5a – study setting. 5b – eligibility criteria. 6a –

outcome assessment. 6b – blinding assessment of outcome. 7a – predictor assessment. 7b – blinding assessment of predictors. 8 – sample size justification. 9 –

missing data. 10a – predictor handling. 10b – model type, model-building, and internal validation. 10d – model performance. 13a – participant flow and outcomes.
13b – participant demographics and missing data. 14a – model development (participants and outcomes). 15a – full model specification. 15b – using the model. 16
– model performance. 18 – study limitations. 19b – results interpretation. 20 – clinical use and research implications. 22 – funding. Overall – mean TRIPOD
adherence rate of all studies. TRIPOD, Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis.
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number of articles reporting confidence intervals for their
performance metrics limited the pooling of results across studies
and subsequent generation of conclusions. As a result, we could
not perform a meta-analysis (54, 55).
5 CONCLUSION

The application of ML to glioma grade prediction has grown
substantially, with ML model studies reporting high predictive
accuracies but lacking essential metrics and characteristics for
assessing model performance. To increase the generalizability,
standardization, reproducibility, and reporting quality necessary
for clinical translation, future studies need to (1) train and test on
large, multi-institutional datasets, (2) validate on external datasets,
(3) clearly report glioma entities, corresponding glioma grades, and
a full state of predictive performance metrics by both grade and
entity, and (4) adhere to reporting guidelines.
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