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Purpose: The aim of this study is to evaluate the dose accuracy of bulk relative electron
density (rED) approach for application in 1.5 T MR-Linac and assess the reliability of this
approach in the case of online adaptive MR-guided radiotherapy for nasopharyngeal
carcinoma (NPC) patients.

Methods: Ten NPC patients formerly treated on conventional linac were included in this
study, with their original planning CT and MRI collected. For each patient, structures such
as the targets, organs at risk, bone, and air regions were delineated on the original CT in
the Monaco system (v5.40.02). To simulate the online adaptive workflow, firstly all
contours were transferred to MRI from the original CT using rigid registration in the
Monaco system. Based on the structures, three different types of synthetic CT (sCT) were
generated from MRI using the bulk rED assignment approach: the sCTICRU uses the rED
values recommended by ICRU46, the sCTtailor uses the patient-specific mean rED values,
and the sCTHomogeneity uses homogeneous water equivalent values. The same treatment
plan was calculated on the three sCTs and the original CT. Dose calculation accuracy was
investigated in terms of gamma analysis, point dose comparison, and dose volume
histogram (DVH) parameters.

Results: Good agreement of dose distribution was observed between sCTtailor and the
original CT, with a gamma passing rate (3%/3 mm) of 97.81% ± 1.06%, higher than that of
sCTICRU (94.27% ± 1.48%, p = 0.005) and sCTHomogeneity (96.50% ± 1.02%, p = 0.005).
For stricter criteria 1%/1 mm, gamma passing rates for plans on sCTtailor, sCTICRU, and
sCTHomogeneity were 86.79% ± 4.31%, 79.81% ± 3.63%, and 77.56% ± 4.64%,
respectively. The mean point dose difference in PTVnx between sCTtailor and planning
CT was −0.14% ± 1.44%, much lower than that calculated on sCTICRU (−8.77% ± 2.33%)
and sCTHomogeneity (1.65% ± 2.57%), all with p < 0.05. The DVH differences for the plan
based on sCTtailor were much smaller than sCTICRU and sCTHomogeneity.
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Conclusions: The bulk rED-assigned sCT by adopting the patient-specific rED values
can achieve a clinically acceptable level of dose calculation accuracy in the presence of a
1.5 T magnetic field, making it suitable for online adaptive MR-guided radiotherapy for
NPC patients.
Keywords: online adaptive radiotherapy, synthetic CT, bulk ED assignment, MR-Linac, NPC
INTRODUCTION

Nasopharyngeal carcinoma (NPC), originated from the
nasopharyngeal mucosal lining, is a malignancy caused by
multiple factors involving environmental factors, genetic
variants, and Epstein–Barr virus (EBV) infection (1, 2). Due to
its high sensitivity to ionizing radiation and deep-seated
anatomic location, radiotherapy has been established as the
mainstay treatment modality since 1965 (2). In the last decade,
intensity modulated radiotherapy (IMRT) has been a widely used
technique in the treatment of NPC (3). IMRT can modulate both
the intensity and shape of individual beams to achieve an optimal
dose distribution to tumor area. A more conformal dose
distribution enables IMRT to minimize the dose delivery to
organs at risk (OARs), including the optic chiasm, spinal cord
and brain stem (4–6). However, the IMRT treatment process
usually lasts for several weeks. During the treatment process, the
tumors or normal organ volume shrinkage and weight loss are
commonplace in NPC patients receiving radiotherapy (7, 8).
Considering that some important normal organs (such as the
brain stem, spinal cord, optic chiasm, and optic nerve) in the
NPC site are very close to the tumor, these OARs may move into
high-dose regions when the volume of tumor is shrunk (8, 9).

Recently, adaptive radiotherapy (ART) has aroused the
attention of many oncologists, which offers the possibility to
correct these variations in dosing regions (2). ART means
acquisition of a new set of images at some point during
treatment, alteration of the radiotherapy treatment plan
parameters based on new imaging findings, and delivery of the
new plan for the remainder of the treatment (10). Several studies
have reported that NPC patients can benefit from ART during
the radiotherapy treatment (11–13). For instance, Chen et al.
compared the survival outcomes in patients with or without
ART, and reported that the 2-year locoregional relapse-free
survival for patients treated by ART or not were 88% and 79%,
respectively (p = 0.01) (11). These studies about ART for NPC
patients are all based on computed tomography (CT) or cone-
beam CT (CBCT) images. CT images, the clinical standard
method for acquiring electron density, are the best choice for
adaptive re-planning. However, acquiring new CT images
increases the workload in busy clinical departments and at the
cost of extra radiation to patients. As to the CBCT technique, it is
also not applicable due to the relatively low image quality and the
inability to directly use its Hounsfield Unit (HU) values for dose
calculations (14–16).

In recent years, magnetic resonance imaging (MRI) has been
widely applied in radiation therapy workflow. MRI can provide
higher soft-tissue resolution and superior target volume
2

delineation than CT, especially for NPC, which may appear
larger and more irregularly shaped on MRI (17). Additionally,
MRI has been found to improve evaluation of the extent of
primary nasopharyngeal tumor and retropharyngeal lymph node
metastasis (1, 18). Recently, the integrated MRI with linear
accelerator delivery systems (Elekta 1.5 T Unity MR-Linac,
ViewRay Inc 0.35 T MRIdian MR-Linac and 60Co system)
have been clinically available and the potential advantages of
MRI-guided radiotherapy have been explored (19–21). The MR-
guided radiotherapy systems allow the creation of the
radiotherapy treatment plan directly on the daily MRI acquired
by the on-board scanner, considering the actual patient anatomy
and so addressing the inter-fraction organ variability (22). MR-
Linac brings the online ART into reality and also provides a
simple and convenient solution. However, a critical challenge in
current MR-Linac is that MRI requires the assignment of a
relative electron density (rED) map to allow for dose
calculation (23).

Different approaches have been developed to assign rED map
to MRI for dose calculation in online ART, such as bulk density
assignment, deformable registration-based technique, voxel-
based substitution, atlas-based methods, and deep learning-
based methods (24–26). However, the synthetic CT (sCT)
generated by bulk rED assignment strategy is currently the
only one available in Unity MR-Linac clinical workflow (22,
27, 28). The mean rED values in sCT are derived from the
delineated volumes in the registered original CT images. This
approach can be useful for the online adaptive procedures, as it
allows a fast update of the rED map, overcoming the need to
manually override the errors due to the deformable registration.

Several studies have investigated the dosimetric feasibility of
using the bulk approach to generate sCT for abdominal, pelvic,
and cervix patients (22, 27, 29). Prior et al. have evaluated such
method in the pancreatic and prostate cases under 1.5 T
magnetic field, demonstrating that the uniform rED
assignment combined with the presence of magnetic field can
result in differences up to 5%–9% in the DVH parameters, while
the same procedure without magnetic field leads to differences of
3%–5% (29). Cusumano et al. also reported that the sCT
generated using bulk rED assignment for pelvic and abdominal
sites can guarantee a high level of dose calculation accuracy in the
presence of 0.35 T magnetic field, and the adoption of patient-
specific bulk rED values can improve the dose accuracy in all
cases (22).

Compared with pelvic and abdominal cancer, NPC involves a
variety of OARs and contains different tissue density areas such
as the bones, cavity, and soft tissues. The presence of a
longitudinal magnetic field inevitably affects radiation dose
April 2022 | Volume 12 | Article 858076
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distribution. Particularly at tissue–air boundaries, significant
dose changes are observed due to the electron return effect
(ERE) as the generated secondary electrons can be forced back
into the tissue by the Lorentz forces (30, 31). The NPC patients
have a more complicated anatomy and more cavities; therefore,
the impact of magnetic field in dose calculation should be more
significant. Several studies have investigated the feasibility of
bulk density assignment in MRI for NPC IMRT treatment
planning (32, 33). For instance, Young et al. investigated the
dosimetric and optimization errors due to differences in rED
values when converting MRI into sCT for dose calculation, and
reported that density correction using a bulk density approach
achieves dose calculation uncertainties within 3% (33). Chin
et al. investigated the feasibility and limitations of bulk density
assignment in MRI for head and neck IMRT treatment planning
(32). However, all the published studies did not account for the
impact of magnetic field in dose calculation. Actually, in MR-
guided radiotherapy, the magnetic field is always on, even during
the radiation delivery, as demonstrated by several experiences
(34, 35). As a result, the clinical feasibility of the bulk rED
assignment approach has to be evaluated considering the
presence of magnetic field.

Therefore, in this study, we aim to investigate the dose
calculation accuracy of using the bulk rED-assigned sCT in the
presence of a 1.5 T magnetic field, and evaluate the reliability of
this approach in the case of online adaptive MR-guided
radiotherapy for NPC patients.
MATERIALS AND METHODS

Data Acquisition
A total of 10 NPC patients formerly treated with IMRT on
conventional linac from June 2020 to December 2020 were
retrospectively selected and investigated in this study. All
patients had pathological confirmed, poorly differentiated
squamous cell carcinoma. The median age of the patient
cohort is 41 years old (ranging from 30 to 75). Four female
and six male patients were included in this cohort. The patients
who have dental implants in place were excluded.

The original planning CT and T2 MRI datasets were utilized
in the study. CT simulations of the ten patients were performed
on a large bore CT scanner (Philips Brilliance™, Netherlands) in
supine position (patient-specific polyurethane foam
immob i l i z a t i on dev i c e s and head–neck– shou lde r
immobilization mask), with a 140-kVp voltage, a field of view
(FOV) of 80 cm, a uniform slice thickness of 0.3 cm, and a pitch
of 1:1. The scan range was from the top of the head to 2 cm below
the clavicle. Each patient also underwent MR scanning on an
MRI simulator (Philips Ingenia 3.0 T, Netherlands) using the
same scan range and the same immobilization. Both the MR and
CT images for each patient were acquired at the same day,
typically within an interval of 2 h. After scanning, the CT and
MRI acquired were then transferred to the Unity MR-Linac
(Elekta, AB, Stockholm, Sweden)-specific treatment planning
Frontiers in Oncology | www.frontiersin.org 3
system (TPS) Monaco (v5.40.02) for structure delineation and
treatment planning.

Delineations of Target Volume and OARs
Based on the CT and MR images, targets and OARs were
delineated in the Monaco system by a senior radiation
oncologist specialized in NPC. The delineations were
performed in accordance with the guidelines in ICRU report
62 (36) and ICRU report 50 (37). The target volumes delineated
contain the gross tumor volume in the nasopharynx (GTVnx),
the nodal target volume in the neck (GTVnd), the high-risk
clinical target volume (CTV1), and the preventive clinical target
volume (CTV2). Based on the above delineated target volumes,
the planning target volumes (PTVs) were generated through
margin expansion to account for positioning errors, defined as
PTVnx, PTVnd, PTV1, and PTV2, respectively. OARs were
delineated according to the ICRU report 83 (38). Structures
such as the spinal cord, brain stem, optic nerve, lens, optic
chiasm, eyes, parotids, and temporal lobe were included.
Additionally, to improve the accuracy of sCT conversion, the
bone and air regions were also contoured for each case.
Threshold segmentation with manual editing was performed
on the CT to delineate bone (Hounsfield number HU > 250) and
air (HU < −300) regions.

Synthetic CTs Generation
In the Unity MR-Linac online radiotherapy workflow (28), daily
MRI was acquired on the Unity system and automatically sent to
the online Monaco TPS. Then, an automatic rigid registration
was performed between the reference planning CT and the MRI.
Manual adjustment may be needed in this step if necessary. Two
different plan adaption strategies can be chosen depending on
the clinical situation on the day. The first option was “Adapt to
Position” (ATP), where the shape and weight of beam segments
in the reference plan (CT based) were adjusted to match the
current position of targets and OARs based on rigid registration.
The second option was “Adapt to Shape” (ATS), where a new
plan was created on the daily MRI to account for the anatomy on
the day. The contours on reference CT will be propagated to the
MRI using rigid or deformable registration, followed by manual
editing if necessary. The sCT was generated by assigning mean
rED values to the contours onMRI, where mean rED values were
derived from planning CT. In ATP, the dose calculation on the
day was performed on the initial reference planning CT, while
the MRI on the day was only used for dose calculation in ATS.

In this study, to simulate the workflow of ATS in Unity MR-
Linac, paired MR/CT images for each patient were firstly aligned
using a rigid registration algorithm, with manual adjustments and
careful inspection by the oncologist. In order to fairly compare and
evaluate the dose and DVH difference between sCT and planning
CT, the structures of targets, OARs, bone, and air were then copied
from the original planning CT to the MRI. The sCT was generated
from MRI by using bulk rED assignment approach, based on the
mean rED values of the delineated region of interests (ROIs)
derived from planning CT. All the steps to generate sCT were
performed in the Unity MR-Linac-specific Monaco system.
April 2022 | Volume 12 | Article 858076
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To investigate the strategy and accuracy of bulk rED
assignment, three different types of sCT images were generated
by assigning different bulk rED values to the levels segmented on
the original CT. The datasets were density corrected in various
ways to produce image datasets with different rED features as per
Table 1. Two sets of bulk density values were used for air and
bone, respectively. The first synthetic CT (sCTICRU) was created
using the rED values recommended by ICRU report 46 (39) for
cranium bone and air regions (bone = 1.61, air = 0.001). The
remaining tissues of the patient data (such as spinal cord, brain
stem, optic nerve, lens, optic chiasm, eyes, parotids, and temporal
lobe) were set to patient-specific mean rED values of the
delineated ROIs in the original CT.

The second synthetic CT (sCTtailor) was generated by using
the patient-specific mean rED values in original CT for air, bone,
and other delineated ROIs, which is also the standard method
recommended by the vendor to use in clinical practice. For
comparison, the third synthetic CT (sCTHomogeneity) was created
using a water equivalent value of 1 for the entire body.

Treatment Plan Generation
A total of four IMRT treatment plans were calculated for each
patient using the Unity MR-Linac specific TPS Monaco
(v5.40.02), with consideration of the effect of the 1.5 T
magnetic field by employing a graphic processing unit (GPU)-
based Monte Carlo dose calculation platform (GPUMCD) (40).

The prescription doses for all the ten patients were as follows:
PTVnx, 70 Gy; PTVnd, 70 Gy; PTV1, 60 Gy; and PTV2, 54 Gy in
33 fractions. All plans required that the prescription dose
coverage of the target volume PTVs should be ≥95% and the
maximum dose should not exceed 110% of the prescription dose.
OAR dose constraints were based on ICRU report 83 [37],
RTOG protocol 0615 (41), and the international guidelines on
the dose prioritization and acceptance criteria in radiotherapy
planning for NPC (42).

For each case, a nine-equidistant-co-planar-field (0°, 40°, 80°,
110°, 160°, 200°, 250°, 280°, and 320°) IMRT plan was firstly
created on the original CT dataset and considered as the
reference plan. This reference plan was then replicated to the
three sets of sCT images (sCTICRU, sCTTailor, and sCTHomogeneity),
respectively, with only final dose recalculation, no optimization,
or any modification. Reference plans were designed with “step-
and-shoot”, which is currently the only available IMRT
technique in the Unity MR-Linac system. All the plans
Frontiers in Oncology | www.frontiersin.org 4
(including the reference and recalculated plans) were
calculated based on the Unity machine model with 7 MV
flattening filter free (FFF) photons, using 0.2cm grid spacing
and a 2% statistical uncertainty per control point. Other
parameters pertaining to the IMRT plans such as segment
area, segment width, and number of segments per plan are
outlined in Table 2.

Dosimetric Evaluation
The recalculated dose distributions obtained on the sCT images
were compared to the reference plan on the original CT. The
workflow about evaluating the dose calculation accuracy of sCT
is outlined in Figure 1. Evaluations in terms of gamma analysis,
point dose comparison, and dose volume histogram (DVH)
parameters were performed. Gamma analysis was performed to
evaluate the dose differences in both absolute value and spatial
distribution, considering the following tolerance criteria: 1%/
1 mm, 3%/3 mm, and 10% dose threshold. In addition, the point
dose in the PTV high-dose region was also compared. The high-
dose point was selected at the center of PTVnx. The dose
calculation accuracy was furthermore investigated by
comparing the DVH parameters, such as Dmean (the mean
dose), V100% (% PTV volume covered by 100% of prescription
dose), D98% (the dose covered by 98% of PTV volume), and D2%

(the dose covered by 2% of PTV volume) for the target dose,
while the Dmax (the maximum dose), D1cc (the maximum dose
covering 1 cm3 volume), and Dmean for OARs.

A Wilcoxon signed rank test was performed to evaluate the
statistical significance of the differences by using IBM SPSS (v25)
statistical software (IBM Corporation, Armonk, NY, USA). p <
0.05 was considered statistically significant.
RESULTS

Table 3 shows the gamma passing rates (GPRs) of recalculated
dose distributions based on different sCTs, compared with the
reference dose on planning CT; both 1%/1 mm and 3%/3 mm
criteria were investigated. For both criteria, GPR results of plans
on sCTtailor are always higher than that on sCTICRU and
sCTHomogeneity. With stricter criteria, the GPR differences
among three sCT sets are more distinguishable. On average,
the 1%/1 mm GPR for plans on sCTtailor, sCTICRU and
sCTHomogeneity were 86.79% ± 4.31%, 79.81% ± 3.63%, and
TABLE 1 | Datasets and description used in the study.

Dataset Description

Original CT The original CT dataset—gold standard electron density data.
sCThomogeneity Entire patient dataset rED changed to a water equivalent value of 1.
sCTICRU The rED values of air and bone were recommended by ICRU

Report 46 (air = 0.001, bone = 1.61, the remaining tissue of the
patient data was set to mean rED values of the delineated region
of interest in the original CT.

sCTtailor The rED values of air, bone, and other delineated region of
interest were used as patient-specific mean rED values in the
original CT.
TABLE 2 | Calculation and segmentations for the IMRT plans.

Plan parameters MR-Linac IMRT

Energy 7 MV FFF
Algorithm GPUMCD
IMRT technique Step-and-shoot
Grid spacing (cm) 0.2
Statistical uncertainty (%) per control point 2
Minimum segment area (cm2) 4
Minimum segment width (cm) 0.6
Minimum MU/segment 5
Maximum # segments per plan 100
April 2022 | Volume 12
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77.56% ± 4.64% (mean ± SD), respectively. While for criteria
with 3%/3 mm, GPR for plans on sCTtailor, sCTICRU, and
sCTHomogeneity were 97.81% ± 1.06%, 94.27% ± 1.48%, and
96.50% ± 1.02%, respectively. A statistically significant
improvement in GPR was observed using sCTtailor in the case
of 1%/1 mm (p = 0.005) and 3%/3 mm (p = 0.005).
Frontiers in Oncology | www.frontiersin.org 5
The point dose comparison in the PTVnx high-dose region for all
cases is presented in Table 4. The point dose differences for the
sCTtailor, sCTICRU, and sCTHomogeneity were −0.14% ± 1.44%,
−8.77% ± 2.33%, and 1.65% ± 2.57%, respectively, when
compared to the original CT. Obviously, the sCTtailor using
patient-specific mean rED behaved with higher point dose accuracy.
FIGURE 1 | Workflow used to generate the three sCT image and to assess the dose calculation accuracy of the bulk approach with respect to sCTICRU.
TABLE 3 | Gamma passing rate comparison for 10 patient plans on sCTtailor, sCTICRU, and sCTHomogeneity (1%/1 mm, 3%/3 mm).

Patient 1%/1 mm (%) 3%/3 mm (%)

sCTtailor vs. CT sCTICRU vs. CT sCT Homogeneity vs. CT sCTtailor vs. CT sCTICRU vs. CT sCT Homogeneity vs. CT

1 78.53 73.68 72.80 96.07 94.28 94.85
2 89.78 80.91 75.87 98.69 92.91 96.58
3 84.57 78.19 73.70 98.33 94.35 97.39
4 90.65 83.23 83.26 99.45 97.21 97.68
5 80.91 73.99 73.30 96.82 92.83 95.18
6 90.87 83.93 84.49 98.42 95.57 97.95
7 89.02 81.60 76.11 97.93 95.44 96.28
8 85.23 78.76 78.17 96.75 93.77 95.82
9 88.86 82.76 83.87 97.13 93.97 96.65
10 89.48 81.02 74.00 98.46 92.35 96.65
Mean (SD) 86.79

(4.31)
79.81
(3.63)

77.56
(4.64)

97.81
(1.06)

94.27
(1.48)

96.50
(1.02)
April 2022 | Volu
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Figures 2, 3 report the box plot analysis regarding the
differences of the DVH parameters between the three sCT
images and the original CT, separately for PTV (Figure 2) and
OARs (Figure 3). For PTV coverage, the differences of the DVH
parameters calculated on sCTtailor are much lower than those
calculated on sCTICRU and sCTHomogeneity. Statistically significant
(p < 0.05) differences for PTVnx, PTV1, and PTV2 are observed.
The mean differences in estimating the V100% of PTVnx, PTV1,
and PTV2 were found with 1.3%, 0.7%, and −0.1% for using
sCTtailor, 1.7%, 1.0%, and 0.3% for using sCTHomogeneity, and
17.9%, −4.3%, and −2.6% for using sCTICRU. The difference of
PTVnd coverage was found with no statistical significance. For
OARs, the differences on the DVH parameters calculated on the
three sCT images were observed with a similar level, also with no
statistical significance.
Frontiers in Oncology | www.frontiersin.org 6
Figures 4, 5 show a dosimetric and DVH comparison among
plans on the three sCT images for one representative NPC case.
As shown in the dose difference map in Figure 4, a relatively
large difference was observed at the air–tissue interface, air
cavity, and bony areas. The dose profiles in Figure 4 clearly
described the dose difference between plans on different sCT
images and original CT. The white line in the left subfigure shows
the profile position, which is selected as traversing the bony area,
air–tissue interface, and air cavity, so that the dose difference can
be clearly distinguished. Comparisons of the DVH curves for this
NPC case are also provided, as shown in Figure 5. DVH results
of PTVnx and PTV1 have only minor differences when
comparing the dose on sCTtailor with that on the original CT,
while relatively large variations were observed on sCTICRU

and sCTHomogeneity, except that the DVH curves for PTVnd,
PTV2, and all the OARs are in a similar level, with no
significant difference.
DISCUSSION

MR-guided radiotherapy has found increasing application over
recent years with the clinical introduction of systems such as the
Elekta and ViewRay MR-guided radiotherapy system. Several
literatures have reported MR-guided online adaptive workflow
and have shown that daily adaptive radiotherapy is feasible. For
instance, Intven et al. described the implementation and initial
experience of MR-guided radiotherapy on the 1.5 T Unity MR-
FIGURE 2 | Box-plot analysis related to the dose differences of sCTtailor, sCTICRU and sCTHomogeneity respect to the original CT for different DVH parameters related
to PTV coverage. A * indicates a significance of p < 0.05.
TABLE 4 | Point dose comparison for different sCT based plans.

Patient sCTtailor – CT (%) sCTICRU – CT (%) sCT Homogeneity – CT (%)

1 −0.33 −6.13 3.41
2 −1.28 −6.26 −1.47
3 −1.33 −8.38 1.45
4 0.15 −9.94 4.88
5 0.95 −9.27 −1.39
6 3.42 −5.41 5.74
7 −0.65 −7.23 2.18
8 −0.45 −11.37 1.23
9 0.16 −11.97 −2.24
10 −2.02 −11.73 2.73
Mean (SD) −0.14 (1.44) −8.77 (2.33) 1.65 (2.57)
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Linac and evaluated patient compliance, treatment time, and
target coverage (43). They demonstrated that MR-guided
radiotherapy using daily full online recontouring and
replanning on 1.5 T MR-Linac for rectal cancer is feasible and
currently takes about 48 min per fraction. de Muinck Keizer et al.
investigated prostate intrafraction motions during entire MR-
guided radiotherapy sessions on 1.5 T MR-Linac and showed
that high-quality 3D cine-MR imaging and prostate tracking
during radiotherapy is feasible with beam-on (44). Additionally,
Padgett et al. assessed the online adaptive MR-guided stereotactic
body radiotherapy (SBRT) of liver cancers on the 0.35 T 60Co-
based MRgRT system and demonstrated that daily planning re-
optimization resulted in better target conformality, coverage, and
OAR sparing (45). Schaule et al. described intrafractional
stability of MR-guided online adaptive SBRT for prostate
cancer on ViewRay 0.35 T MR-Linac, and reported that the
dosimetric benefit of MR-guided online adaptation for prostate
SBRT was robust over 45 min (46).

MRI-based radiotherapy treatment planning is a necessary
step to achieve adaptive radiotherapy with the ATS workflow in
Unity MR-Linac, in which the daily MRI will be registered and
re-contoured for adapting the treatment plan. MRI requires the
assignment of a rED map as sCT to allow for dose calculation.
Despite the fact that various techniques, including voxel, atlas,
and machine learning methods, have been developed to generate
the sCT dataset from MRI, the bulk rED-based sCT generation
method is currently the only one available adopted by Unity-
Frontiers in Oncology | www.frontiersin.org 7
specific Monaco TPS. Electron density correction can influence
the dose calculation accuracy and directly affect the patient
clinical treatment, as this may alter the delivery of correct dose
to patients (33). Furthermore, the dose calculation error
introduced by sCTs may be even worse for NPC patients in
the presence of the magnetic field, considering the complicated
anatomy, and contains highly heterogeneous tissue areas, such as
air cavities and bony regions. To our knowledge, this study is the
first to investigate the dosimetric accuracy of MRI-based
planning for NPC patients treated on the 1.5 T MR-Linac.

In MRI-based radiotherapy planning ATS workflow, bony
region and air cavity should be delineated and assigned with
appropriate rED in order to achieve accurate dose calculation,
especially for NPC cases. For instance, both Alexander et al. (32)
and Young et al. (33) have demonstrated dosimetric accuracy of
rED assignment for bony region and air cavity compared with
uniform water assignment for head and neck patients. It is also
verified in our study that visible dosimetric differences between
plans based on sCTHomogeneity and original CT were observed.
When the entire volume inside a patient’s body is assigned with a
water equivalent value of 1, the sCTHomogeneity cannot realistically
reflect the dose distribution in air cavity and bony region, as well
as the ERE at air–tissue interfaces under a 1.5 T magnetic field.
Special attention should be paid to contour the cranium bone
using threshold method in the Unity-specific Monaco system,
and since it cannot recognize the ring structure, manual
modifications are typically required.
FIGURE 3 | Box-plot analysis related to the dose differences of sCTtailor, sCTICRU, and sCTHomogeneity with respect to the original CT for different DVH parameters
related to OAR sparing. The dot marks the outlying values.
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The rED values used in some previous studies about MRI-
only treatment planning were derived from ICRU report 46 (29,
33). They are collected from particular population-averaged
values of healthy tissue as stated in the ICRU report.
Nonetheless, based on our study, it should be used cautiously.
Several literatures have reported that the dosimertric accuracy of
sCT generated by bulk approach could be improved by replacing
the rED values recommended by ICRU report 46 with
population-averaged values (47, 48). In our study, the idea of
investigating a tailored rED approach for the sCT generation was
also inspired by their results. In ICRU report 46, the rED values
of air regions and cranium bone are 0.001 and 1.61, respectively,
Frontiers in Oncology | www.frontiersin.org 8
while in our study, the tailored rED values of air regions were
0.196–0.327, and the values of cranium bone were 1.280–1.362
for NPC patients.

For all cases in this study, whether in criteria 3%/3 mm or 1%/
1 mm, the GPRs of sCTtailor-based plans were always higher than
that of sCTICRU-based plans. When using stricter criteria of 1%/
1 mm, the GPR difference between plans on sCTtailor and
sCTICRU became more distinguishable. The global GPR results
for sCTtailor-based plans can be higher than 95% under 3%/3 mm
criteria, while the sCTICRU-based plans cannot. In addition, the
point dose comparison in the PTVnx high-dose region showed
that sCTtailor provides dose calculation error within 3% when
FIGURE 4 | Dose comparison of plans on sCTtailor, sCTICRU, and sCTHomogeneity with respect to the original CT for dose difference maps and line profile for one
NPC case.
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compared with the original CT-based reference treatment plans.
In contrast, the dose calculation error for sCTICRU was about 8%.
Maximum dose difference of center point in PTVnx was observed
in Patient 9, up to 11.97%. This is higher than what was reported
in previous literatures (33, 49). The reason is mainly that the
selected center point is located at the tissue–air interface. When
in the presence of a 1.5 T magnetic field, remarkable dose
escalation appeared at the tissue–air interface due to secondary
electrons forced back into the tissue by the Lorentz force (30),
which was not considered in previous studies. In the original CT,
the rED values at tissue–air interfaces were approximately 0.2
due to scattering and interpolation. When the air cavity was
assigned with tailored rED (0.196–0.327), the rED values at
tissue–air interfaces in sCTtailor were closer to that in the
original CT, while the rED value of 0.001 used in sCTICRU

apparently underestimated the attenuations at tissue–air
interfaces. Using the tailored rED values in the bulk approach
can reflect the ERE and dose at tissue–air interfaces in a more
realistic manner.

The differences in the DVH parameters also showed that using
sCTtailor is more accurate when compared with sCTICRU

(Figures 2, 3). The coverage differences of PTVnx, PTV1, and
PTV2 are statistically significant (p < 0.05), while the differences of
PTVnd coverage and OARs are not. The reason can be attributed
to the presence of air cavity in PTVnx, PTV1, and PTV2, while the
PTVnd and OARs have less air regions. Accounting for air cavity
assigned with tailored rED values can reduce these differences
significantly. The comparison of DVH curves also demonstrated
this point (Figure 5). The dose difference maps and dose profile
(Figure 4) of the representative case showed that the largest
difference was mainly presented at air–tissue interfaces, air
cavity, and bony areas. The plan on sCTICRU underestimated the
doses at air cavity and air–tissue interfaces. However, the dose
distribution on sCTtailor slightly overestimated the dose to air
cavity and air–tissue interfaces, but the dose difference near the
tumor target was clearly decreased.
Frontiers in Oncology | www.frontiersin.org 9
This study also proved that the bulk rED-assigned sCT
guarantees clinically acceptable dosimetric accuracy for NPC
patients under the 1.5 T magnetic field. In particular, assigning
patient-specific rED values to sCT improves the dose calculation
accuracy compared with using ICRU report 46 values. This study
paves the way to a clinical implementation of the bulk sCT in
online adaptive MR-guided radiotherapy for NPC patients.

However, there are also some potential limitations in this
study. Firstly, the bulk sCT generation is highly dependent on the
image registration process. Even though the MRI and CT
images for each patient were acquired on the same day with
the same setup procedure (patient-specific polyurethane foam
immobilization devices and head–neck–shoulder immobilization
mask), and rotations were also included in the rigid registration
process, some errors still can be introduced. Besides that,
the evaluation standard of registration quality is somehow
subjective. In particular, the neck region cannot be perfectly
matched due to the changes in neck flexion between different
scans. The differences in anatomy changes during different image
acquisitions can also introduce errors when comparing the sCT
with the original CT. Nowadays, the bulk rED assignment is the
only available method in the Unity Monaco system. With the
development of advanced atlas-based, voxel-based, deformable
registration-based, and deep learning-based sCT generation, this
problem could be resolved with higher accuracy in the
near future.
CONCLUSION

This study demonstrated that the bulk rED-assigned sCT by
adopting the patient-specific bulk rED values guarantees a
clinically acceptable level of dose calculation accuracy for NPC
patients in the presence of a 1.5 T magnetic field, making this
approach suitable for online adaptive MR-guided radiotherapy
for NPC patients.
FIGURE 5 | DVH comparison of plans on sCTtailor, sCTICRU, and sCTHomogeneity with respect to the original CT for one NPC case.
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