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WNT/b-catenin signaling is a highly complex pathway that plays diverse roles in various
cellular processes. While WNT ligands usually signal through their dedicated Frizzled
receptors, the decision to signal in a b-catenin-dependent or -independent manner rests
upon the type of co-receptors used. Canonical WNT signaling is b-catenin-dependent,
whereas non-canonical WNT signaling is b-catenin-independent according to the
classical definition. This still holds true, albeit with some added complexity, as both the
pathways seem to cross-talk with intertwined networks that involve the use of different
ligands, receptors, and co-receptors. b-catenin can be directly phosphorylated by various
kinases governing its participation in either canonical or non-canonical pathways.
Moreover, the co-activators that associate with b-catenin determine the output of the
pathway in terms of induction of genes promoting proliferation or differentiation. In this
review, we provide an overview of how protein phosphorylation controls WNT/b-catenin
signaling, particularly in human cancer.
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INTRODUCTION

WNT/b-catenin signaling is a tightly controlled and highly conserved pathway that regulates cell
fate during embryogenesis, hepatobiliary development, liver homeostasis, repair in adulthood, cell
proliferation, differentiation, and cell polarity (1, 2). The intracellular responses that WNT ligands
trigger can be classified into canonical (b-catenin-dependent) and non-canonical (b-catenin-
independent) signaling (2, 3). WNT is a family of nineteen hydrophobic cysteine-rich secreted
glycoproteins which serve as ligands for ten members of the Frizzled (Fz) family of 7-
transmembrane receptors, the co-receptors low-density lipoprotein receptor-related proteins 5/6
(LRP 5/6), and non-classical WNT receptors like RYK and ROR (4–8). Abnormal WNT/b-catenin
signaling is involved in many diseases including Alzheimer’s disease, heart disease, osteoarthritis,
and cancer (9, 10). b-catenin is one of the core molecules in the canonical WNT signaling pathway.
It is also involved in E-cadherin and cytoskeleton-associated cell-cell adhesion when localized to the
plasma membrane (11, 12). However, cytosolic b-catenin acts as the molecular effector of the WNT
ligands (1, 13). This review discusses the phosphorylation-dependent regulations of b-catenin and
WNT signaling in cancer.
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STRUCTURE, LOCATION, AND FUNCTION
OF b-CATENIN

b-catenin is a multifunctional protein encoded by the CTNNB1
gene in humans and is the vertebrate homolog of the Drosophila
Armadillo (14). It is a 781-amino-acid-long protein consisting of
the N-terminal domain (NTD), twelve armadillo (ARM)
domains in the middle of the protein, and the C-terminal
domain (CTD) (Figure 1). Each ARM domain contains three
a-helices and, together, all twelve ARM domains create a
compact superhelix with a positively charged groove spanning
all the ARM domains (15, 16). This core ARM domain structure
serves as a scaffold and interacts with various b-catenin binding
partners that are critical for both WNT signaling and the
formation of adherens junctions (16, 17). b-catenin can exist in
three distinct pools inside the cell: membranous, cytoplasmic,
and nuclear (18). b-catenin normally interacts with E-cadherin
at the cell membrane and plays an important structural role in
the adherens junctions. b-catenin that is free in the cytoplasm is
captured by the destruction complex for degradation. However,
when some of the components of the destruction complex are
compromised, b-catenin evades degradation; instead, it
translocates to the nucleus and contributes to the
transcriptional regulation of genes (18). b-catenin thus acts as
both an adaptor protein and a transcriptional coregulator (19).
This spatial separation of b-catenin at the plasma membrane,
cytoplasm, and the nucleus is regulated by specific
phosphorylation mechanisms.
STABILIZATION OF b-CATENIN
AT THE PLASMA MEMBRANE AS AN
INTRACELLULAR ADHESION REGULATOR

b-catenin acts as an adaptor protein and binds to the intracellular
part of E-cadherin present at the plasma membrane via its C-
terminal region. Apart from b-catenin, the cytoplasmic tail of E-
cadherin can interact with various molecules such as g-catenin
and other regulatory proteins, while its extracellular part
interacts with other cadherins present on adjacent cells (20,
21). The N-terminus of b-catenin interacts with a-catenin,
which links b-catenin to the actin cytoskeleton. This entire
structure of actin filaments-a-catenin-b-catenin-E-cadherin
interactions promote clustering of the adhesion junction
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proteins, thereby stabilizing cell adhesion (22). In the absence
of WNT, the majority of b-catenin localizes to the plasma
membrane, building an epithelial barrier and restricting cell
invasion and metastasis (23). However, the b-catenin-E-
cadherin complex gets weakened by the phosphorylation of b-
catenin at the plasma membrane (24). Tyrosine phosphorylation
in the different armadillo repeats probably specifies interactions
with a-catenin and E-cadherin. Phosphorylation of Tyr142/
Tyr654 results in the dissociation of the adherens junctions,
which leads to the cytoplasmic accumulation of b-catenin
followed by its nuclear translocation to promote gene
transcription (25).
TRANSCRIPTIONAL REGULATIONS
THROUGH STABILIZATION OF b-CATENIN
IN THE CYTOPLASM AND NUCLEUS

In the absence of WNT signaling, b-catenin is sequestered in the
cytoplasm by the ‘destruction complex’ composed of the
scaffolding protein AXIN, tumor suppressor adenomatous
polyposis coli (APC), and two serine/threonine kinases: casein
kinase 1 (CK1) and glycogen synthase kinase 3b (GSK3b)
(Figure 2A). AXIN directly binds with APC, GSK3b, CK1, and
b-catenin and holds the destruction complex (26–29). Besides
interaction with kinases, AXIN has an interaction site for protein
phosphatase 2A (PP2A) that induces dephosphorylation of
AXIN (30). Thus, AXIN is the core protein of the destruction
complex that mediates the whole assembly of the destruction
complex. Although AXIN can hold all proteins, the interaction
between APC and b-catenin is required for active complex
formation (31). GSK3b phosphorylates both AXIN (32, 33)
and APC, which further increases its b-catenin binding affinity
(34). CK1a binds to the first ARM domain of b-catenin (35) and
mediates the first regulatory phosphorylation at Ser45 (36); this
process requires AXIN-CK1a complex formation (29).
Additionally, a-catenin must be dissociated from b-catenin to
provide CK1 access. This dissociation is achieved by Tyr142
phosphorylation, which is mediated by tyrosine kinases FEline
Sarcoma (FES)-related (FER) and FYN (35, 37). FYN is a
member of SRC family of protein tyrosine kinases (SFKs).
CK1a-induced Ser45 phosphorylation creates a priming site
for GSK3b, which is necessary and sufficient for GSK3b-
mediated phosphorylation at Thr41, Ser37, and Ser33 (29, 36).
FIGURE 1 | Structure of b-catenin. The structure of b-catenin was generated by SMART (http://smart.embl-heidelberg.de/smart/show_motifs.pl?ID=P35222) and
modified using Canvas X draw. It includes an N-terminal domain where several regulatory phosphorylation sites are located (red). This domain follows twelve ARM
domains and a long C-terminal domain.
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Ser33 and Ser37 in b-catenin create docking sites for the E3
ubiquitin ligase, b-transducing repeat-containing protein (b-
TRCP) (Figure 2B) that ubiquitinates b-catenin and targets it
for proteasomal degradation after forming a complex with Skp1
and Cullin (24, 38). Mutation of Ser37 thus results in
stabilization of b-catenin (39).

The destruction complex is ultimately responsible for the
phosphorylation of b-catenin, thereby priming it for ubiquitin-
mediated proteasomal degradation (31). However, when
canonical WNT ligands bind to their respective Fz receptor
and LRP5/6 co-receptors, the result is the activation of the
canonical WNT signaling pathway (40). Due to this, the
phosphoprotein dishevelled (DVL, DVL1/2/3, segment polarity
protein) is activated and recruited to the plasma membrane
Frontiers in Oncology | www.frontiersin.org 3
where it interacts with the cytoplasmic domain of Fz (41). DVL
then recruits the destruction complex to the plasma membrane,
thereby promoting interaction between LRP5/6 andAXIN (42, 43).
GSK3b and CDK14 facilitate LRP5/6 phosphorylation that further
enables AXIN-CK1-GSK3b complex recruitment (9). Recruitment
of this complex to WNT receptors disrupts it and thereby
inhibits CK1-GSK3b-mediated b-catenin phosphorylation,
resulting in the stabilization and accumulation of b-catenin in the
cytoplasm (Figure 2C).

Inhibition of CK1, WNT signaling activation, and DVL
overexpression suppresses Ser45 phosphorylation (29).
Moreover, GSK3b can be inactivated through Ser9
phosphorylation by AKT. These events result in the
stabilization and accumulation of b-catenin in the cytoplasm
A

B

C

FIGURE 2 | Canonical WNT signaling. (A) In absence of canonical WNT ligands, b-catenin is associated with the destruction complex. This interaction leads to
phosphorylation-dependent ubiquitination of b-catenin and thereby its degradation in the proteasome. (B) In the destruction complex, CK1a phosphorylates b-catenin on
Ser45 residue that initiates sequential phosphorylation of Thr41, Ser37, and Ser33 phosphorylation by GSK3b. Ser33 and Ser37 phosphorylation sites facilitate b-TRCP
interaction with b-catenin. (C) In the presence of classical WNT ligands, a destruction complex cannot be formed and thus, b-catenin is stabilized from degradation.
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(44). b-catenin activity in the canonical WNT pathway can also
be regulated in a GSK3b and b-TrCP-independent manner.

It was observed in Drosophila that upon canonical WNT
signaling, Arrow (LRP5/6) recruits AXIN to the membrane,
which leads to degradation of AXIN. Thus, the scaffolding
member of the destruction complex, AXIN, is no longer
present to form the destruction complex (45). A more recent
study demonstrated that an E3 ubiquitin ligase, tripartite motif-
containing protein 11 (TRIM11), serves as an oncogene in
lymphomas by promoting cell proliferation through activation
of the b-catenin signaling. This regulation is brought about by
TRIM11-mediated ubiquitination and degradation of AXIN1,
part of the destruction complex of b-catenin (46). Thus,
inactivation or degradation of any of the components forming
the b-catenin destruction complex results in the stabilization and
accumulation of b-catenin in the cytoplasm.

Stabilized b-catenin then translocates to the nucleus, where it
interacts with different transcription factors, notably T-cell factor
(TCF), and lymphoid enhancing factor (LEF). The repressor of
the TCF/LEF complex, Groucho, is displaced upon this
interaction, whose function is to compact chromatin (44).
Thereafter, transcriptional co-activators and histone modifiers
are recruited, which is sometimes referred to as WNT
enhanceosome. These include the cyclic adenosine mono-
phosphate response element (CREB)-binding protein (CBP), its
closely related homolog p300, B-cell lymphoma 9 (BCL9),
pygopus, and ATP-dependent helicase Brahma-related gene 1
(BRG1, also known as SMARCA4) (44, 47). Chromatin is
remodeled by the WNT enhanceosome and results in the
transcription of WNT/b-catenin target genes that are involved
in cell survival and growth such as c-MYC, CCND1, CDKN1A,
and BIRC5 (40). C-MYC is a proto-oncogene that further
activates cyclin D1 and also inhibits the tumor suppressors p21
and p27, thereby leading to uncontrolled cell proliferation
(48, 49).
MUTATIONS OF COMPONENTS
INVOLVED IN THE CANONICAL
WNT/b-CATENIN PATHWAY

After having understood the regulation of b-catenin in the
canonical WNT pathway, we now know that mutations in any
of the components of this pathway can lead to its deregulation,
which can contribute to a variety of diseases. Herein, we will
focus on such mutations contributing to cancer. APC plays an
important role in b-catenin degradation, and mutation in APC
impairs destruction complex formation. Over 70% of colorectal
adenocarcinoma patients carry mutations in the APC gene
(Figure 3A) that lead to the stabilization of b-catenin. APC
has long been known to be an important initiator gene for the
majority of colorectal cancers. However, a recent study suggests
that colorectal cancer tumors with a single APC mutation can
have a survival benefit, whereas tumors lacking any APC
mutations convey a worse prognosis (50). Other cancers
display a lower number of APC mutations, whereas
Frontiers in Oncology | www.frontiersin.org 4
endometrial carcinoma, esophagogastric adenocarcinoma, and
melanoma exhibit over 10% APC mutations. An aberrant APC
promoter mutation is found in early endometrial carcinoma,
which decreases with cancer progression (51), suggesting that
loss of APC function is an early event in endometrial carcinoma.
b-catenin mutations in N-terminal serine/threonine residues or
adjacent residues that interrupt CK1- and GSK3b-induced
regulatory serine/threonine phosphorylations have been found
in several cancers (Figure 3B). In endometrial carcinoma, 20-
40% of patients carry mutations in b-catenin (52). It is also
frequently mutated in hepatocellular carcinoma (15-33%) (53).

However, b-catenin is not mutated in pediatric T-ALL, and
even if it is found to be mutated in any T-ALL cell line or patient
sample, this holds no clinical significance (54). The most
common activating missense mutation found in the
endometroid carcinoma subtype of epithelial ovarian cancer
(EOC) is in the b-catenin gene, CTNNB1, accounting for 54%
of cases (55). This mutation occurred within the amino-terminal
domain of b-catenin (55), which is positively correlated with its
nuclear localization and expression of the b-catenin target genes.
GSK3b phosphorylates the amino-terminal domain of b-catenin,
leading to its degradation. Thus, mutations within this domain
help b-catenin in evading degradation instead of accumulating in
the nucleus (56). Moreover, loss-of-function mutations in genes
encoding several components of the destruction complex, such
as AXIN, APC, and GSK3b, were also reported in EOC, although
not frequently (57). Thus, b-catenin target genes, such as cMyc,
CCND1, and VEGF, were constitutively activated due to the
disrupted WNT pathways contributed by the various mutations
in its different components, which aided in cancer
progression (58).
NON-CANONICAL WNT SIGNALING
PATHWAY

Non-canonical WNT ligands such as WNT4, WNT5A, WNT5B,
WNT7A,WNT7B, andWNT11 bind to Frizzled receptors (Fzd2,
Fzd3, Fzd4, Fzd5, and Fzd6), and ROR1/ROR2 (receptor tyrosine
kinase-like orphan receptor) or RYK acts as co-receptors to
initiate non-canonical signaling (Figure 4). This pathway has
always been defined as the one where b-catenin does not
accumulate in the nucleus (59). It generally governs
intercalation, cellular movement, and directed migration
culminating in convergence and extension along the anterior/
posterior axis of the organism (60, 61). Based on the phenotypic
response, non-canonical signaling can be classified into two
branches: WNT/PCP (Planar Cell Polarity) and the WNT-
cGMP (cyclic guanosine monophosphate)/Ca2+ pathways
(61, 62).

The first branch of the non-canonical pathway – PCP
signaling occurs through WNT-Fz receptor interaction without
the involvement of LRP5/6 co-receptors. This results in
activation of the DVL protein, which in turn activates a small
GTPase such as RAC (63). Activated RAC further stimulates
JNK activation (64). DVL also forms a complex with DSH
March 2022 | Volume 12 | Article 858782
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associated activator of morphogenesis 1 (DAAM1), which results
in the activation of other GTPases: RHO and, subsequently, Rho-
associated kinase (ROCK) and myosin (63). The actin
remodeling process associated with cell polarization and
motility is controlled by signals emanating from both RAC and
RHO activation (64). Non-canonical WNT ligands such as
WNT5A also interact with ROR family orphan receptor
tyrosine kinases such as ROR2 to activate JNK, RHOA, etc.
This has been shown to antagonize the canonical WNT signaling
pathway by inhibiting the transcriptional activation potential of
the b-catenin/TCF complex, thus reducing the expression of
Cyclin D1 (65, 66).

The second branch of the non-canonical pathway – WNT/
Ca2+ signaling is characterized by WNT-Fz-induced
phospholipase C (PLC) activation that increases cytoplasmic
Ca2+ levels. Several Ca2+-responsive enzymes such as protein
kinase C (PKC), calcineurin, and calcium/calmodulin-dependent
Frontiers in Oncology | www.frontiersin.org 5
protein kinase II (CaMKII) are activated upon sensing the
intracellular Ca2+ flux (67). CaMKII further activates the
transcription factors nuclear factor of activated T cells (NFAT),
TGF-b activated kinase (TAK1), and Nemo-like kinase (NLK),
all of which result in decrease in the levels of intracellular cGMP,
which antagonizes the canonical WNT signaling (68, 69).
Moreover, TAK1 activates NLK, which in turn phosphorylates
TCF. This prevents the b-catenin-TCF complex from binding
DNA, thereby inhibiting gene transcription (70). TheWNT/Ca2+

signaling regulates various developmental processes such as
cytoskeletal rearrangements, cellular adhesion, dorsoventral
patterning, and tissue separation in embryos (71).

The non-canonical WNT signaling pathway also has the
potential to inhibit canonical WNT signaling by promoting the
proteasomal degradation of b-catenin through an alternative E3
ubiquitin ligase complex containing APC, Ebi, and Siah1 or
Siah2 (72, 73). This does not involve GSK3b or b-TrCP and
A

B

FIGURE 3 | Mutations in APC and b-catenin. (A) Mutations in APC and CTNNB1 (b-catenin) in different cancers have been collected from cbioportal. (B) Mutation
frequency in CTNNB1 gene and other post-translational modifications collected from cbioportal. TCGA PanCancer Atlas Studies (http://www.cbioportal.org/study/
summary?id=5c8a7d55e4b046111fee2296) was used.
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neither requires activation of CaMKII or NFAT (74). Thus, the
antagonism of canonical WNT signaling by non-canonical
WNTs involves multiple mechanisms that may or may not
involve calcium (71).
COACTIVATORS REGULATING
THE OUTPUT OF THE WNT
SIGNALING PATHWAYS

The canonical WNT signaling pathway is dependent on b-catenin,
whereas the non-canonical WNT signaling pathway is
independent of b-catenin (75). Once in the nucleus, b-catenin
interacts with members of the TCF/LEF family of transcription
factors. b-catenin can also interact with a variety of other
transcription factors like FOXO, HIF1, Sox family members,
nuclear receptors, etc. Thus, nuclear b-catenin can perform
divergent functions, which adds complexity to the interpretation
of canonical WNT signaling (76). Transcriptional coactivators like
cAMP response element-binding protein (CREB)-binding protein
(CBP) or its closely related homolog, p300, are key regulators of
RNA polymerase II-mediated transcription (77). b-catenin can
recruit either CBP or p300 along with other components of the
basal transcriptional machinery to generate a transcriptionally
active complex, which leads to the expression of a variety of
downstream target genes (78). Differential utilization of these
coactivators by b-catenin can lead to different cellular outputs
(75). Canonical WNT signaling pathway mediated by WNT3A
stabilizes b-catenin and leads to its association with the coactivator
CBP for transcribing genes related to self-renewal, potency, and
proliferation (77). However, the non-canonical WNT signaling
pathway mediated by WNT5A induces the activation of various
kinases such as PKC, CaMKII, SIK, AMPK, and MAPK (5, 8, 79).
PKC further phosphorylates Ser89 of p300, which increases its
Frontiers in Oncology | www.frontiersin.org 6
affinity for b-catenin (77). The association of coactivator p300 with
b-catenin drives the gene expression program from a proliferative
state to a differentiative state; that also governs planar cell polarity,
convergent extension, and cytoskeletal reorganization (80). Thus,
coordinated integration between both canonical and non-
canonical WNT signaling pathways is extremely crucial for
regulating cell proliferation with differentiation and adhesion
(75). Canonical and non-canonical WNT signaling pathways
are, hence, highly dynamic, coupled, and not mutually exclusive
with cross-talk occurring between them, which is dependent on
the type of cell, tissue, and specific stage of development (77).
KINASES REGULATING THE ACTIVITY OF
b-CATENIN

Alternative signal transduction pathways from various growth
factor receptors and ion channels can activate a myriad of
kinases, which also have the potential to phosphorylate either
CBP or p300, thereby controlling differential utilization of
coactivators by b-catenin. Moreover, these kinases can
phosphorylate b-catenin directly (77), thereby playing key roles
in regulating the localization, expression, and function of b-
catenin (81). We will be discussing some of those kinases in the
following sections.

Cell Cycle-Associated Kinases
Aurora kinase A (AURKA) is required for centrosome function
and spindle assembly during mitosis that, once activated,
phosphorylates Polo-like kinase 1 (PLK1) at Thr210 in
presence of the co-factor Bora (82–85). PLK1 is the master
regulator of the cell cycle, playing an important role in M-
phase progression (86). PLK1 in turn phosphorylates several
substrates, FOXM1 being one of them. FOXM1 then transcribes
FIGURE 4 | Non-canonical WNT pathway. Upon interaction of the non-canonical WNT ligand with Fz and ROR1/ROR2, several pathways including DAAM1-RHOA-
ROCK, RAC1-JNK, PKC, and CAMKII pathways are activated which results in different cellular processes and transcriptional activation of different sets of genes.
March 2022 | Volume 12 | Article 858782
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target genes involved in cell cycle progression, cell proliferation,
genomic stability, chemoresistance, and DNA damage repair
(87–89). All components of the AURKA-PLK1-FOXM1 axis
appear to be hyperactivated due to multiple events associated
with a BCR-ABL fusion protein that promotes resistance to
tyrosine kinase inhibitors in chronic myeloid leukemia (CML)
(90–94). The AURKA-PLK1-FOXM1 axis interacts with b-
catenin, which supports the resistance of BCR-ABL+ leukemic
stem cells to tyrosine kinase inhibitors (86, 95–97). PLK1
physically interacts with b-catenin and phosphorylates it on
Ser718 in the M phase of the cell cycle, indicating an
important M-phase specific function of b-catenin such as the
regulation of centrosomes (86). Deregulated PLK1 expression
has been reported in many cancers, which in turn could alter b-
catenin regulation in the M phase, thus leading to abnormal cell
cycle control and chromosome instability (79, 86, 98). Moreover,
PLK1 regulates the activity of another cell cycle regulatory
kinase, NIMA-related protein kinase 2 (Nek2). Nek2
phosphorylates Thr41, Ser37, and Ser33 at the N-terminus of
b-catenin along with some five additional sites; these are the
amino acid residues phosphorylated by GSK3b as well. This
inhibits the interaction of b-catenin with b-TRCP, thereby
stabilizing it. Nek2 regulates centrosome disjunction/splitting;
thus, b-catenin stabilized by Nek2 accumulates at centrosomes in
mitosis, regulating the centrosome cycle (81). AURKA sequesters
AXIN from the destruction complex, while FOXM1 associates
with b-catenin, thereby enabling its nuclear import and
recruitment to the TCF/LEF transcription complex to support
leukemic cell proliferation and survival (99). So, all 3
components of the AURKA-PLK1-FOXM1 axis regulate b-
catenin transcriptional activity. Inhibition of these components
ultimately results in the dephosphorylation of FOXM1, causing
the release of b-catenin from its binding, which leads to its
cytoplasmic relocation and degradation. The proliferation and
survival of BCR-ABL+ cells are thus blocked by the inhibition of
the b-catenin-mediated transcriptional activity (100).

Protein Kinase C (PKC)
Once activated, b-catenin is translocated to the nucleus. Its
stability is regulated by the E3 ubiquitin ligase tripartite motif-
containing protein 33 (TRIM33), which is independent of
GSK3b and b-TRCP (101). However, this regulation is
dependent on the PKC family member PKCd, which is
activated upon prolonged WNT stimulation. PKCd
phosphorylates b-catenin at Ser715, thereby facilitating its
interaction with TRIM33. b-catenin is then targeted for
degradation, shutting off the WNT pathway. Apart from
inhibiting the canonical WNT pathway mediated by WNT3a,
TRIM33 can inhibit EGF-induced b-catenin transactivation
(101). TRIM33 is thus known to act as a tumor suppressor in
various cancers including clear cell renal cell carcinoma (102),
chronic myelomonocytic leukemia (103), hepatocellular
carcinoma (104), and pancreatic cancer (105). In fact, PKC is a
family of 10 protein serine/threonine kinases that are encoded by
9 genes (106–109). PKC family members are divided into three
subfamilies: classical (PKCa, PKCb1, PKCb2, and PKCg), novel
(PKCd, PKCϵ, PKCh, and PKCq) and atypical (PKCz and PKCi)
Frontiers in Oncology | www.frontiersin.org 7
(108, 109). Classical and novel PKC isoforms display dependency
on second messengers for activation. For example, classical PKC
isoforms are diacylglycerol (DAG) and Ca2+-responsive while
novel PKC isoforms are dependent on DAG. While several PKC
family members have been implicated in tumorigenesis, PKCd
acts as a tumor suppressor, as its main function is to induce
apoptosis, apart from regulating b-catenin degradation (101,
108–114). Another PKC family member that serves as a tumor
suppressor in intestinal cancer is the atypical PKCz that induces
Ser45 phosphorylation of b-catenin, which is independent of
CK1a and is thus important for GSK3b-mediated
phosphorylation (115). The classical PKC isoform PKCa
induces phosphorylation of b-catenin at N-terminal serine
residues, which in turn results in enhanced proteasomal
degradation of b-catenin and a reduction of transcriptional
regulations (116). Furthermore, PKCa phosphorylates ROR1
(RORa ) at Ser35 , which can eventual ly l imit the
transcriptional regulation of b-catenin (117). Collectively, these
studies suggest that several PKC isoforms play important roles in
the regulation of WNT/b-catenin signaling.

Protein Kinase A (PKA)
The cyclic AMP (cAMP)-dependent protein kinase, protein
kinase A (PKA), has diverse cellular functions including cell
proliferation, differentiation, cell cycle regulation, and apoptosis.
The cAMP/PKA pathway plays a highly complex and cell-
specific role in regulating cell growth, as it stimulates growth
for some cell types while inhibiting others (118, 119). PKA can
even have contrasting effects of promoting or inhibiting cell
proliferation in the same cell type, such as the vascular smooth
muscle cells, depending on the agonist that stimulates its activity
(120, 121). The presenilin1 complex in Alzheimer’s disease
contains presenilin1, GSK3b, the catalytic subunit of PKA and
b-catenin. PKA induces Ser45 phosphorylation on b-catenin,
thereby enhancing GSK3b-dependent phosphorylation of b-
catenin and its subsequent proteasomal degradation, which is
independent of the WNT-controlled AXIN complex (122).
However, in contrast, activation of PKA has also been shown
to increase b-catenin accumulation in both the cytosol and
nucleus of HEK293 cells after stimulation with prostaglandin
E2 (PGE2) (123). PKA phosphorylates b-catenin on Ser552 and
Ser675 that stabilize b-catenin by inhibiting its ubiquitination
without affecting the formation of the destruction complex and
GSK3b-dependent phosphorylation (123–125). PKA-induced
phosphorylation of b-catenin at Ser675 promotes TCF/LEF
transactivation and binding to its transcriptional coactivator
CREB-binding protein (CBP) (124). Thus, the phosphorylation
of b-catenin by PKA at different serine residues determines the
outcome of b-catenin regulation.

Receptor Tyrosine Kinases (RTKs)
Receptor tyrosine kinase (RTK) consists of a family of around 60
mammalian protein tyrosine kinases (106, 107). The RTK
epidermal growth factor receptor (EGFR) activates AKT that
directly phosphorylates b-catenin on Ser552, which increases the
cytosolic and nuclear b-catenin levels and transcriptional
regulation, thereby promoting tumor cell invasion (126).
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Furthermore, the proliferation of PTEN-deficient intestinal stem
cells that initiate intestinal polyposis is driven by AKT activation
where AKT phosphorylates b-catenin on Ser552 (127).
Ultraviolet (UV) irradiation activates EGFR in keratinocytes,
resulting in the phosphorylation of b-catenin at Tyr654, which is
responsible for its dissociation from the E-cadherin/b-catenin/a-
catenin complex (128). Furthermore, UV-induced EGFR
activation allows for the nuclear translocation of b-catenin and
transcriptional activation through interaction with TCF4 (128).
Fibroblast growth factor-2 (FGF-2) activates MAP kinase
signaling in osteoblasts, which in turn phosphorylates b-
catenin. The phosphorylation is mediated by MEKK2
(MAP3K2) at Ser675 that stabilizes b-catenin and increases its
activity by recruiting the deubiquitinase USP15 (129). In
colorectal cancer, a loss-of-function mutation in APC is very
common, stabilizing b-catenin due to the lack of destruction
complex. However, 60% of colorectal cancer patients carry
mutations in KRAS and BRAF genes that result in
uncontrolled MAPK signaling. Oncogenic activation of KRAS/
BRAF/MEK signaling increases the transcriptional activities of
b-catenin/TCF4 and c-MYC promoter and increases the mRNA
levels of c-Myc, AXIN2, and Lef1 (130). Another MAPK, p38g,
phosphorylates b-catenin at Ser605 (131). FGFR2, FGFR3,
EGFR, and TRKA increase the cytosolic b-catenin
concentration by dissociating b-catenin from cadherin complex
through direct phosphorylation at Tyr142 (132). The RTK MET
interacts with b-catenin in hepatocytes, colon cancer, and breast
cancer cell lines; this association occurs at the region of cell-cell
contact (133, 134). The association is constitutive but can be
abrogated by hepatocyte growth factor (HGF) stimulation. HGF
induces tyrosine phosphorylation of b-catenin at Tyr654 and
Tyr670, resulting in its dissociation fromMET (135). Hepatocyte
growth factor-like protein (HGFL) induced RON activation,
which resulted in tyrosine phosphorylation of b-catenin at
Tyr654 and Tyr670, inducing its nuclear accumulation and
transcriptional activation in breast cancer (136). Type-1
insulin-like growth factor (IGF-1) causes the nuclear
translocation of b-catenin in the context of IGF-1R signaling,
which leads to the activation of b-catenin target genes such as c-
MYC and cyclin (137–141). This is brought about by the direct
binding of sequences between amino acid residues 695 and 781
in the C-terminus of b-catenin to sequences located between
amino acid residue 600 and the C-terminus of insulin receptor
substrate-1 (IRS-1), in both the nucleus and the cytoplasm (142).
The PTB domain of IRS-1 then translocates the b-catenin-IRS-1
complex to the nucleus (143). b-catenin binding to IRS-1 with its
C-terminus may thus prevent phosphorylation at its N-terminus
by GSK3b, which primes b-catenin for ubiquitination and
degradation (8, 144). So, IRS-1, a docking protein for both
IGF-1 and insulin receptors, can regulate the subcellular
localization and activity of b-catenin in cells that are
responsive to the mitogenic action of IGF-1 (142, 145).

Janus Kinase 3 (JAK3)
Adherens junctions are multiprotein complexes in cell-cell
junctions that connect neighboring cells to maintain the
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epithelial tissue structure (146). b-catenin is an adherens
junctions-associated protein that links the cytoplasmic domain
of cadherins to the a-catenin-associated actin cytoskeleton and
has been implicated in adherens junctions remodeling (16).
Janus kinase 3 (JAK3) is a non-receptor tyrosine kinase that
transmits intracellular signals through interactions with the g
chain of several cytokine receptors upon stimulation with
cytokines (147). It associates with b-catenin in adherens
junctions and phosphorylates Tyr30, Tyr64, and Tyr86 (148).
However, JAK3-mediated phosphorylation is required prior to
the Tyr654 phosphorylation of b-catenin. Phosphorylation on
those sites by JAK3 suppressed EGF-induced epithelial-
mesenchymal transition (EMT) and, rather, induced epithelial
barrier functions by adherens junctions localization of
phosphorylated b-catenin via its association with a-catenin.
Moreover, a reverse effect was seen with increased EMT and
compromised epithelial barrier functions upon the loss of JAK3-
mediated b-catenin phosphorylation, which even abrogated the
localization of b-catenin in the adherens junctions (148).

p21-Activated Kinase (PAK)
p21-activated kinase (PAK) is a family of six protein serine/
threonine kinases that acts mainly as the effector proteins for the
Rho GTPases CDC42 and RAC (149). PAK-family proteins
regulate various cellular processes including cell proliferation
and cell survival, cell motility, cytoskeletal reorganization,
oncogenic transformation, and gene transcription (149, 150).
JNK2 and PAK1 both are the downstream effectors of RAC1.
More advanced colon cancer samples often contained K-Ras
mutation, which elevated two signaling branches: K-Ras/RAC1/
JNK2 cascade and K-Ras/RAC1/PAK1 cascade (151–154). Thus,
JNK2-mediated phosphorylation of b-catenin at Ser191 and
Ser605 increased, which led to its nuclear translocation (151,
152). Additionally, RAC1 induces b-catenin Ser191 and Ser605
phosphorylation, which is mediated by JNK2; phosphorylation
on those sites is required for the nuclear localization of b-catenin
(151, 155). Apart from RAC1, the EGF and IGF signaling
pathways may induce PAK1 expression (156–158). Another
kinase, PAK4, shuttles between the nucleus and cytoplasm and
interacts with b-catenin in both cellular compartments (159). It
was observed that both PAK1 and PAK4 mediated
phosphorylation of b-catenin on Ser675 stabilizes it by
inhibiting its degradation and thus promotes TCF/LEF
transcriptional activity (159, 160). Therefore, one downstream
effector of RAC1 mediates the nuclear translocation of b-catenin,
whi le the other downstream effector promotes i ts
transcriptional activity.

Tyrosine Kinases
Several tyrosine phosphorylation sites have been identified on b-
catenin and have been shown to play important roles. In the
presence of a disrupted cellular contact and active TGF-b1, E-
cadherin and the epithelial integrin a3b1 associate with TGF-b1
receptors, where Tyr654 in b-catenin gets phosphorylated by the
epithelial integrin in primary alveolar epithelial cells (AECs) and
the phosphorylated b-catenin forms a complex with phospho-
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SMAD2, resulting in EMT initiation in idiopathic pulmonary
fibrosis (IPF) (161, 162). This epithelial integrin-mediated cross-
talk between WNT and TGF-b1 signaling pathways, which is
required for pulmonary fibrogenesis and EMT, is done with the
help of TGF-b1mediated activation of SRC family kinases (163).
In a hypoxic condition, reactive oxygen species (ROS) activates
SRC that phosphorylates b-catenin on Tyr654. This tyrosine-
phosphorylated b-catenin gets complexed with SRC and HIF1a
in primary human lung adenocarcinomas and lung tumor cell
lines to promote the transcriptional activity of HIF1a and
hypoxia-induced EMT (164). Another substrate identified for
SRC in b-catenin is Tyr86 (165). An SFK FYN induces tyrosine
phosphorylation of b-catenin at Tyr142 and disrupts its
association with a-catenin (37). Other tyrosine kinases such as
FER, FES, and c-MET also participate in the phosphorylation of
Tyr142 (37). This disrupts the binding of a-catenin to b-catenin
and, instead, favors the binding of b-catenin to the nuclear
transporter B-cell lymphoma 9 (Bcl9), which acts as a co-
activator in WNT signaling (166). Protein tyrosine kinase
(PTK6) is a distant SRC family member. It is regulated by C-
terminal tyrosine phosphorylation, which is similar to SRC but
lacks an N-terminal myristoylation site and, therefore, cannot
localize to the membrane-like other SRCs. PTK6 interacts with
both the cytoplasmic and nuclear b-catenin and directly
phosphorylates b-catenin at several tyrosine residues including
Tyr64, Tyr142, Tyr331, and Tyr333 (167). In the nucleus, PTK6
inhibits b-catenin function, which was shown to be independent
of tyrosine phosphorylation, suggesting a possible kinase-
independent role of PTK6 in the transcriptional regulation of
b-catenin function (167).

BCR-ABL Fusion Protein
The BCR-ABL fusion protein, which is frequently found in
chronic myeloid leukemia (CML), physically interacts with b-
catenin and phosphorylates it at Tyr86 and Tyr654 (168).
Phosphorylation of these tyrosine sites by BCR-ABL prevents
the association of b-catenin with AXIN/GSK3b complex; thereby,
serine/threonine phosphorylation is prevented. This subsequently
increases the cytosolic and nuclear accumulation of b-catenin that
is required for self-renewal of BCR-ABL-positive CML cells (169).
This process can be reversed by tyrosine phosphatase SHP1, where
SHP1-mediated dephosphorylation of Tyr86 and Tyr654 restores
GSK3b-dependent serine/threonine phosphorylation and,
thereby, b-catenin degradation (170). In another mechanism,
BCR-ABL tyrosine kinase controls b-catenin mediated
transcriptional activity indirectly, without physical interaction.
Chibby1 (CBY1) is a small protein that represses b-catenin
transcriptional activation; it interacts with the C-terminal
activation domain of b-catenin that hinders its binding with the
TCF/LEF transcription factors (171). The scaffolding protein 14-3-
3 drives the nuclear export of CBY1 and b-catenin by forming a
stable tripartite complex with them (172, 173). However, BCR-
ABL fusion protein downregulates CBY1 at the transcriptional
level by promoter hypermethylation and at the post-
transcriptional level by directing CBY1 toward proteasome-
dependent degradation through SUMOylation (171–173). This
Frontiers in Oncology | www.frontiersin.org 9
retains b-catenin in the nucleus and sustains its activation, which
is required for the proliferation of CML cells (174).

Casein Kinase 2 (CK2)
Casein kinase 2 (CK2) is ubiquitously expressed in the nucleus
and cytoplasm of eukaryotic cells (175). CK2 phosphorylates
many transcription factors, tumor suppressors, and proto-
oncoproteins involved in cancer, thereby regulating a
multitude of cellular processes. One such important function is
the regulation of protein stability, thus contributing to cell
proliferation and transformation (176). It also plays an
impor t an t ro l e in embryon i c deve lopment . CK2
phosphorylates b-catenin at Thr393, which leads to its
stabilization and increases its contributions in transcriptional
regulations (176). This is probably mediated by decreased affinity
to AXIN in the destruction complex (177). Another study
identified Ser29, Thr102, and Thr112 in b-catenin as CK2
phosphorylation sites that were required for interaction with
a-catenin. CK2 phosphorylation of these residues was also
important for degradation of b-catenin, as pre-phosphorylation
of b-catenin by CK2 stabilizes its binding to components of the
destruction complex, AXIN, and GSK3b, further enhancing the
activity of GSK3b. Thus, the cytoplasmic turnover of b-catenin is
controlled by the combined action of CK2 and GSK3b (178).
Therefore, CK2 appears to have dual roles in b-catenin
regulation: one for canonical WNT signaling and the other for
cell adhesion (166).

Protein Kinase D1 (PKD1)
Protein kinase D1 (PKD1) lies downstream of the signaling
pathways initiated by diacylglycerol and PKC. Diacylglycerol
dictates the intracellular localization of PKD1, while PKC
activates it by phosphorylation (179). PKD1 served as a tumor
suppressor in advanced prostate cancer, where its expression was
downregulated; later, itwas found that it interactedwith E-cadherin
(180, 181). PKD1 interacts with b-catenin and phosphorylates it on
Thr112 and Thr120 that inhibit the nuclear localization of b-
catenin, thereby decreasing its transcriptional activity. This was
probably because these threonine phosphorylations on b-catenin
increased its interaction with a-catenin and E-cadherin, thereby
linking the cytoskeleton. This suggests that Thr120
phosphorylation is critical for cell-cell adhesion (182, 183).
However, it has been suggested that PKD1 expression is
transcriptionally repressed by b-catenin, indicating the
involvement of a negative auto-regulatory loop (184).

In summary, b-catenin activity is tightly controlled by a series
of tyrosine and serine/threonine kinases (summarized in
Table 1). Phosphorylation on a specific b-catenin residue or
several residues can affect its stability, localization, and
interaction with other partners (Figure 5). For example,
phosphorylation by tyrosine or serine/threonine kinases in the
N-terminal region (except for Tyr86 and Ser191) tags b-catenin
for degradation or inhibits its nuclear translocation. On the other
hand, phosphorylation of the C-terminal region increases the
stability of b-catenin as well as its nuclear translocation (except
March 2022 | Volume 12 | Article 858782
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for Ser718). Nevertheless, different regions of b-catenin display
affinity to different regulatory proteins probably due to
phosphorylation modifications (8). Since a deregulated b-
catenin function can contribute to malignancy, kinases
involved in the regulation of b-catenin stability, localization,
and function can be attractive targets for therapeutic
implications. Pharmacological inhibitors against BCR-ABL,
EGFR, and MET have been developed for several cancers
(185–187) and probably can be repurposed to regulate b-
catenin activity. However, inhibition of kinases that promote
b-catenin degradation or inhibits its function can result in
transcriptional activation of WNT/b-catenin target genes.
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CONCLUSION

Like other cellular signaling events, WNT/b-catenin signaling is
t ight ly control led by protein phosphorylat ion and
dephosphorylation. For example, in classical WNT/b-catenin
signaling, the formation and activity of the destruction complex
are phosphorylation-dependent, which further regulates the
stability of b-catenin in a phosphorylation-dependent manner
(8). Nevertheless, as discussed above, several kinases are involved
in the regulation of this evolutionarily conserved pathway
modulating cellular adhesion, polarity, motility, migration,
proliferation, and differentiation (188–190).
FIGURE 5 | Phosphorylations sites of b-catenin. Several kinases are involved in the phosphorylation of b-catenin, thereby regulating its stability, localization, and activity
of b-catenin.
TABLE 1 | Kinases regulating b-catenin activity.

Sites Kinases Function Reference

S29, T102 CK2 Degradation, interaction with a-catenin. (176, 178)
Y30 JAK3 Interaction with a-catenin. (148)
S33, S37,
T41

GSK3b, NEK2 Degradation, contributes to mitosis. (24, 36, 38, 81)

S45 CK1a, PKA, PKCz Degradation, regulation of phosphorylation. (36, 115, 122, 123)
Y64 JAK3, PTK6 Inhibits function in the nucleus, interaction with a-catenin. (148, 167)
Y86 BCR-ABL, JAK3, SRC Increases the cytosolic and nuclear accumulation, interaction with a-catenin. (148, 165, 168, 169)
T112 CK2, PKD1 Degradation, interaction with a-catenin, inhibits the nuclear localization. (178, 182)
T120 PKD1 Interaction with a-catenin, inhibits the nuclear localization (182, 183)
Y142 PTK6, FYN, FER, FGFR2, FGFR3, EGFR,

TRKA
Inhibits function in the nucleus, dissociation from adherence junctions, cytoplasmic
accumulation.

(25, 35, 37, 132, 167)

S191 JNK2 Nuclear translocation. (151, 152)
Y331, Y333 PTK6 Inhibits function in nucleus. (167)
T393 CK2 Stabilization, enhances contributions in transcriptional regulations (176)
S552 PKA, AKT Inhibits ubiquitination, stabilization, transcriptional regulation, and promoting tumor

cell invasion.
(124, 126, 127)

S605 JNK2, p38g Nuclear translocation. (131, 151, 152)
Y654 MET, EGFR, SRC, BCR-ABL Dissociation from the E-cadherin/b-catenin/a-catenin complex, nuclear translocation. (128, 135, 164, 168,

169)
Y670 MET Nuclear translocation. (135)
S675 PAK1, PAK4, MEKK2, PKA Stabilization, inhibits ubiquitination, contributes to TCF/LEF transactivation. (123, 124, 129, 159,

160)
S715 PKCd Facilitate interaction with TRIM33 and degradation. (101)
S718 PLK1 Regulation of centrosomes in M phase (86)
March 2022 | Volu
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Much is already known aboutWNT/b-catenin signaling and the
roles of its components in various cancers. However, there are still
several possible missing links that need to be studied in the
regulation of WNT/b-catenin. For instance, aurora family kinases
seem to be involved in the stabilization of b-catenin (191). However,
the exact mechanism of how b-catenin stabilization is mediated by
aurora family kinases remains to be determined. AlthoughWNT/b-
catenin signaling is highly simplified in the figures depicted in this
review, the interaction between various signaling proteins as
described above makes it highly complicated. Both the canonical
and non-canonical pathways involving b-catenin intersect at many
levels, which adds several layers of complexity. Thus, attempts
should be made to precisely define and dissect these pathways, so
that they can be better targeted as therapies in the future.
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