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GFAPd, the delta isoform of the glial fibrillary acidic protein, is mainly expressed in the
subventricular zone of the brain, together with other neural stem cell markers like nestin.
The authors of this paper were among the first that described in detail the expression of
GFAPd and its correlation with malignancy and invasiveness in cerebral astrocytoma.
Later, several papers confirmed these findings, showing that the alternative splice variant
GFAPd is overexpressed in glioblastoma (CNS WHO grade 4) compared with lower grade
gliomas. Other studies suggested that a high GFAPd/a ratio is associated with a more
malignant and invasive behavior of glioma cells. Moreover, the changing of GFAPd/a ratio
affects the expression of high-malignant genes. It is now suggested that discriminating
between predominant GFAP isoforms, GFAPd or GFAPa, is useful for assessing the
malignancy state of astrocytoma, and may even contribute to the classification of gliomas.
Therefore, the purpose of this paper is to review the literature with emphasize on the role of
GFAPd as a potential biomarker, and as a possible therapeutic target in glioblastoma.
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INTRODUCTION

Glial fibrillar acid protein (GFAP) is a type III intermediate filament protein (IF) found in the
cytoskeleton of central nervous system’s (CNS) glial cells (1). GFAP molecule contains 432
aminoacids and has head and tail domains flanking a central a-helical rod domain. Interestingly,
during the evolution, more than 90% of the amino acid sequence is conserved among human,
mouse, and rat (2). GFAP molecules, after posttranslational modification (mainly phosphorylation
and citrullination), start assembling in a multistep process like other type III intermediate filament
proteins (3). This process is initiated with monomers binding in a parallel fashion to form dimers,
then tetramers are formed by antiparallel association of dimers, followed by lateral bindings that
produce octamers, oligomers, and the final filament structures (4).

GFAP is largely expressed in the astrocytes of the central nervous system, but it can also be found
in nonmyelinating Schwann cells and enteric glia. GFAP is expressed not only in normal brain
tissue, but also in brain tumors like astrocytoma, where it is one of the most important markers for
astrocyte lineage. GFAP is also expressed in other tumors like ependymoma (5), pleomorphic
xanthoastrocytoma (6), and in other unexpected sites such as myoepithelial tissue and salivary gland
tumors (7).

Since its first report by Eng et al. in 1969 (1, 8), 6 isoforms have been described, from human and
rodent sources, with splice variants at both 5’ and 3’ ends (Table 1) (11–15, 22, 23).
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The most abundant GFAP isoform in glial cells is GFAPa,
which is the 432 amino acid protein homomerically assembled.
The next GFAP isoforms discovered, GFAPb and GFAPg, are
different from the main isoform by RNA start sites, with GFAPb
mRNA being upstream of that of GFAPa (11, 24) and GFAPg
beginning transcription at 130 nucleotides from the end of
GFAPa intron 1 (12). GFAPb and GFAPg splice variants carry
downstream of their transcription start sites the GFAPa exons.
Among cytoskeleton intermediate filaments, alternative splicing
is a well-described process in GFAP and synemin, producing
additional isoforms (25). Other isoforms of interest produced by
alternative splicing are GFAPd and the latest described, GFAP
kappa (Table 1) (15).
GFAPd – MOLECULAR STRUCTURE
AND EXPRESSION

In 1999, Condorelli et al. discovered a new transcript named
GFAPd, which was isolated from the rat hippocampus (Table 1)
(13). GFAPd transcript contained a previously undetected exon,
exon 7a, which replaces the exons 8 and 9 from GFAPa. The
result is a distinct C-terminal tail domain of GFAPd compared to
GFAPa sequence. Exon 7a, which is present in all mammals,
including humans, is unique by its splice acceptor site and
polyadenylation signal (26). From a functional viewpoint, the
difference in the C-terminal tail domain is crucial. Therefore,
GFAPd by itself can aggregate and prevent normal filament
assembly if its concentration (induced by transfection of
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astrocytic cell line) reaches a threshold concentration (10-30%
of total GFAP) (27, 28).

The subventricular zone (SVZ) is a distinct region of the brain
with specific features. One of the most important characteristics of
this area is the presence of particular cell populationswith stem-like
properties. Numerous studies have identified a subpopulation of
astrocytes as the multipotent neural stem cells (NSCs) of the adult
mammalian brain (29–33). Interestingly, Roelofs and colleagues
found that within all the areas that were tested from human
postmortem brain specimens, the largest localization of GFAPd
immunopositive astrocytes was in the subependymal layer of each
lateral ventricle (Figure 1A) (16). These astrocytes have a particular
phenotype and form a ribbon of cells along the lateral ventricles
(16). Even though the authors found that the population of GFAPd
-positive cells in the SVZ is considerably higher than the number of
NSC in this area [approximated byMorshead et al. at 0.2-0.4%NSC
(34)], they considered that a certain subgroup of GFAPd -positive
SVZ astrocytes represent the multipotent NSC (16).

Another study, published by van den Berge and colleagues,
demonstrated that GFAPd expressing cells were found not only in
the SVZ but also in the rostral migratory stream (RMS) on the way
to the olfactory bulb (35). Nestin, a marker for NSCs, proliferating
cell nuclear antigen (PCNA)andMcm2,whichare cell proliferation
markers are expressed simultaneously with GFAPd in these cells
(35). The authors support this hypothesis with evidence that
GFAPd expressing cells in the SVZ resemble immature astrocytes
with neural stem cells behavior. Furthermore, vimentin, a marker
for immature astrocytes and the general astrocyte marker GFAPa
are co-expressed in these cells (8). Notably, GFAPd-positive cells
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TABLE 1 | Research on GFAP related to the invasiveness of cerebral gliomas.

Research Highlight Reference Country Summary

Discovery – canonical
isoform a

Eng et al., 1971
(9)

U.S.A. The isolation of an acidic protein as a major component of human brain tissue with severe fibrillary
gliosis, that would later be called GFAP.

GFAP term into common use Uyeda et al., 1972
(10)

U.S.A. Immunological study - normal human brain and astrocytoma cross-react with anti-GFA antibodies.

GFAP b Feinstein et al.,
1992 (11)

U.S.A. Description of a new splice variant, which initiates upstream to the major start site and is found
predominantly in Schwann cells.

GFAP g Zelenika et al.,
1995 (12)

France New splice transcript, which contains a part of the intron 1, is expressed in mouse bone marrow and
spleen as well as in human and mouse central nervous system.

GFAPd Condorelli et al.,
1999 (13)

Italy Novel transcript with exon 7a, which replaces the exons 8 and 9 from GFAPa. It was isolated from
rat hippocampus.

GFAPƐ Nielsen et al.,
2002 (14)

Denmark This splice variant is characterized by a new C-terminal protein sequence, and has the ability to
specifically bind presenilin proteins in yeast and in vitro.

GFAP k Blechingberg
et al., 2007 (15)

Denmark Latest isoform produced by alternative splicing and polyadenylation of the 3’-region of the human
GFAP pre-mRNA.

GFAPd expression in
subventricular zone

Roelofs et al.,
2005 (16)

Netherlands Neural stem cells in the adult human brain actively splice GFAP-delta transcripts.

Neural stem cells and the
origin of gliomas

Sanai et al., 2005
(17)

U.S.A. The transformation of SVZ astrocytes with stem features is the basis of gliomagenesis.

GFAPd immunostaining in
cerebral astrocytomas

Brehar et al., 2015
(18)

Romania GFAPd and nestin-positive cells in cerebral astrocytomas correlates with tumor invasiveness
assessed by preoperative neuroimaging investigations.

GFAPd/a ratio and expression
of malignant genes

Stassen et al.,
2017 (19)
Moeton et al,
2014 (20)

Netherlands DUSP4 expression in glioma correlates with the GFAPd/a ratio, and high expression is associated
with a worse prognosis.
LAMA1 associated with gliomas invasion was increased in cells with a high GFAPd expression
compared to GFAPa.

GFAPd/a ratio and glioma
invasiveness

Uceda-Castro
et al., 2022 (21)

Netherlands High-grade gliomas are associated with GFAPa down-regulation and and increased GFAPd.
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lacked expression of late markers of astrocyte development, such as
glutamine synthetase (GS) and S100B. More important, to support
their assertion is the evidence of co-expression, in GFAPd-positive
cells of the transcription factor Sox2, important for themaintenance
of adult neurogenesis (36). Based on these results, GFAPd acts as a
marker of NSCs in the SVZ.

Sanai and colleagues raised the hypothesis that SVZ is probably
the origin of cerebral gliomas (17). The transformation of these
astrocytes with stem features, which occurs in the SVZ, followed by
outwardmigration, could be the origin of astrocytomas (17).As these
astrocytes (which reside in the SVZ) express GFAPd, a reasonable
assumption is that cerebral astrocytoma may retain the molecular
signature and express GFAPd. Our previous study confirmed this
hypothesis andhasdemonstrateda statistically significant correlation
between thegradeofGFAPd immunostainingand thegradeofnestin
immunostaining in cerebral astrocytoma (Table 1) (37).Moreover, a
statistically significant correlation was found between the
neuroimaging invasiveness of cerebral astrocytoma and GFAPd
immunostaining grade (18).
GFAPd AS A MARKER OF INVASIVENESS
IN MALIGNANT ASTROCYTOMA

Cerebral astrocytoma is the most common primary cerebral
tumor, with an incidence slightly higher in the male
Frontiers in Oncology | www.frontiersin.org 3
population and is commonly encountered in adult age (38).
There are four-grade astrocytomas, with CNS WHO grade 4
being the most malignant type with a median survival despite
combined treatment (radical surgical resection followed by
radiotherapy and chemotherapy) of approximately 15 months
(39). The new WHO 2021 classification system includes several
biomarkers to classify cerebral gliomas and to better predict the
malignant behavior of these tumors (40). Adult type diffuse
gliomas are therefore classified as isocitrate dehydrogenase
(IDH)-mutant astrocytoma (graded CNS WHO 2/3/4), IDH
mutant and 1p/19q codeleted oligodendroglioma (graded CNS
WHO 2/3) and glioblastoma (GBM) IDH-wildtype (graded CNS
WHO 4). Grading is based on natural history and
invasiveness (40).

Invasion is one of the most important pathological features,
which precludes total resection and favors an early tumor
recurrence. Certain glioblastomas (CNS WHO grade 4
astrocytomas) have an unusual short clinical course to
recurrence after radical resection followed by radiotherapy and
chemotherapy and display a highly invasive re-growth pattern
with tumor infiltration in the contralateral cerebral hemisphere
or satellite tumors developed in distant locations from the
original tumor site.

Several markers have been used to determine the prognostic
of glioblastoma patients. The evaluation of the Ki-67 labelling
index has been described for glioblastoma, but the existing data
A B

FIGURE 1 | (A). Illustrates the regions in the human brain that have a high expression of GFAPd-positive cells (subventricular zone, subpial cerebral cortex and
subgranular zone of the hippocampus); (B). Initial studies showed that the expression of GFAPa decreases in higher grade gliomas, while the level of GFAPd remains
relatively the same. Therefore, the ratio between GFAPd and GFAPa expression increases in higher-grade tumors, and it is associated with a more malignant profile.
March 2022 | Volume 12 | Article 859247
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are controversial whether there is (41, 42) or not (43–45) a
benefit on survival. The methylation test for MGMT (O6-
methylguanine DNA methyltransferase) promoter is one of the
most commonly used predictive markers (46) and while
numerous studies have reported that the hypermethylation of
MGMT promoter is associated with increased overall survival
(OS) and progression-free survival (PFS) (47), other authors
report no difference between the survival of patients withMGMT
methylation and those without (48). Moreover, Poon et al.
showed that the methylation status of the MGMT promoter
influenced only the survival of patients that did not complete the
temozolomide regimen, having a limited impact on the survival
of patients that completed the regimen (49).

Regarding the role of GFAP as a biomarker, Ahmadipour
et al. demonstrated by using immunohistochemical staining of
paraffin-embedded glioblastoma samples that a GFAP value
≥75% is associated with worse survival, independent of the
MGMT promoter methylation status or extent of resection
(50). Another study by Sommerlath et al. assessed the
differences between long and short-term survivors regarding
the GFAP expression, MGMT status and Ki-67 index (51). A
decreased Ki-67 index was observed in patients with increased
survival, but the difference was significant only when compared
with one of the two short-term survivor groups that were
included in the study (51). MGMT promoter hypermethylation
and GFAP-positive tumors were significantly associated with
increased OS when compared to both short-term survivor
groups and patients with GFAP-positive tumors had a longer
survival independent of the MGMT promoter status (51).
Considering these contradictory findings regarding the role of
the overall expression of GFAP as a prognostic factor for
glioblastoma patients, it is necessary to evaluate the expression
of the GFAP isoforms.

Several studies highlighted the expression of high levels of
GFAPd in neurogenic stem cells (16, 35, 52) and in high-grade
astrocytomas compared to lower-grade ones (37, 53, 54).

With the objective to accurately distinguish the differentiation
state of astrocytomas, it will be necessary to assess the
predominant GFAP isoform expression, either GFAPa or
GFAPd (55). Accordingly, the GFAPd/a ratio is increased in
grade IV astrocytoma (Figure 1B) (19).

Moeton et al. proved that increased GFAPd expression changes
the interaction of astrocytoma cells with the microenvironment,
with significantly decreasedmotility by down-regulation of plectin,
a protein involved in the filaments network and over-expression of
the extracellular matrix component laminin (20).

Uceda-Castro et al., with the use of ex vivo brain slice invasion
model and intravital imaging, showed different migratory
dynamics of glioma cells depending on the GFAPd and
GFAPa expression levels. High-grade gliomas are associated
with alternative splicing in GFAP expression, as GFAPa is
downregulated while GFAPd has an increased dominance in
these tumors (Table 1) (21).

Also, GFAPd showed to be a reliable marker for spinal cord
astrocytoma diagnosis, with GFAPd immunoreactivity being
significantly correlated with spinal cord astrocytoma grade (56).
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Kanski et al. demonstrated that inhibition of histone
deacetylases (HDACs) reduces GFAP expression in
astrocytoma cells and the ratio between GFAPd and canonical
isoform GFAPa increases in favor of GFAPd (57). Histone
alteration plays an essential role in glioblastoma genesis,
progression and treatment resistance and depends on two
types of enzymes, histone acetyltransferases (HATs) and
HDACs. To maintain this balance, HDAC inhibitors
(HDACis) are identified as novel agents for cancer therapy (58).

GFAPa/GFAPd Ratio and the Malignant
Profile of Cerebral Astrocytoma
Further studies focused on the expression of GFAP isoforms in
cerebral astrocytomas showed that, while GFAPa expression is
significantly lower in grade IV astrocytomas compared to grade
II and grade III astrocytomas, the expression of the alternative
splice variant GFAPd tends to be maintained between
astrocytoma grades (19). The result is an increase in GFAPd
expression compared to GFAPa, translated by higher GFAPd/a
ratio in grade IV astrocytoma compared to lower grade
(Figure 1B) (19). More important, a higher GFAPd/a ratio is
not only an epiphenomenon associated with malignant profile of
cerebral astrocytoma (19). Stassen and colleagues demonstrated
that GFAPd/a ratio regulates high-malignant genes and many of
those genes are involved in the regulation of important biological
process like the mitotic cell cycle, regulation of cell proliferation
and regulation of phosphorylation (19). Therefore, the
conclusion of the authors was that while searching for novel
therapeutic targets for cerebral astrocytomas, modulating GFAP
isoforms expression and selectively splicing should be
considered (19).

Interestingly, a higher GFAPd/a ratio induces not only
changes in the genetic expression that regulates the biological
process of the astrocytic cells, but also it activates genes involved
in the interaction between glioma cells and the extracellular
matrix (ECM) (59). One of the key molecules activated by an
increased GFAPd/a ratio in vitro is the dual-specificity
phosphatase 4 (DUSP4), also called MAPK phosphatase 2 (19).
In glioma patients, DUSP4 expression correlates with the
GFAPd/a ratio, and high expression is associated with worse
prognosis (Table 1). This phosphatase plays a key role in MAPK-
signaling pathway, which in turn regulates various tumor
malignancy–related processes. In gliomas, mutations in the
MAPK pathway and constitutive activation of the DUSP4 that
target ERK and Janus kinase (JNK) are common (60–62).
Moreover, DUSP4 activity influences key biological process
dysregulated in gliomas like cell migration (63), invasion (64),
proliferation (65), ECM degradation (66), and chemotherapy-
induced cytotoxicity (67–69).

Another important gene, LAMA1, which encodes the laminin
alpha1 chain of the ECMmolecule laminin-111, was significantly
increased in cells with a high GFAPd/a ratio (19, 20). Other
previous experiments demonstrated that GFAPd/a ratio
influenced the expression of a downstream effector of laminin-
signaling activity, metalloproteinase 2 (19, 70). This is a well-
studied metalloproteinase involved in cell invasion (71, 72) and is
March 2022 | Volume 12 | Article 859247
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associated with glioma malignancy (73). Therefore, concerning
cell–ECM interaction pathways changed by DUSP4 status, van
Bodegraven and colleagues show that a high GFAPd/a ratio
enables glioma cells to have a greater invasiveness capability in
the brain (Table 1) (55).
FUTURE DIRECTIONS AND CONCLUSION

The poor prognosis of glioblastoma is primarily related to the
local invasiveness and the tendency to relapse due to the radio-
and chemotherapy resistance after surgical resection.

A recent meta-analysis also showed that GFAP levels
measured from serum can be used to identify glioblastoma, but
further studies are needed since currently the sensitivity of this
method is still poor (74). Therefore, the assessment of GFAP in
biofluids has a limited role.

However, when performing a biopsy procedure or a surgical
resection of a glioblastoma, the high expression of GFAPd, an
alternative splice variant of GFAP, could predict the invasiveness
and the increased risk for tumor recurrence. Therefore, it would be
useful to regularly assess the immunohistochemical expression of
GFAPd (together with other glioblastoma markers) and patients with
increased expression of GFAPd in the glioblastoma samples from the
Frontiers in Oncology | www.frontiersin.org 5
initial surgery should be closely monitored after surgery. These
patients should be stratified as high risk of early recurrence and
should be closely followed-up by regular neuroimaging investigations.

Since a high GFAPd/a ratio is associated with the expression
of high-malignant genes and migratory dynamics of glioma cells,
novel therapies should focus on balancing the ratio between
GFAPa and GFAPd to decrease the motility and invasiveness of
malignant glioma cells. The regulation of histone acetylation has
an essential role in glioblastoma and could be a promising target
by reducing GFAP total expression. To date, new HDAC
inhibitors are under study.
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