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Objective: Prostate cancer and hyperplasia require different treatment strategies and
have completely different outcomes; thus, preoperative identification of prostate cancer
and hyperplasia is very important. The purpose of this study was to evaluate the
application value of magnetic resonance imaging (MRI)-derived radiomic nomogram
based on T2-weighted images (T2WI) in differentiating prostate cancer and hyperplasia.

Materials and Methods: One hundred forty-six patients (66 cases of prostate cancer
and 80 cases of prostate hyperplasia) who were confirmed by surgical pathology between
September 2019 and September 2019 were selected. We manually delineated T2WI of all
patients using ITK-SNAP software and radiomic analysis using Analysis Kit (AK) software.
A total of 396 tumor texture features were extracted. Subsequently, the effective features
were selected using the LASSO algorithm, and the radiomic feature model was
constructed. Next, combined with independent clinical risk factors, a multivariate
Logistic regression model was used to establish a radiomic nomogram. The receiver
operator characteristic (ROC) curve was used to evaluate the prediction performance of
the radiomic nomogram. Finally, the clinical application value of the nomogram was
evaluated by decision curve analysis.

Results: The PSA and the selected imaging features were significantly correlated with the
differential diagnosis of prostate cancer and hyperplasia. The radiomic model had good
discrimination efficiency for prostate cancer and hyperplasia. The training set (AUC = 0.85;
95% CI: 0.77–0.92) and testing set (AUC = 0.84; 95% CI: 0.72–0.96) were effective. The
radiomic nomogram, combined with the radiomic characteristics of MRI and independent
clinical risk factors, showed better differentiation efficiency in the training set (AUC = 0.91;
95% CI: 0.85–0.97) and testing set (AUC = 0.90; 95% CI: 0.81–0.99). The decision curve
showed the clinical application value of the radiomic nomogram.

Conclusion: The radiomic nomogram of T2-MRI combined with clinical risk factors can easily
identify prostate cancer and hyperplasia. It also provides suggestions for further clinical events.
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INTRODUCTION

Prostate cancer (PCa) is one of the most common malignant
tumors in men, and it is also the second most common cause of
death related to cancer (1). The overdiagnosis and overtreatment
of prostate cancer is a major concern in modern prostate cancer
management (2). Noninvasive diagnostic methods commonly
used in clinics include prostate-specific antigen (PSA) detection,
digital rectal examination, and magnetic resonance imaging
(MRI). However, PSA is not accurate in predicting prostate
cancer, and it is also increased in benign prostatic hyperplasia
(BPH) and granulomatous inflammation of prostatitis (3).
Recently, some scholars have found that PSA density is also
useful in identifying patients with elevated PSA due to PCa
rather than intraprostatic inflammation (4). Digital rectal
examination can only initially determine the size, surface, and
texture of the prostate but cannot make an accurate diagnosis.
Prostate puncture biopsy is the most important method for the
pathological diagnosis of prostate cancer. In most guidelines,
such as AUA, EAU, and NCCN, the indication of prostate
puncture is PSA >3 ng/ml (5). Transrectal ultrasound (TRUS)-
guided biopsy is a common diagnostic method if a patient has an
elevated PSA. However, in clinical application, we found that
some patients had a series of side effects due to TRUS-guided
biopsy, including pain and hematuria, and some patients need to
be hospitalized for observation. This is a warning that TRUS-
guided biopsy should not be used casually to alleviate the
suffering of patients. Compared with traditional PSA detection
and TRUS-guided biopsy, MRI has the advantage of high soft-
tissue resolution, which can clearly distinguish the anatomical
structure of the prostate and provide information about the
location, size, and surrounding invasion of PCa lesions (6).
Therefore, it is widely used in PCa diagnosis (7, 8). Magnetic
resonance spectrum (MRS) has a certain accuracy in the
diagnosis of PCa, prostatitis, and BPH, and metabolic pattern
can be used as an auxiliary means of conventional imaging in the
diagnosis of PCa, prostatitis, and BPH. Magnetic resonance
dynamic contrast enhancement (DCE-MRI) quantitative
parameter analysis has a high value in differentiating PCa from
BPH. When MRI diagnosis is difficult, clinical use of the Prostate
Imaging Reporting and Data System (PI-RADS) is increasing.
However, its diagnostic effectiveness varies based on each
radiologist, and the consistency of each report mainly depends
on the radiologist’s level of experience and learning (9). In recent
years, transperineal ultrasound magnetic resonance cognitive
fusion prostate-targeted puncture has been gradually used,
which has a higher diagnostic rate than a systematic puncture.

Radiomics can deeply mine and analyze image information,
extract many phenotypic features, and deeply screen and classify
these phenotypic features through machine learning, which can
objectively and quantitatively reflect the heterogeneity of tumors.
Many advanced image processing methods are used to quantify
the data, including high-order texture analysis and
morphological feature analysis (10). At present, radiomics has
been applied to the analysis of multiple organs in humans and
has good clinical value, such as the diagnosis, stage, efficacy, and
prognosis evaluation of lung cancer, breast cancer, and brain
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astrocytoma (11, 12). Nomograms have been widely used in the
diagnosis, treatment, and survival evaluation of cancer patients
(13). This recent review mentioned that when AI is applied to
diagnostic imaging, it shows excellent accuracy in detecting
prostate lesions and predicting patient survival and treatment
response (14). The purpose of this study was to establish and
validate a combined clinical-imaging model and radiomic
nomogram based on T2-MRI imaging features and clinical risk
factors for noninvasive differentiation of PCa and BPH.
MATERIALS AND METHODS

Clinical Data
A total of 146 patients with prostate nodules who underwent a
3.0-T MR examination in Jiangxi Provincial People’s Hospital
from September 2019 to September 2020 were retrospectively
analyzed. The study was approved by the hospital ethics
committee, and all patients signed informed consent. All
patients underwent TRUS-guided biopsy or radical
prostatectomy, and pathological and clinical data were
obtained. The clinical manifestations include dysuria,
frequency of urination, urgency of urination, or elevated PSA
(>3 ng/ml). All patients were given PI-RADS scores according to
the recommendation of the PIADS. Inclusion criteria are as
follows: (1) pathologically confirmed patients after TRUS-guided
biopsy or radical prostatectomy; (2) preoperative MR
examination was performed with the same equipment and
sequence. Exclusion criteria are as follows: (1) Before the MR
examination, patients had undergone biopsy, surgery,
radiotherapy, or endocrine therapy; (2) The nodule volume is
too small (maximum diameter <3 mm), and the lesion boundary
is difficult to delineate; and (3) There were artifacts in MR
images, which affected the segmentation of lesions. Among the
170 patients, 19 had motion artifacts and 6 had lesions too small
to accurately delineate the region of interest (ROI). Ultimately,
146 patients were included in the study (66 prostate cancer and
80 prostate hyperplasia).

Examination Methods
A Siemens 3 T (MAGNETOM Skyra, Siemens Healthcare,
Erlangen, Germany) MR scanner with 16-channel pelvic
phased-array coils was used. The center of the coil aligns with
the symphysis pubis. Fast spin-echo (FSE) sequence was used in
horizontal T2WI, TR4570 ms, TE89 ms, FOV20 mm × 20 mm,
matrix 276 × 238, slice thickness 3.0 mm, layer spacing 0 mm, 3
times excitation. Other scan sequences include sagittal T2WI,
coronal T2WI, transverse T1WI, and DWI (b = 0, 1,000,
2,000 s/mm2).

Feature Extraction
The images were imported into the image software (ITK-SNAP,
http://www.itksnap.org/pmwiki/pmwiki.php) in DICOM
format. Two radiologists with 5 years of experience in prostate
cancer diagnosis (Doctors A and B) manually segmented areas of
interest on T2WI and blinded them to pathological results. First,
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the two doctors analyzed 20 random images to assess
repeatability between groups. Doctor A then repeated the same
procedure. ICC greater than 0.8 indicated good consistency of
feature extraction, and the rest of the image segmentation was
performed by Doctor A. When drawing the T2 image of each
tumor, we should select the largest section of the lesion and
delineate the ROI along the lesion boundary. During the
operation, the image should be enlarged, and the edges of the
lesion should be avoided. The ROI should be manually
delineated in all layers of the lesion and finally merged into a
three-dimensional ROI. ROI should be drawn as close to the edge
of the tumor as possible and exclude edema, necrosis, and
calcification. The original image and the segmented ROI file
should be imported into the AK software (Artificial Intelligence
Kit V3.0.0.R, GE Healthcare) at the same time. A total of 396
image quantitative feature parameters were extracted, including
histogram, morphology, Haralick feature, gray-level co-
occurrence matrix (GLCM), run-length matrix (RLM), and
gray-scale region matrix. Z-score data normalization is applied
to the values of each feature to eliminate the different
characteristics in the extraction value scale.

Feature Selection and Signature
Construction
Feature selection and model construction were carried out in the
training group. First, Spearman’s method was used to calculate
the redundancy between the feature parameters, and the features
whose correlation was greater than 0.9 were retained. Second, we
employed the maximum-relevance minimum-redundancy (m-
RMR) algorithm to select the features by maximizing the
correlation between selected features and differentiating benign
and malignant, eliminating the redundancy between features.
Next, the least absolute shrinkage and selection operator
(LASSO) method was employed to further select the most
useful features using a penalty parameter, tuning l. We chose
the optimal l based on the minimum criteria according to
tenfold crossvalidation. The radiomic signature (Radscore) was
then calculated for each case via a linear combination of selected
features that were weighted by respective coefficients.

The Radiomic Nomogram Construction
Multivariate logistic regression analysis was used to screen for
independent predictors of PCa and BPH, including potential
predictors such as imaging features and clinical risk factors. To
provide a quantitative tool for clinicians to individually
distinguish PCa and BPH, we constructed a radiomic
nomogram with both radiomic and clinical features based on a
Frontiers in Oncology | www.frontiersin.org 3
multiple logistic regression model. The discriminant
performance of the radiomic nomogram was quantified, and
the Radscore for each patient in the testing data was calculated
using formulas derived from the training data. Calibration and
Hosmer–Lemeshow tests were performed in addition to AUC
calculations. Decision curve analysis (DCA) was performed by
quantifying the net benefits of the training set and test set of the
combined model under different threshold probabilities.

Data Analysis
All statistical analyses were performed using R (Version:3.4.4)
software. LASSO regression is implemented using the “GLmnet”
package. In a 7:3 ratio, 103 lesions were selected as the training
group and 43 lesions as the test group. t-Test for continuous
variables and Fisher’s exact test for categorical variables were
used to detect differences in clinical features between the PCa
and BPH groups. After statistical treatment, the difference was
statistically significant (p < 0.05). We used some specific
indicators, such as accuracy sensitivity and specificity, to
evaluate the predictive effect of the model.
RESULTS

Patient Characteristics
There were 47 prostate cancer and 56 prostatic hyperplasia
patients in the training group and 19 prostate cancer and 24
prostatic hyperplasia patients in the test group. In terms of
clinical factors, the univariate logistic analysis showed that PSA
was a significant factor in predicting PCa. Multivariate Logistic
regression analysis showed that PSA and the radiomic signature
were significantly different (all p < 0. 05), the age turned to be
insignificant, as shown in Table 1.

Performance Outcomes for the Clinical
Prediction Model
A Logistic regression classifier was established according to the
selected clinical features, and a clinical model was established to
identify PCa and BPH. The differential effectiveness of this
clinical model mainly includes the following performance
metrics. For the training set, the AUC was 0.80 (95% CI, 0.72–
0.89), while the sensitivity, specificity, and accuracy rates were
72.3%, 80.3%, and 76.7%, respectively. For the testing data, the
AUC was 0.74 (95% CI 0.56–0.91), while the sensitivity,
specificity, and accuracy rates were 47.3%, 91.6%, and 72.1%,
respectively (Table 2).
TABLE 1 | Demographic characteristics in the training and validation sets.

Training set (n = 103) p-value Testing set (n = 43) p-value

Ca BHP Ca BHP

Number 47 56 19 24
Age 71 ± 7.2 53.4 ± 11.8 0.7859 67.4 ± 10.7 69.9 ± 10.1 0.4301
PSA 65.9 ± 70.7 16.5 ± 27.8 <0.0001 62.1 ± 64.2 11 ± 16.6 0.0001
Radscore median [IQR] −0.7 [−1.8, −0.2] 0.7 [−0.1, 1.3] <0.0001 1.2 [0, 2] −0.5 [−1.2, 0.0] 0.0001
April 2022 | Volume 12 | Article
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Construction and Assessment of the
Radiomic Signature
All features were reduced to 9 potential predictors based on 103
patients in the training set using the LASSO algorithm and 10-
fold crossvalidation to build a radiomic signature model
(Figure 1). Our results show that the radiomic group features
have good predictive performance for both the training and
testing sets. In the two groups, AUC values were 0.91 and 0.90,
accuracy was 79.6% and 74.4%, specificity was 87.5% and 75.0%,
and sensitivity was 70.2% and 73.6%, respectively (Table 2).
These selected features were used to calculate the Radscore. The
formula is the same as the Chu (15) method. There were
significant statistical differences in the Radscore for both the
training and testing sets. This suggests that radiomic signatures
are closely related to the differential diagnosis of PCa and BPH,
as shown in Figure 2.

Construction and Assessment of the
Radiomic Nomogram
We found that PSA and radiological signature could
independently predict and diagnose PCa and BPH through
univariate logistic regression. As shown in Figure 3, we used
these predictors to conduct multivariate logistic regression and
constructed a more robust prediction model and radiomic
nomogram. The calibration curves showed good agreement
between the predicted and actual pathology in the radiomic
nomogram of both groups of patients. The AUC values of the
nomogram-based tumor prediction in the two sets were 0.91 and
0.90, respectively. The accuracy, specificity, and sensitivity were
88.3%, 98.2%, and 76.5% for the training set and 86.0%, 82.1%,
and 93.3% for the testing set, respectively (Table 2; Figure 4).
Frontiers in Oncology | www.frontiersin.org 4
According to the DeLong test, the AUCs of the models based on
clinical information were significantly different from the
nomogram-based ones for the training and testing sets (Table 3).
Hence, the nomogram method was found to have a good
performance on both sets. In addition, the Hosmer–Lemeshow
test demonstrated no statistically significant differences among the
training and testing subsets (p > 0.05). Figure 5 depicts the DCA
plot of the radiomic nomogram. Clearly, the plot shows that the
radiomic nomogrammethod outperforms the clinical model for the
“treat none” vs. “treat all” strategies with a treatment probability
threshold ranging from 0 to 0.9.
DISCUSSION

The PI-RADS V2 is a standardized risk assessment tool for
predicting the possibility of PCa. Each lesion detected was scored
using three standardized MRI techniques: T2WI, DWI, and DCE-
MRI. They then combine to give an overall rating category score. For
some lesions that are difficult to diagnose, PI-RADS V2 can be used
to provide better clinical advice. At present, the PI-RADS V2 score
does not give the specific threshold of PCa diagnosis, and the clinical
diagnosis threshold is usually 3 or 4. It has been suggested that A PI-
RADS 3 lesion remains an equivocal lesion (16). Evaluation of
clinical predictive factors in terms of clinically significant prostate
cancer risk is the main aspect of helping clinicians in the biopsy
decision process. One of the main limitations of PI-RADS is the high
inter-reader variability impacting cancer detection (17), which led us
to start our research into radiomics.

In our study, we used LASSO to finally select six types of texture
feature parameters, which include simple morphological and more-
FIGURE 1 | The establishment of LASSO regression model. (Left) Curve of binomial deviation of MR-derived radiomic model varying with parameter l. The vertical
axis is binomial deviation. The horizontal axis represents the log (l) value. The number above represents the number of selected features, and the l at the minimum
binomial deviation of the model is the optimal value (the curve of the image group characteristic coefficient of the vertical dotted line). (Middle) MR model changing
with l. The number above indicates the number of features filtered out. (Right) Imaging features screened by MR model.
TABLE 2 | Predictive performance outcomes of the radiomic nomogram, radiomic algorithm, and clinical model.

Group Model Accuracy 95% CI Sensitivity Specificity

Training Clinical 0.767 [0.72; 0.89] 0.723 0.803
Radiomics 0.796 [0.77; 0.92] 0.702 0.875
Nomogram 0.883 [0.85; 0.97] 0.765 0.982

Validation Clinical 0.721 [0.56; 0.91] 0.473 0.916
Radiomics 0.744 [0.72; 0.96] 0.736 0.750
Nomogram 0.860 [0.81; 0.99] 0.933 0.821
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comprehensive higher-order features. These higher-order features
can more effectively reflect the spatial heterogeneity of tumors (18).
GLCM features include two energy features and one entropy
feature, in which entropy reflects tumor heterogeneity (19). The
run-length matrix mainly reflects the roughness and directionality
of texture. The smaller long-stroke dominating value implies the
rougher texture of the images (20). Previous studies have shown that
local tumor parenchyma cannot completely represent the whole
tumor, and the analysis of the whole tumor canmore accurately and
reliably reflect the heterogeneity of the tumor (21). Therefore, in this
study, we summarized ROI in all layers’ parenchyma to extract
more accurate characteristic parameters. Studies have pointed out
that the accuracy of MRI in different populations is unaffected (22).

Most of the previous studies used multiple sequences such as
T2WI, T1, DWI, and others in radiological diagnosis to
Frontiers in Oncology | www.frontiersin.org 5
distinguish malignant and normal areas in radiomics. The
results of one of the literatures (machine learning in prostate
cancer identification) showed that the AUC of the combined
model (T2WI, DWI) was 0.88 (23). The values for a model using
IMPROD Multiparametric MRI (T2WI, DWI) findings had an
AUC of 0.88 (0.84–0.92) (7). However, in clinical practice, we
find that DWI images are often strongly affected by device
performance, and artifacts occur frequently. Therefore, DWI
images are not reliable in the delineation of lesions. At present,
DWI is not a sequence routinely used in China, and its routine
needs to be explored in future studies. In our study, the T2
sequence which is the most generalized and has the most stable
image quality was adopted as the research sequence, and all T2
images are from the same device. However, studies on different
devices and sequences need to be carried out in further research.
FIGURE 3 | Radiomic nomogram. A nomogram for identifying prostate cancer and prostatic hyperplasia.
FIGURE 2 | Radiomic labels used in the group model. Comparison of imaging score between MR model training set (left) and rest set (right). The blue label is
prostatic hyperplasia, and the yellow label is prostate cancer.
April 2022 | Volume 12 | Article 859625
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In recent years, radiomics have been successfully applied to
oncology and extended to PCa. Previous studies have shown that
there are significant differences in imaging characteristics between
noncancerous and cancerous tissues, between transitional and
surrounding tumors of the prostate (24, 25). Li (26) also found
that compared with the evaluation of clinical risk factors, the
radiomic model can improve the predictive accuracy. This
indicated that the radiomic method can better reflect the risk of
prostate malignant nodules than the traditional clinical features.

In our study, the nomogram was constructed using Radscore
and T2 with radiological methods. Radscore is described as the
probability of principal component analysis calculated from the
radiomic signature, which is constructed based on nine selective
radiomic features. The AUC of the radiomic signature for predicting
PCa was 0.85 (training group) and 0.84 (testing group). This is
different from the results provided by Zhang (27). They studied a
radiomic signature based on mp-MRI to identify csPCa with an
AUC of 0.95 in the training group and 0.86 in the internal validation
group. This discrepancy may be due to differences in sample
selection. The nomogram constructed from radiological and
clinical features demonstrates good differentiation between benign
and malignant prostate nodules. The AUC values of the training
and testing groups are 0.91 (95% CI: 0.85–0.97) and 0.90 (95% CI:
0.81~0.99), respectively. It had a higher pathological coincidence
rate. The results showed that the nomogram was effective in
predicting PCa in both the training and validation groups. The
ability of the nomogram to distinguish between PCa and BPH
exceeds that of the radiological and clinical models. The decision
Frontiers in Oncology | www.frontiersin.org 6
curve indicates that if the patient’s threshold probability is 5% to
95%, patients can benefit more from using the radiomic nomogram
in this study to predict the identification of benign and malignant
nodules, and the combinedmodel has better predictive performance
than clinical risk factors or radiologic features alone. In recent years,
the nomogram prediction model has been widely used in clinical
medicine (27). The risk score is used to represent the risk factors of
various diseases and predict the prognosis of patients. The
expression of this model is clear, concise, easy to understand, and
conducive to doctor–patient communication.

The PSA screening can detect well-differentiated prostate
cancer but is seldom found in poorly differentiated carcinoma.
In fact, the PSA can remain normal in some of the most lethal
prostate cancer (28). PSA is significantly related to the
differentiation of benign and malignant lesions in this study. In
addition, the PSA value was the risk factor found in all clinical
risk factors. This result is similar to a recent report on radiomic
machine learning (29). The performance of both the radiomic
signature and PSA value was high and comparable in the testing
group in our study. In a previous study, Calvocoressi (29) found
that the older the patient, the higher risk of histological
malignancy of prostate nodules. The OR and 95% CI values of
prostate tissue with a worse prognosis were 2.21 (1.30~3.76) and
1.58 (0.90–2.76), respectively, for men aged over 80 and under
70 years old. However, it is worth noting that age was not a
significant factor regarding the differentiation of PCa and BPH in
our study, which eliminated this variable for model development.
We consider the possible cause of selection bias.
TABLE 3 | Comparison of the prediction with the radiomic nomogram, radiomic algorithm, and the clinical model.

Group Model 1 Model 2 p-value

Training Clinical Radiomic 0.487
Radiomics Nomogram 0.018
Nomogram Clinical 0.043

Testing Clinical Radiomic 0.335
Radiomics Nomogram 0.081
Nomogram Clinical 0.036
April 2022 | Volume 12 | Article
FIGURE 4 | The AUC values for radiomic signatures are used in identifying prostate cancer and prostatic hyperplasia. (Left: training set; right: test set.).
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This study has several limitations: (1) Due to the small sample
size, the effectiveness of the model lacks multicenter validation. (2)
Manual ROI segmentation was performed on prostate tumors. This
manual operation had inherent differences between and within
observers. (3) Because our study was a retrospective analysis, and we
excluded patients with too small lesions when delineating lesions,
this may lead to patient selection bias. However, we think our results
are still relatively reliable. (4) This study only established a T2W-
based radiomic model, without using other sequence images, so it is
impossible to know the advantages and disadvantages of each
model. In the future, we will further expand the sample set and
use state-of-the-art technologies such as fully automated image
segmentation, deep learning, and multiparameter modeling to
explore more precise diagnostic radiology. (5) Our research is
single centered, which is our limitation; in the future, we want to
cooperate with some international hospitals in China to do some
relevant research in other populations.
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