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Gastric cancer is worldwide the fifth and third cancer for incidence and mortality,
respectively. Stomach wall is daily exposed to oxidative stress and BER system has a
key role in the defense from oxidation-induced DNA damage, whilst ErbB receptors have
important roles in the pathogenesis of cancer. We used AGS cells as an aggressive gastric
carcinoma cell model, treated with H2O2 alone or combined with ErbB signaling pathway
inhibitors, to evaluate the effects of oxidative stress in gastric cancer, focusing on the
modulation of ErbB signaling pathways and their eventual cross-talk with BER system. We
showed that treatment with H2O2 combined with PI3K/AKT and MEK inhibitors influenced
cell morphology and resulted in a reduction of cancer cell viability. Migration ability was
reduced after H2O2 treatment alone or combined with MEK inhibitor and after PI3K/AKT
inhibitor alone. Western blotting analysis showed that oxidative stress stimulated EGFR
pathway favoring the MAPKs activation at the expense of PI3K/AKT pathway. Gene
expression analysis by RT-qPCR showed ErbB2 and OGG1 increase under oxidative
stress conditions. Therefore, we suggest that in AGS cells a pro-oxidant treatment can
reduce gastric cancer cell growth and migration via a different modulation of PI3K and
MAPKs pathways. Moreover, the observed ErbB2 and OGG1 induction is a cellular
response to protect the cells from H2O2-induced cell death. In conclusion, to tailor specific
combinations of therapies and to decide which strategy to use, administration of a
chemotherapy that increases intracellular ROS to toxic levels, might not only be
dependent on the tumor type, but also on the molecular targeting therapy used.

Keywords: gastric cancer, ErbB receptors, reactive oxygen species, base excision repair system, PI3K and
MAPK inhibitors
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INTRODUCTION

Gastric cancer (GC) is an important public health problem
worldwide due to its high mortality. Currently, GC is the fifth
most frequently diagnosed cancer and it is the third most lethal
cancer worldwide (1–3).

This high mortality rate is associated with an absence of
significant symptoms in the early stages, and a lack of validated
screening programs and cancer healthcare in developing
countries. As a result, many cases of GC are diagnosed at an
advanced stage and thus have poor prognosis.

GC is a complex and multifactorial disease with many
inherited and environmental factors involved in its onset,
including the genetic characteristics of the host, infectious
agents [such as Helicobacter pylori (4), Epstein Barr virus], and
dietary habits (5). Depending on tumor characteristics and stage
(6), the current treatment modalities include combinations of
surgery, chemotherapy/targeted therapy, and radiation therapy
(7–9). Moreover, several recent targeted therapy trials have been
unsuccessful (10, 11) and, to date, standard treatments of
advanced GC consist of 5-FU/platinum based chemotherapy
and only two biological agents, trastuzumab for HER2 positive
tumors and ramucirumab for chemo-refractory patients (12, 13).
Therefore, even with maximal modality therapies, prognosis for
gastric cancer remains poor, with 5-year survival rates of 25% to
35% for loco-regional disease (8, 14, 15), and median survival for
advanced disease of 10 months to 14 months (16, 17).

Receptor tyrosine kinase signaling has also been shown to have
roles in gastric cancer and in particular tyrosine kinases receptors
of ErbB family (18–20). The ErbB family of proteins comprises
four receptor tyrosine kinases: EGFR (ErbB1/HER1), ErbB2
(HER2/neu), ErbB3 (HER3), and ErbB4 (HER4). With respect
to the ErbB receptors ligands, around two dozen have been
described for mammals (21–23). When these receptors are
activated by ligand binding, they can form homodimers or
heterodimers , which is fo l lowed by act ivat ion of
phosphorylation cascades that defines the signal that is
transduced inside the cell (24). In particular, this leads to
activation of the “Akt-mammalian target of rapamycin”
(mTOR) PI3K and Ras–Raf mitogen-activated protein kinase
(MAPK)/extracellular signal-related kinase (ERK) pathway that
plays an important role in mediating cell survival and cell
proliferation, respectively (25). The EGFR has been reported to
be overexpressed in 27%−64% of gastric tumors (26). It has also
been suggested that high gene amplification of the EGFR is related
to poor patient outcome. However, a 2013 meta-analysis that
compared five studies that included 1,600 patients reported that in
GC EGFR expression was not an independent predictor of survival
(27). ErbB2 amplification/overexpression has been reported for 6–
30% of GCs, with this variability attributable in part to histological
subtypes and primary tumor location (28). In a comparison with
diffuse-type tumors, ErbB2 overexpression showed greater
prevalence for intestinal-type and gastroesophageal junction
tumors (29, 30). Many studies have shown ErbB2 positivity to
be indicative of poor patient prognosis; ErbB2 expression and gene
amplification are used as a biomarker for targeted therapy of
patients with GC (27). The monoclonal antibody trastuzumab
Frontiers in Oncology | www.frontiersin.org 2
binds to the ErbB2 extracellular domain, through which it blocks
ErbB2 receptor cleavage, inhibits its dimerization, and induces
antibody-dependent cellular cytotoxicity. In the phase III ToGA
trial, the combination of trastuzumab with standard cisplatin and
5-fluorouracil therapies improved overall survival from 11.1 to
13.8 months for patients with ErbB2-amplified gastric
adenocarcinomas (31). ErbB3 and ErbB4 can be mutated in GC,
although at low frequency (<10%) (32, 33). Nielsen et al.
demonstrated down-regulation of both ErbB4 and NRG4, its
specific ligand, in cancer tissues (34).

The phosphatidylinositol 3-kinase (PI3K)-AKT and MAPK
kinase (MEK)–extracellular-related kinase (ERK) pathways play
a central role in transmitting the oncogenic signals downstream
of ErbB RTKs thus contributing to cancer phenotype in terms of
cell cycle progression, survival, metastasis, reprogramming of
metabolism and resistance to chemotherapy. GC harbors some
of the highest rates of oncogenic alterations in PI3K-AKT but the
efforts to translate knowledge of these genetic alterations into
clinical practice have encountered limited clinical success. Thus,
identification and refinement of molecular mechanisms involved
in gastric cancer in response to therapeutic agents will allow to
define the rationale for the best therapeutic approach targeting
the PI3K pathway. Therefore, since inhibition of PI3K-AKT and
MEK-ERK signaling can diminish cell growth and promote cell
death, targeting these signaling pathways by LY294002 and
PD98059, inhibitors of PI3K-AKT and MEK-ERK signaling
respectively, is being evaluated in clinical trials for cancer
therapeutics. Yao J. et al. demonstrated that g-secretase
inhibition combined with PD98059 enhances cell death in GC
cells partly through downregulation of WNT/b-catenin
pathways (35). Another study by Qian C et al. demonstrated
that in GC cell SGC7901 inactivation of ERK1/2 using PD98059
markedly enhanced JAK2 shRNA-induced cell proliferation
inhibition, cell cycle arrest and apoptosis in vitro and in nude
mice (ERK1/2 inhibition enhances apoptosis induced by JAK2
silencing in human gastric cancer SGC7901 cells (36). The
efficacy of PI3K pathway inhibitor has been demonstrated by
Sun L. et al. (37) in GC cell line SGC7901, where the enhanced
proliferation and migration ability induced by the glycolytic
enzyme alpha-enolase (ENO1) overexpression was impaired
after incubation with PI3K inhibitor LY294002. Recently, the
results obtained by Cai J. et al. (38), showed the ability of the poly
(lactic acid/glycolic) (PLGA) nanoparticles loaded with
Docetaxel and LY294002 to markedly reduced proliferative
capacity and an elevated apoptosis rate in vitro and anti-cancer
effects in an in vivo orthotopic GC mouse model and xenograft
mouse model.

Physiologically, reactive radical-type oxygen species lead to
the final formation of hydrogen peroxide (H2O2), a highly
diffusible molecule (39). This molecule produced by healthy
cells is involved in multiple intracellular stress response signals
(40). However, when H2O2 is over-produced or inadequately
detoxified, it can induce excessive intracellular production of 7,8-
dihydro-8-oxoguanine (8-oxoG) (41). Base excision repair (BER)
system plays a crucial role in the correction of DNA errors from
guanine oxidation and then may be considered a cell protective
factor (42). 8-oxoguanine DNA glycosylase (OGG1) is one of the
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most important enzymes of the BER system, as it is responsible
for excision of 8-oxoG, one of the major oxidized bases in DNA
that is highly mutagenic because it can pair with adenine as well
as cytosine. Mutations due to 8-OxoG accumulate in both
nuclear and mitochondrial DNA and are believed to be a
major cause of cancers (43).

The most significant effects of oxidants on signaling pathways
have been observed for the mitogen-activated protein (MAP)
kinase/AP-1 and NF-kB pathways (44). In this scenario, ROS are
involved in cell proliferation promoted by ligand-independent
transactivation of receptor tyrosine kinases, with decreased
receptor tyrosine kinase activation threshold and increased
MAPK activation, as well as in promoting tissue invasion and
metastatic dissemination (45, 46) (Figure S1).

Moreover, a link between EGFR signaling and DNA repair
mechanisms has been shown previously (47, 48). Staffolani and
colleagues demonstrated that in a human lung cell line, EGFR
down-regulates wood-dust-induced OGG1 expression via AKT
(49). However, to date, correlation between the BER and ErbB
systems in gastric cancer has not been investigated. As cancer
cells produce higher levels of ROS than normal cells (50), the use
of drugs that can further increase ROS production to toxic levels
might represent a therapeutic strategy to kill cancer cells (51).
Many anticancer drugs are at present used for cancer treatments
based on their activation of ROS-induced cell-death pathways,
through increasing ROS production (52, 53).

Thus, we have attempted to create conditions of short times,
high doses of H2O2 and use this to investigate, at multiple levels,
the alterations of cellular functions. In particular, to understand
the biological effects of short and severe oxidative treatment and
to highlight potential interactions, we analyzed here the
expression of the components of the BER and ErbB systems in
AGS cells. This gastric cancer cell line serves as a model of
untreated human stomach adenocarcinoma that retains the same
cytological characteristics as the original malignant cells of the
patient (54). Moreover, the effects of this oxidant treatment were
investigated in combination with gefitinib, an EGFR inhibitor,
and with specific targeting agents directed against the ErbB
downstream signaling pathways, including PD98059 (MEK1
inhibitor) and LY294002 (PI3K inhibitor).

Therefore, the aim of the present study was to investigate the
biological effects of short and severe oxidative stress on a model of
advanced gastric tumor. Oxidative stress has been promoted in vitro
by H2O2 treatment of human cancer cells, to mimic strong oxidative
stress in vivo (55). Thus, the effects of oxidant treatments alone and
in combination with specific target therapies directed against ErbB
downstream signaling pathways were investigated to evaluate their
potential combined benefits in the treatment of gastric cancer, with
parallel analysis of the expression of the components of the BER
system, to highlight potential interactions.
MATERIALS AND METHODS

Cell Lines and Treatments
Primary human gastric epithelial cells would closely represent the
gastric epithelium; however, to date, no primary gastric epithelial
Frontiers in Oncology | www.frontiersin.org 3
cell culture systems have been established that enable effective
research on gastric diseases and disorders in vitro. Thus, we chose
to use a human gastric adenocarcinoma cell line (AGS
cells; European Collection of Authenticated Cell Cultures
89090402). These cells were derived from an untreated human
adenocarcinoma of the stomach that retained the same cytological
characteristics of the malignant cells obtained from the caucasian
patient (50). The AGS cells were obtained from Cell Lines Services
(Epplheim, Germany), and were cultured in Dulbecco’s modified
Eagle’s medium (DMEM) supplemented with 4.5 g/L glucose, 2
mM L-glutamine and 10% fetal bovine serum (FBS) (EuroClone
S.p.A., Pero, MI, Italy). For the experiments, these AGS cells were
cultured in DMEM starvation media overnight (i.e., 0.2% FBS).
Under the acute treatment conditions, the cells were pre-treated (as
required) with the MEK1 inhibitor PD98059 (50 µM) and/or the
PI3K inhibitor LY294002 (25 µM) (Cell Signaling Technology,
Beverly, MA, USA) for 2 h, and then stimulated with human
recombinant EGF (50 ng/mL) and/or H2O2 (10 mM) (Sigma
Aldrich, St. Louis, MO, USA). For the chronic treatments, these
were added together (as required) for 24 h or 48 h, with 50 µM
H2O2. The AGS cells were also treated with 1 mM gefitinib (as
required) for 1 h, which corresponds to the serum concentration
reported in clinical trials. Stock solutions of the EGFR kinase
inhibitor gefitinib (ZD1839; AstraZeneca, Macclesfield, UK) were
prepared in dimethylsulfoxide and stored at -20°C.

Cell Morphology
The AGS cells were seeded on glass coverslips, and then serum
starved in DMEM with 0.2% FBS overnight. Following the
required pre-treatments (PD98059, LY294002, gefitinib; see
above), 10 mM H2O2 was added for 15 min. The cells were
then fixed with 70% ethanol and stained with 1% toluidine blue
solution (TAAB Laboratory Equipment Ltd, UK). Digital images
from three different experiments were obtained under light
microscopy (Axioskop 40; Carl Zeiss) equipped with a
videocamera (Coolsnap; Photometrics), using the MetaMorph
6.1 software system (Universal Imaging Corp, Molecular Device
Corp, CA, USA).

Cell Proliferation Assay
Cell proliferation was determined using the 3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium (MTS) assay (Promega, Madison,
WI, USA). The cells were seeded in 96-well plates, serum-starved
overnight, and then treated as required, with 50 µMH2O2, 50 ng/
mL EGF, 50 µM PD98059, 25 µM LY294002 and/or 1 µM
gefitinib, with individual or combined treatments for 24 h. The
day after, MTS solution (as 10% total medium volume) was
added to each well, and following incubation for 1 h at 37°C, the
cell viabilities were determined by colorimetric absorbance at 490
nm, using a microplate reader (Glomax, Multi Detection
System, Promega).

Wound Healing Migration Assay
The AGS cells were seeded into 12-well plates, grown to 100%
confluence, and then wounded with a sterile pipette tip, to
remove cells using linear scratches. Then, the cells were
March 2022 | Volume 12 | Article 860760
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washed with phosphate-buffered saline, and serum-free medium
was added, containing (as required) 50 mM H2O2, 50 ng/mL
EGF, 50 µM PD98059, 25 µM LY294002, and/or 1 mM gefitinib,
as individual or combined treatments. The progress of cell
migration near the crossing point was photographed
immediately after injury (time 0) and after 24 h and 48 h. The
wound healing was calculated by measuring the width of the
scratch along the border using the Image J64 analysis software,
with quantification according to the following: change in wound
closure (D) = (wound width, time 0) – (wound width, time 24/48 h);
i.e., the decrease in the gap width from time 0. This defined higher
D values as greater cell migration, where the cells had migrated
more into the space left after the wounding; thus, a score of zero
would indicate no wound closure from the control.

Total RNA Isolation and Real-Time
Quantitative PCR Analysis
Total RNA was extracted from the AGS cells following the
required treatments using Trizol (Life Technologies, Carlsbad,
CA, USA), according to the manufacturer instructions. RNA
samples were assessed for purity and quantified using a
spectrophotometer (Nanodrop 1000; Thermo Fisher Scientific,
Waltham, MA, USA), with reverse transcription performed
using GoTaq 2-Step qRT-PCR kits (Promega), according to the
manufacturer instructions. The levels of BER and of ErbB gene
expression were investigated using SYBR green quantitative real-
time PCR (qRT-PCR) analysis (StepOne 2.0; Applied
Biosystems, Carlsbad, CA, USA). The data were analyzed by
the comparative Ct method and are given as 2−DDCt + standard
deviation (SD). As required with this method, the mRNA levels
of the target genes were normalized by the ratio between the
mean values for the endogenous housekeeping gene (b-
glucuronidase; GUSB) in each sample versus quiescent cells.

Protein Extraction and Western Blotting
The AGS cells were serum-starved overnight in DMEM with
0.2% FBS and treated as required (see above). The plates were
then washed with ice-cold Ca2+/Mg2+-free phosphate-buffered
saline and lysed in freshly prepared lysis buffer (2 mMNa3VO4, 4
mM sodium pyrophosphate, 10 mM sodium fluoride, 50 mM
HEPES pH 7.9, 100 mM NaCl, 10 mM EDTA, 1% Triton
X-100, 2 µg/mL leupeptin, 2 µg/mL aprotinin, 1 mM
phenylmethylsulfonyl fluoride). Protein concentrations were
determined using the BCA protein assay (Thermo Fisher
Scientific). The cell extracts were subjected to 4% to 20%
sodium dodecyl sulfate–polyacrylamide gel electrophoresis
(pre-cast gels; Bio-Rad Laboratories, Hercules, CA, USA), with
the separated proteins transferred to polyvinylidene difluoride
membranes. After blocking the nonspecific binding sites with
albumin or nonfat dry milk, the membranes were incubated with
antibodies against the following proteins (as required): phospho-
p44/42 MAPK, phospho-Akt, and phospho-EGFR (Tyr1068)
(Cell Signaling Technology); EGFR (Santa Cruz Biotechnology,
Santa Cruz, CA, USA); b-actin (Sigma-Aldrich) (protein loading
control). Secondary antibodies were HRP-conjugated anti-rabbit
or anti-mouse (Bethyl Laboratories, Montgomery, TX, USA),
Frontiers in Oncology | www.frontiersin.org 4
and the immune complexes were visualized using the ECL
Western blotting detection system (Euroclone).

Statistical Analysis
The data are reported as the representative values of three
independent experiments. Data are expressed as the means +
SD and analyzed by unpaired t test (two-tailed P value) and one-
way analysis of variance (ANOVA) followed by Bonferroni post-
hoc test. Statistical significance was accepted at p <0.05. As
regards gene expression analysis, the comparative 2−DDCt

method was used to quantify the relative abundance of mRNA
and then to determine the relative changes in individual gene
expression (relative quantification). All analyses were performed
using SPSS software. The gene expression data obtained from
this study were clusterized with the Multiexperiment viewer v4.0
(MeV4.0) program (56), determining the molecular relationships
among analyzed genes, without taking into account their
relative pathways.
RESULTS

Effects of Oxidative Stress on AGS
Cell Morphology
The effects of H2O2 treatment on the AGS cell morphology were
analyzed in quiescent and pre-treated cells grown in serum-free
medium, to avoid interference from exogenous growth factors.
Besides the expected AGS cells organized in clusters of numerous
polygon-shaped little cells (E) (57), different main morphological
cell phenotypes showing euchromatic nuclei with numerous
prominent nucleoli are identified: mononucleated and
elongated cells, “hammingbird”-like (H), resembling
hummingbird phenotype (H), characteristic of the H. pylori-
induced stress (58); syncytial giant cells with multiple nuclei (S);
some cells with short prolongments from the cellular body (P)
(Figure 1A). After the different pre-treatments (i.e., gefitinib,
LY294002, PD98059; Figures 1B–D), there were fewer cells
classified as epithelial-like, due to more rounded shaped cells,
which were mainly visible after the PD98059 treatment.
Furthermore, after treatment with LY294002, there were also
numerous small round cells with a heterochromatic nucleus
(Figures 1B–D). Following the acute H2O2 exposure the cell
morphologies showed a general shrinkage for all of these
phenotypes (Figures 1A1–D1). Interestingly, under these
oxidative stress conditions, perimembranous release of
extracellular vesicles (EV) was seen. Sometimes larger and
darker vesicles emerged from cell surface. These vesicles were
more numerous in combination with the LY294002 pre-
treatment (Figure 1C1), which could not be considered as
apoptotic micronuclei, as they were negative to DAPI
counterstaining (data not shown).

Effects of Oxidative Stress on Viable
Cell Proliferation
The cellular response to exposure to either acute (single high
dose for short times) or chronic (long term at low doses)
March 2022 | Volume 12 | Article 860760
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oxidizing agents is different. Acute exposure to oxidative stress
triggers a series of intracellular defense mechanisms that
counteract the damage. The cells will die by apoptosis or
necrosis, if these defence processes are insufficient. However, if
the cells survive, exposure also increases many antioxidant
defenses. Thus, in cells chronically exposed to sublethal stress,
a series of adaptive responses occur that can prevent or reduce
damage and death.

Thus, to evaluate the effects of oxidative stress induced by
H2O2 on proliferation and migration of the AGS cells, we treated
these cells for 24 h at low dose of 50 µMH2O2. For viability assay,
AGS cells were seeded in 96-well plates, and semiconfluent
cultures were serum-starved (0.2%) overnight. The cells were
then treated as control (quiescent) cells or with 50 ng/mL EGF,
25 µM LY294002, 50 µM PD98059, or 1 µM gefitinib, without
and with 50 µM H2O2 for chronic treatment for 24 h. The
mitogenic effects of the treatments were determined using the
MTS assay (Figure 2). After 24 h of EGF treatment, there was
increased cell proliferation compared to the untreated
(quiescent) cells, as aspected, due to the well-known mitogenic
effects of EGF on epithelial cells pathway (59).

Interestingly, a reduction in cell proliferation was seen for
LY294002 treatment, which is in accordance with the well-
established effect on cell survival and proliferation mediated
through the PI3K/AKT pathway (60).

Here, the H2O2 treatment alone did not induce significant
proliferative changes compared to the untreated cells. However,
the H2O2 treatment resulted in significant reduction in cell
proliferation when in synergy with LY294002 (alone, -30.0%; +
H2O2, -70.0%; p <0.001), PD98059 (alone, -15.0%; +H2O2,
-35.0%; p <0.05), and gefitinib (alone, -20.0%; +H2O2, -45.0%;
p <0.05). Of note, the well-known proliferative effects of EGF
Frontiers in Oncology | www.frontiersin.org 5
were dramatically reduced by the H2O2 treatment (EGF alone, +
25.0%; +H2O2, -60.0%; p <0.001).

Effects of Oxidative Stress on
Cell Migration
As tumor cell migration has an important role in the development
of metastatic disease, a classic wound healing assay was used to
quantify the migration of the AGS cells into the scratched area
(i.e., wound) without and with low dose of 50 µM H2O2, for 24 h
and 48 h alone or combined with the ErbB system inhibitors, as
compared to the control cells. This cell migration into the wound
gap was monitored at time 0 and after 24 h and 48 h (Figure 3).
Reduced cell migration was seen for the H2O2 treatment alone,
with slightly less wound closure at 48 h compared to the untreated
cells [D (decrease in gap width from time 0) = 0.15 vs 0.20 mm for
control, untreated, cells]. In contrast, there was a greater wound
closure at 48 h with the PD98059 treatment compared to the
control (D = 0.65 vs 0.20 mm), which suggested promotion of cell
migration through inhibition of theMAPK pathway. For the H2O2

plus PD98059 treatments, the cell migration (D = 0.15 mm) was
the same of H2O2 treatment alone (D = 0.15 mm) but it was
slightly lower than the control (D = 0.20 mm) and than PD98059
alone (D = 0.65 mm). These findings suggest that the MAPK
pathway is responsible for the reduced cell migration. In contrast,
the EGF treatment improved cell migration (and hence showed
greater gap closure) compared to the control cells (D = 1.30 vs 0.20
mm), as expected (61). However, H2O2 co-treatment with EGF
reduced the EGF-induced cell migration (D = 1.30 vs 0.60 mm
with H2O2). A possible inducing role of AKT activation on cell
migration was observed after the LY294002 treatment. Indeed,
LY294002 treatment inhibits cell migration compared to untreated
cells (D = 0.08 vs 0.20 mm control), which suggests a role for AKT
FIGURE 1 | Effects of oxidative stress induced by H2O2 treatments combined to ErbB pathway inhibitors on AGS cells. (A)-Quiescent cells. Different morphological
cellular phenotypes: (H) mononucleated and elongated cells, “hummingbird”-like; (S) multinuclear large syncytial cells; (E) epithelial-like polygonal little cells; (P) cells
exhibiting a very thin prolongation from the cellular body. (B)-Gefitinib treatment (1µM), (C)-LY294002 treatment (25µM), cells with heterochromatic nucleus were
evidenced (asterisks), (D)-PD98059 treatment (50µM). (A1–D1) Inhibitors and H2O2 (10mM) co-exposure: after H2O2 exposure, in all cases, a general shrinkage of all
different cell phenotypes was observed (H1, S1, E1, P1 represent the original features still recognizable), in addition to the presence of extracellular vesicles (arrows)
and many small, round cells with heterochromatic nuclei (asterisks). (C1) Larger and darker vesicles emerging from cell surface are detected after LY294002 and
H2O2 exposure (arrows). Toluidine blue staining (40X).
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activation in cell migration. No difference in wound healing was
seen after LY294002 co-treatment with H2O2 (D = 0.20 mm), as
compared to untreated cells. For gefitinib, no changes were seen
for any of these conditions (data not shown).

ErbB Receptors Gene and Protein
Expression in AGS Cells Under
Oxidative Stress
ErbBs, and in particular ErbB2, have critical roles in the
regulation of cell growth. Activation of the EGFR downstream
pathways leads to increased cell proliferation and migration, and
its overexpression is associated with worse prognosis for various
carcinomas (27). In the present study, the modulation of ErbB
signaling in response to an acute single high dose of 10 mM
H2O2 was investigated in the AGS gastric cancer cell line.

The RT-qPCR was performed on cells treated with 50 ng/mL
EGF, 25 µM LY294002, 50 µM PD98059, or 1 µM gefitinib,
without and with 10 mM H2O2, at different short exposure times
(15/30 min) compared with untreated cells (quiescent) as
control. The expression of all of the four ErbB family members
was analysed (Figure 4).

The gene expression results showed that H2O2 alone stimulus
induced time-dependent EGFR up-regulation. Treatment with
H2O2 did not alter the moderate EGF-induced increases in EGFR
gene expression. In contrast, both gefitinib (p <0.05) and
LY294002 treatments increased EGFR gene expression
compared to the untreated cells. H2O2 co-treatments showed
time-dependent down-regulation of increased EGFR gene
expression levels. In particular, this trend resulted significant
after treatment by gefitinib with H2O2 (p<0.01). Interestingly,
while PD98059 treatment alone slightly reduced EGFR gene
expression, the combination with H2O2 showed a greater
reduction, even if transient, of the EGFR gene expression
Frontiers in Oncology | www.frontiersin.org 6
compared to the untreated cells (Figure 4). The analysis of
ERBB2 gene expression indicated that H2O2 treatment alone
had no effect compared to the expression in untreated cells, while
a time-dependent increase in ERBB2 gene expression was shown
in the co-treatments with gefitinib (p<0.01), LY294002 (p<0.05),
and PD98059 (p<0.001). Moreover, EGF treatment up-regulated
ERBB2 gene expression compared to the untreated cells (p
<0.001), an effect that was reduced by ~40% under the added
H2O2 stimulus (Table S1). Under these experimental conditions,
the expression levels of ERBB3 and ERBB4 showed only small,
and generally not significant effects (data not shown).

Subsequently, we investigated the effects of this oxidative
stress on some of the components of the EGFR downstream
signaling pathway in AGS cells by Western blotting analysis
(Figure 5). First, the levels of total and phosphorylated EGFR
(pEGFR) were assessed. Interestingly, there was a significant
increase in pEGFR after these acute treatments with H2O2 alone
and when combined with EGF, LY294002, and PD98059, as
compared to the quiescent untreated cells. Interestingly, co-
treatment with H2O2 and gefitinib showed significant EGFR
activation despite its known inhibiting role, which was
confirmed here by the gefitinib alone treatment (Figure 5).
EGFR phosphorylation activates downstream signaling
proteins, including PI3K/AKT and p44/p42 MAPKs. Their
phosphorylation-mediated activation was investigated using
specific anti-phosphotyrosine antibodies. In the untreated cells,
the AKT protein showed high levels of basal activation, which
were significantly reduced in a time-dependent manner by the
H2O2 treatment. The control AKT activation was also virtually
abolished by the LY294002 treatment, both alone and in
combination with H2O2, while for EGF, gefitinib, and
PD98059, it was decreased with the combined H2O2

treatments. Interestingly, activation of the MAPKs proteins
FIGURE 2 | Analysis of effects of treatments with H2O2 combined with ErbB pathway inhibitors on AGS cell viability. Subconfluent cells were serum-starved
overnight and treated with 50 ng/mL EGF, 1 mM gefitinib (GEF), 25 µM LY294002 (LY), 50 mM PD98059 (PD), and/or 50 mM H2O2 or untreated (Quiescent). Cell
proliferation (Viability) was evaluated after 24 h (MTS assay), with the data expressed normalized to quiescent cells. Data are means ± standard deviation of four
independent experiments, each in quintuplicate. *p < 0.05; ***p < 0.001 (student’s t-tests).
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FIGURE 3 | (Effect of treatments on migratory behavior of AGS cells. (A) Wound Healing assay was performed in confluent monolayers and the area colonised by
the cells estimated after untreated (Quiescent) and treated with 50 ng/mL EGF, 25 mM LY294002 (LY), 50 mM PD98059 (PD), and/or 50 mM H2O2, at time 0 and
after 24 h and 48 h Arrows, closure of wound compared to time 0 (D = gap width at 48 h minus that at time 0). (B) Percentages of wound clousure at 48 h under
each conditions as in (A) are plotted. Representative of four independent experiments. PD: PD98059; LY: LY294002.
Frontiers in Oncology | www.frontiersin.org March 2022 | Volume 12 | Article 8607607

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Savino et al. ErbBs, Oxidative Stress in AGS
was increased under all these treatments by the addition of H2O2,
although to different extents. Of note, the co-treatment with EGF
and H2O2 preserved the activated status of the MAPK pathway,
while it reduced activated AKT.

Base Excision Repair Gene Expression
Under Oxidative Stress
The production of ROS, such as H2O2, superoxide and hydroxyl
radicals, has been linked to tumor initiation and progression
(62). The OGG1 and MutY homolog (MUTYH) glycosylases
constitute the 8-oxoG repair pathway and, in association with
other molecules such as APE-1 and JUN/AP1, they cooperate in
the repair of DNA damage induced by oxidative stress. In gastric
cancer, there are elevated levels of the 8-oxoG mutagenic base,
and some of the DNA repair enzymes are specific for this
Frontiers in Oncology | www.frontiersin.org 8
substrate when it is incorrectly incorporated into DNA, such
as the OGG1 BER pathway.

In response to an acute single high dose of 10mM H2O2, we
investigated the modulation of the leading actors of BER, as the
OGG1,MUTYH, and APE1 genes, which showed similar behaviors.
The gefitinib and LY294002 treatments down-regulated their
expression, which suggests their AKT-dependent induction. H2O2

alone did not up-regulate their expression, although a time-
dependent increase in their mRNA expression was seen with
gefitinib, LY294002, and PD98059 treatments. Surprisingly, the
EGF treatment resulted in opposite effects on the expression of
OGG1 and MUTYH. Here, OGG1 expression was reduced after 15
min of EGF treatment (p <0.01), and H2O2 addition more than
reversed this effect, to result in increased OGG1 expression over the
control (p <0.001). In contrast, the MUTYH gene was strongly
FIGURE 5 | EGFR pathways protein expression analysis. Representative Western blotting of serum-starved cells untreated (Q) and treated with 50 ng/mL EGF, 1
mM gefitinib (GEF), 25 mM LY294002 (LY), 50 mM PD98059 (PD), and/or 10 mM H2O2, for 15 and 30 min. Whole cell lysates were analyzed by Western blotting for
expression of total EGFR, phospho (p)EGFR, pMAPK, pAKT, and b-actin (as indicated). Data are representative of six independent experiments. Q, Quiescent; LY,
LY294002; PD, PD98059; GEF, gefitinib.
FIGURE 4 | mRNA expression of EGFR and ErbB2 in AGS cells. Total RNA was extracted from serum-starved cells untreated (Quiescent) and treated with 50 ng/
mL EGF, 1 mM gefitinib (GEF), 25 mM LY294002 (LY), 50 mM PD98509 (PD), and/or 10 mM H2O2, for 15 and 30 min. Analysis was carried out by RT-qPCR. As for
gene expression analysis, data were calculated using the 2−DDCt method, normalized to GUSB (b-glucuronidase) mRNA levels, and expressed relative to control
(calibrator sample, defined as 1.00). Data are expressed as means of three independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001 (student’s t-tests, vs
quiescent cells); ##p <0.01; ###p<0.001 (ANOVA followed by Bonferroni post-hoc test, within treatments). GEF, gefitinib; LY, LY294002; PD, PD98059.
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induced after 15 min of EGF treatment (p <0.001), but it was then
downregulated with the addition of H2O2 (p<0.05) (Figure 6).

The master regulator of these antioxidant responses is the
transcription factor NRF2. As shown in Figure 6, in this AGS cell
model, induction of the antioxidant response genes NRF2, HO1,
and JUN/AP1 was independently regulated, except for inhibition
of EGFR by gefitinib and of MAPK by PD98059, where HO1 and
JUN/AP1 showed the same expression trends. Inhibition of the
AKT pathway with LY294002 showed a small induction of NRF2
gene expression, where the addition of H2O2 reduced this
considerably from the control expression (p <0.01) (Table S1).

Analysis for Base Excision Repair and
ErbB System Correlations
To reveal any gene expression correlations between BER and the
ErbB pathways in human gastric cancer cells, we used the
MeV4.0 software to define the molecular relationships among
the genes assayed here, without considering that they belong to
any given pathway (Figure 7). A strong association was detected
between ERBB2 and OGG1 after exposure to H2O2 with the
MEK1 inhibitor PD98059, with both showing symmetrical small
Frontiers in Oncology | www.frontiersin.org 9
increases after the oxidative stress. A high correlation between
ERBB2 and MUTYH was also seen after EGF and H2O2 co-
treatments (Figure 7B), and among ERBB2, OGG1 and NRF2
after gefitinib and H2O2 co-treatments (Figure 7C). On the
contrary, no correlations were seen between ERBB2 and
MUTYH after H2O2 and LY294002 treatment and after H2O2

and PD98059 treatment. Thus, ErbB2 appears to be involved in a
strong association with some of the proteins of the BER system
under conditions of acute oxidative stress. This suggests a role for
ErbB2 in the modulation of DNA repair mechanisms.
DISCUSSION

In this study, the biological effects of short and severe H2O2

treatment on advanced gastric cancer were evaluated to highlight
potential interactions with the ErbB receptor family related to
tumor progression and treatment (17–19). We analyzed here the
expression of the components of the ErbB and BER system in
AGS gastric cancer cells, which thus resembles non-surgical
traditional cancer therapies that act through the generation of
ROS. Furthermore, the effects of this oxidative treatment were
evaluated in combination with specific targeting agents directed
against ErbB downstream signaling pathways.

Targeting a single protein has limited use for the treatment of
gastric cancer because of the complex pathogenesis of this
disease. Indeed, although several clinical studies have explored
the effects of targeted therapies alone or in combination with
chemotherapies for gastric cancer, currently only ramucirumab
(anti-VEGFR2) and trastuzumab (anti-ErbB2) have been
approved as gastric efficient targeted drugs (63). Therefore, the
combination of targeted drugs with conventional therapies might
provide new opportunities for cancer treatments.

In this study, the effects were primarily assessed for the
morphology of AGS cells treated with H2O2 alone and
combined with EGF pathway inhibitors (Figure 1) (i.e.,
gefitinib, LY294002, PD98509). The morphological features of
these cells represent indirect signs of their functions. Other
studies have shown these cells to be organized in clusters of
polygon-shaped cells, with few short actin stress fibers, and no
lamellipodia, and with a cobblestone-like phenotype (57). These
actin filaments (in the form of stress fibers) and the thin network
that forms at the edges of cells can be depolymerized by removal
of serum, a phenomenon that is reversible when the cells are
returned back to serum-containing medium (64).

From our observations, control untreated AGS cells grow as a
heterogeneous population, with cells containing euchromatic
nuclei with numerous prominent nucleoli, which is suggestive
of active transcription. These different cell populations included:
elongated cells, which resemble the hummingbird phenotype
(Figure 1A, cell type H) characteristic of H. pylori infection (58);
the presence of H. pylori induces the release of reactive oxygen
species by host immune and epithelial cells with subsequent
DNA damage to host cells (65); syncytial giant cells with multiple
nuclei (Figure 1A, cell type S); some cells with short
prolongments out of the cells (Figure 1A, cell type P), which
FIGURE 6 | mRNA expression of BER system in AGS cells. Total RNA was
extracted from serum-starved cells untreated (Quiescent) and treated with 50
ng/mL EGF, 1 mM gefitinib (GEF), 25 mM LY294002 (LY), 50 mM PD98059
(PD), and/or 10 mM H2O2, for 15 and 30 min. Analysis was carried out by RT-
qPCR, for mRNA expression of the OGG1, MUTYH, APE1, NRF2, HO1 and
JUN/AP1 genes (as indicated). As for gene expression analysis, data were
calculated using the 2−DDCt method, normalized to GUSB (b-glucuronidase)
mRNA levels, and expressed relative to control (calibrator sample, defined as
1.00). Data are expressed as means of three independent experiments. *p <
0.05; **p < 0.01; ***p < 0.001 (student’s t-tests, vs quiescent cells); #p < 0.05;
##p < 0.01; ###p < 0.001 (ANOVA followed by Bonferroni post-hoc test, within
treatments). GEF, gefitinib; LY, LY294002; PD, PD98059.
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FIGURE 7 | Heat maps for the components of the base excision repair and ErbB systems in AGS cells. Heat maps for serum-starved cells untreated (Quiescent)
and treated with 10 mM H2O2 (A), 50 ng/mL EGF (B), 1 mM gefitinib (GEF) (C), 25 µM LY294002 (LY) (D), 50 µM PD98059 (PD) (E), each (B-E) without and with 10
mM H2O2, for 15 and 30 min. Heat maps were constructed for expression of six genes related to base excision repair and EGFR and ERBB2 (as indicated). Top,
color scale: red, increase in expression; green, decrease in expression. Left, cluster dendrogram for the Spearman R correlations.
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suggest cell-to-cell interactions; and the majority as epithelial
cells (Figure 1A, cell type E). In the control cells, the mild stress
induced by serum starvation might be partly responsible for this
cell variability. The gefitinib and PD98059 treatments did not
induce any significant changes to the cell morphology. However,
the proportion of epithelial-like cells was reduced, due to an
increase in the rounded shape of the cells, which was mainly seen
for the PD98059-treated cells. Moreover, the PI3K/AKT pathway
inhibition using LY294002 induced greater stress in these cells,
which led to an overall reduction in their numbers. Small,
rounded cells with heterochromatic nuclei were also seen.

Oxidative stress induced by acute high-dose H2O2 treatments
(10 mM for 15 min) induced major effects on all of the cell
subpopulations. Small and ‘shrunken’ cells were seen for the
controls, although the heterogeneity of the cell populations was
preserved overall. In particular, the proportion of cells with
heterochromatic nuclei increased, while there was a large
reduction in the syncytial cells that are typically associated with
actively growing AGS cells. Overall, these findings suggested stressor
effects on these cells, showing that they were suffering (i.e., cell
shrinkage), with arrest of proliferation (more heterochromatic
nuclei, fewer syncytial populations), and release of microparticles.
Indeed, under these oxidative stress conditions, perimembranous
release of extracellular vesicles was also seen.

It has been reported that extracellular vesicles mediate
intercellular communication through the release of their
encapsulated materials, such as mRNAs, miRNAs, and proteins,
which can then act on target cells (66). Extracellular vesicles from
tumor cells can undergo cross-talk and reprograming to highly
proliferative phenotype. Thus, we suggest that in these AGS cells,
the oxidative stress also resulted in release of extracellular vesicles
into the medium, which are more likely to mediate intercellular
communications. The mRNAs and proteins released in these
membrane ‘envelopes’ are believed to protect the cells from
harmful stimuli, such as oxidative stress alone, and when
combined with inhibitors of pro-survival pathways.

Cell proliferation was not significantly modulated after the
chronic (24 h) H2O2 treatments (Figure 2). However, the various
H2O2 co-treatments promoted strong and significant reductions in
cell proliferation, which was more evident with the LY294002
treatment. This synergistic role of LY294002 and H2O2 might be
explained by down-regulation of the PI3K/AKT pathway induced
by the H2O2 treatment, in agreement with the protein analysis data
here. It is also known that AKT confers a survival advantage to
many human cancer cells (60), including gastric cancer cells (67).
Thus, according to the cell morphology and cell proliferation
findings here, we suggest that oxidative stress combined with
PI3K/AKT pathway inhibition has a key role in the reduction of
AGS cell viability.

Acquisition of migratory properties is a prerequisite for cancer
progression and for invasive migration of tumor cells into the
surrounding tissues. In cancer cells, acquisition of invasiveness
requires a morphological alteration, which is termed epithelial–
mesenchymal transition, wherein carcinoma cells lose their
epithelial characteristics of cell polarity and cell–cell adhesion, and
switch to a motile mesenchymal phenotype (68, 69).
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In agreement with these considerations, we observed reduced
cell migration after inhibition of the PI3K/AKT pathway with
LY294002, even if there is no evidence of a synergistic effect with
H2O2 co-treatment. In contrast, there was increased cell
migration after inhibition of MEK1 with PD98059 compared
with control, which thus indicates that the MAPKs constrain
AGS cell motility. Interestingly, reduced migration was also seen
after H2O2 treatment combined with the EGF and PD98059
treatments. This finding can be explained as reduced activation
of AKT and increased activation of MAPKs, observed in protein
analysis, after the H2O2 alone treatment. These data are in
accordance with recent studies showing that the attenuation of
PI3K/AKT signaling pathways by Ropivacaine play an inhibitory
effect on the proliferation, migration and invasion of GC, thus
suggesting a new therapeutic target for GC drugs (70, 71).

All these data confirmed that the AKT pathway plays a key
role in conferring an aggressive phenotype to cancer cells, with
the promotion of cell survival and migration and its inhibition,
reproduced in gastric cancer cell line treated with LY294002,
could be an important anti-cancer therapy. In the same way, a
chemotherapy that increases intracellular ROS to toxic levels,
reproduced with high doses of H2O2, reduced cell viability and
mobility in AGS cell line. Our purpose of a combined therapy is
evident in data observed with H2O2 and LY294002 co-treatment,
resulting in a more noticeable reduction of cell viability. Further
investigation should be performed in order to better understand
the role of MAPK pathway in gastric cancer and MEK inhibition
as target therapy. In this study, we observed that MAPKs
inhibition with PD98059 reduced cell viability, mainly with
H2O2 co-treatment, suggesting its possible anti-cancer role
combined with conventional chemotherapy. However, the use
of MEK1 inhibitor alone increased the ability of AGS cells to
migrate, even if the cotreatment with PD98059 and H2O2

reduced migration capability compared with PD98059 alone.
Although ROS-increasing drugs are extensively used in cancer

therapy, a limitation to such pro-oxidant therapies is the drug
resistance that is induced in some cancer cell lines. In the gene
analysis here, ERBB2 was induced by H2O2 co-treatments with the
inhibitors and by EGF treatment alone. It has already been shown
that EGF can induce the ERBB2 gene via ADAM12/Ets 1 molecules
(72). Moreover, it has also been shown that ErbB2 overexpression in
the heart can significantly decrease the levels of ROS, while the levels
of glutathione peroxidase 1 and catalase are increased, along with
their activities (73). This implies a defensive role for the ErbB2
receptor against oxidative stress, and thus suggests a possible
induction of ErbB2 in stressed cancer cells, to defend themselves
from oxidative damage. Furthermore, activation of ErbB2 leads to
activation of its downstream signaling, which can then regulate
apoptosis (74) and increase cell survival, which suggests a further
protective role of ErbB2 in response to oxidative stress.

Indeed, increased ErbB2 expression has been associated with
drug resistance in cancer cells (75). In this context, a role for
oxidative stress has been evoked (76). In the human lung
adenocarcinoma epithelial Calu-3 cell line, it was shown that
treatment with the ErbB2-targeting antibody trastuzumab was
associated with increased cellular ROS production, glutathione
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depletion, and decreased superoxide dismutase and catalase
activities (77). Therefore, we suggest that ErbB2 induction in the
AGS cells in the present study is a cellular response to oxidative
stress, to protect the cells, and thus to resist H2O2-induced cell
death. Accordingly, trastuzumab therapy combined with a pro-
oxidant treatment should be effective through a mechanism that
induces tumor cell death by-passing resistance to oxidative damage.

Base excision repair is a conserved, intracellular DNA repair
system that recognizes and removes chemically modified bases,
to ensure genomic integrity and prevent mutagenesis. With
regard to the analysis of the BER pathway components, here
we showed up-regulation of the Ogg1 andMutyh genes under the
H2O2 treatment combined with these other regulators.

Previous studies by Habib et al. have also reported that the
downregulation of tuberin results in a marked decrease of OGG1
expression (78, 79). In this context, AKT has been reported to
phosphorylate tuberin, thus leading to its inactivation (80), and
further to OGG1 down-regulation. Further studies by Staffolani
et al. demonstrated that activation of EGFR/AKT/mTOR
pathway induced the phosphorylation and subsequent
inactivation of tuberin thus resulting in inhibition of OGG1
expression, consistent with results obtained by Habib. Therefore,
the reduced expression of OGG1 determined DNA lesion
accumulation, cell survival and proliferation (49).

This is in agreement with the results of the present study,
which showed reduced AKT activation under H2O2 co-
treatments, and up-regulation of OGG1 gene expression.
Moreover, the increased ERBB2 gene expression under the
same conditions might suggest a protective role of ErbB2 from
H2O2, by up-regulation of the components of DNA repair
induced by the oxidative stress.

NRF2 modulates the expression of hundreds of genes, including
the BER system antioxidant enzymes, such as OGG1. Thus, it also
Frontiers in Oncology | www.frontiersin.org 12
regulates the expression of genes involved in immune and
inflammatory responses, carcinogenesis, and metastasis (81). The
results here can also be explained by the correlations among the
ErbB2 and BER system genes that were seen in the gene cluster
analysis. This suggests a further negative prognostic role of ErbB2 in
the induction of antioxidant genes, which can lead to the protection
of cancer cells from high-dose oxidative damage induced by
anticancer therapies. The effects of MAPK and AKT inhibitors in
AGS cells after H2O2 co-treatment are summarized in Figure 8.

In conclusion, to tailor specific combinations of therapies and
to decide which strategy to use, administration of a
chemotherapy that increases intracellular ROS to toxic levels,
might not only be dependent on the tumor type, but also on the
molecular targeting therapy used. Therefore, the combination of
conventional anticancer therapies with molecularly targeted
therapies, such as MEK1 and PI3K inhibitors might result in
side effects, i.e., ErbB2 induction, that require further studies to
develop new strategies that selectively kill cancer cells and
overcome drug resistance.
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