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Background: Adenosine-to-inosine RNA editing (ATIRE) is increasingly being used to
characterize cancer. However, no studies have been conducted to identify an ATIRE
signature for predicting cancer survival.

Methods: Breast cancer (BRCA) samples with ATIRE profiles from The Cancer Genome
Atlas were divided into training (n = 452) and internal validation cohorts (n = 311), and 197
additional BRCA patients were recruited as an external validation cohort. The ATIRE
signature for BRCA overall survival (OS) and disease-free survival (DFS) were identified
using forest algorithm analysis and experimentally verified by direct sequencing. An
ATIRE-based risk score (AIRS) was established with these selected ATIRE sites.
Significantly prognostic factors were incorporated to generate a nomogram that was
evaluated using Harrell’s C-index and calibration plot for all cohorts.

Results: Seven ATIRE sites were revealed to be associated with both BRCAOS and DFS,
of which four sites were experimentally confirmed. Patients with high AIRS displayed a
higher risk of death than those with low AIRS in the training (hazard ratio (HR) = 3.142,
95%CI = 1.932–5.111), internal validation (HR = 2.097, 95%CI = 1.123–3.914), and
external validation cohorts (HR = 2.680, 95%CI = 1.000–7.194). A similar hazard effect of
high AIRS on DFSwas also observed. The nomogram yielded Harrell’s C-indexes of 0.816
(95%CI = 0.784–0.847), 0.742 (95%CI = 0.684–0.799), and 0.869 (95%CI = 0.835–
0.902) for predicting OS and 0.767 (95%CI = 0.708–0.826), 0.684 (95%CI = 0.605–
0.763), and 0.635 (95%CI = 0.566–0.705) for predicting DFS in the three cohorts.

Conclusion: AIRS nomogram could help to predict OS and DFS of patients with BRCA.
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INTRODUCTION

Female breast cancer (BRCA) has now been the most commonly
diagnosed cancer with an estimated 2.3 million new cases in 2020
worldwide (1). Over the past decades, the long-term survival rate of
female BRCA has dramatically increased due to advances in early
diagnosis and prompt treatment. The data from Surveillance,
Epidemiology, and End Results (SEER) shows the 5-year survival
rate of female BRCA approached 90.3% in the United States (https://
seer.cancer.gov/statfacts/html/breast.html), while in China, the
number was about 82.0% (2). However, the high incidence of
female BRCA still caused an estimated 684,996 deaths in 2020
(1). Besides, improved treatments such as adjuvant systemic therapy
result in inappropriate treatment in many patients, including both
unnecessary treatment and insufficient curing. Therefore, it is of
great value to develop a reliable prognostic model to identify
patients at high risk of death or disease recurrence, which may
suggest changes in life health management.

Accompanied by the revelation of transcriptomics in BRCA,
various prognostic models have been developed to help physicians
assess the survival of BRCA patients (3–10). These prediction
models were mostly established by gene expression data recorded
by The Cancer Genome Atlas (TCGA) database (https://portal.gdc.
cancer.gov/) or Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/). Nevertheless, all these models have
limitations in clinical practice in terms of their veracity, reliability,
and reproducibility, which are always at the mercy of mobility and
detection instability in gene expression. A novel type of molecular
markers may contribute to overcoming these challenges. RNA
editing is a molecular process through which some cells can make
discrete changes to specific nucleotide sequences within an RNA
molecule (11). Compared to gene expression, RNA editing is more
tumor-specific (12, 13) and irrespective of inter-individual
variability at the amount of isolated RNA and reference gene
selection. Therefore, as a biomarker, RNA editing is superior to
RNA expression in terms of test stability and reliability.

More than 70% of RNA editing in humans is adenosine-to-
inosine RNA editing (ATIRE) (14), which results in adenosine-to-
inosine transitions at particular sites of pre-mRNA. In the process of
post-transcription and translation, inosine is recognized as
guanosine (G). Recent bioinformatics analyses have revealed
transcriptome-wide ATIRE profiling and identified survival-
related ATIRE sites in cancer by analyzing TCGA sequencing
data (15, 16). However, no studies have validated both the reality
and prognostic correlation of these sites in cancer. In this study, we
aimed to develop and validate an ATIRE-based risk score (AIRS) for
assessing the probability of overall survival (OS) and disease-free
survival (DFS) in patients affected by BRCA, and for the first time,
we constructed a novel prognostic model using ATIRE with
considerable accuracy on predicting BRCA OS and DFS.
MATERIAL AND METHODS

Dataset Preparation and Studied Subjects
ATIRE profiling of TCGA-BRCA patients in cancer tissues was
downloaded from the synapse (https://www.synapse.org/#!
Frontiers in Oncology | www.frontiersin.org 2
Synapse:syn4382382) (15). The corresponding clinicopathological
parameters of indicated patients were downloaded from the
cBioPortal (https://www.cbioportal.org/). Patients were excluded
if they lacked data about ATIRE level, OS, and TNM stages. The
remaining patients were randomly allocated to a training cohort (n
= 452) and an internal validation cohort (n = 311). Besides, an
external validation cohort (n = 197) was randomly recruited in
Guangdong Women and Children’s Hospital and Health Institute
from January 2014 to September 2019 in Guangzhou city. All cases
were histopathologically confirmed and followed up by phone by
one of us (JW). After a median follow-up of 68 months, 89.3% of
patients (176/197) were followed up successfully and provided
complete OS information. Meanwhile, 83.8% of patients provided
DFS data. OS was defined as the length of time from the date of
diagnosis for BRCA that patients diagnosedwith the disease are still
alive. DFS was defined as the time after surgery to relapse,
second cancer, or all-cause death, whichever came first. There
were no significant differences in frequency distributions of
clinicopathological characteristics between the cases lost to
follow-up and those to be analyzed (Supplementary Table S1).
All individuals have signed written informed consent. The study
was approved by the Institutional Review Board of Guangzhou
medical university.
Identification of Breast Cancer-Survival
Related Adenosine-to-Inosine RNA Editing
Sites and Generation of Adenosine-to-
Inosine RNA Editing-Based Risk
Score Model
Figure 1 presents the flowchart of AIRS model construction for
BRCA survival. After elimination of sites with low authenticity
whose editing levels were not reported in more than half of the
samples, 30,001 ATIRE sites were included in the univariate Cox
proportional hazards (Cox-PH) model in the training cohort. Then
the sites with p < 0.001 were submitted to the forest algorithm
analysis, a non-parametric machine learning strategy that was
recently used for building a risk prediction model in survival
analysis (17). Due to the limitation of forest algorithm analysis,
these sites with undetermined editing levels in more than 5% of
samples and samples that had undetermined editing levels at any of
the inclusive sites were removed. After the median split of samples
into high and low editing groups according to the editing level, the
common sites for OS and DFS with relative importance > 0.1 were
preselected for the construction of the AIRS model.

To verify the reality of these preselected ATIRE sites,
complementary DNA (cDNA) and genomic DNA (gDNA)
were isolated from five randomly selected BRCA tissues and
were used as templates for PCR. The PCR products were purified
and then directly sequenced. The primers used are presented in
Supplementary Table S2.

Empirically supported ATIRE sites were finally selected for AIRS
model construction. To maximize the efficiency and robustness of
the model, the editing level of each ATIRE was classified into low,
medium, and high through the optimal grouping method using the
X-Tile Software (https://medicine.yale.edu/lab/rimm/research/
April 2022 | Volume 12 | Article 861439
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software/) (18). Cox-PH was used to measure the hazard ratio (HR)
and 95% CI for the association between each ATIRE and BRCA
survival. Then, an AIRS model was established by summing the
effect of each site by its respective weight (lnHR).
Validation of Adenosine-to-Inosine RNA
Editing-Based Risk Score Model
Associations of the AIRS model with BRCA OS and DFS were
validated in the internal and external validation cohorts. The PCR
followed by sequencing was performed to determine the editing
level of each selected ATIRE site in the external validation cohort.
The editing level was calculated by the ratio between the height of
Frontiers in Oncology | www.frontiersin.org 3
peak corresponding to G and the sum of the height of peaks
corresponding to G and A.
Construction and Validation of an
Adenosine-to-Inosine RNA Editing-Based
Risk Score-Based Nomogram
A nomogram incorporating AIRS and clinicopathological
features including age at diagnosis, TNM stages, estrogen
receptor (ER), and progesterone receptor (PR) status was
constructed by means of the “rms” package in R (version
4.0.1). To validate the nomogram, the total point of each
patient in the two validation cohorts was calculated
according to the established nomogram. The predictive
FIGURE 1 | The workflow of generation of an AIRS model for BRCA OS and DFS. AIRS, adenosine-to-inosine RNA editing risk score; BRCA, breast cancer; OS,
overall survival; DFS, disease-free survival.
April 2022 | Volume 12 | Article 861439
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performance of the nomogram was measured by Harrell’s C-
index and calibration with 100 bootstrap samples (19).

Correlation Between Adenosine-to-Inosine
RNA Editing-Based Risk Score Sites and
Host Gene Expression
Since the four AIRS sites are all located at the 3′-untranslated
region (3′-UTR) of host genes, correlations between the editing
level of each site and expression of host gene were analyzed by
integrating TCGA-BRCA RNA-seq data with ATIRE profiling.

Gene Set Enrichment Analysis
To determine the effect of AIRS sites on whole transcriptome
expression, RNA-seq data were downloaded from TCGA. The
difference in an expressional file between low and medium/high
AIRS patients was assessed using the “limma” package in R
software (version 4.0.1). Differences with adjusted p-value <0.05
and |log2(Fold change)| ≥ 1.5 were considered to be significant.
Then, Gene Set Enrichment Analysis (GSEA) was performed to
determine the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways (20).

Statistical Analysis
In addition to the aforementioned statistical analysis,
correlations between the editing level of ATIRE sites and the
expression of host genes were tested by Spearman’s correlation
test. All tests were two-sided and evaluated by GraphPad Prism
9.0. p < 0.05 was considered to be statistically significant.
RESULTS

Baseline Clinicopathological
Characteristics
The clinicopathological characteristics of all patients to be
analyzed were presented in Table 1. There were no obvious
differences in distributions of clinicopathological characteristics
between the training and internal validation cohorts, but more
cases in the external cohort were young and diagnosed at early
stages with negative PR or positive HER2.

Identification of Breast Cancer Survival-
Related Adenosine-to-Inosine RNA
Editing Sites
The Manhattan plot (Figure 2A) shows 137 ATIRE sites with p <
0.001 in the Cox-PH model for testing associations between
30,001 ATIRE sites and BRCA OS in the training cohort. Then
the forest algorithm analysis featured 18 (Figure 2B) and 14
(Figure 2C) sites as foremost predictive factors for BRCAOS and
DFS, of which seven sites, that are, ARSD A2874>I, ZNF791
A2280>I, H6PD A8760>I, MED18 A1552>I, MEGF8 A9749>I,
SSU27 A1727>I, and RAD1 A1415>I, were overlapped. The
number residing in A>I indicates the distance between the
transcription start site and the ATIRE site.

Direct sequencing (Figure 3A) shows ARSD A2874>I,
ZNF791 A2280>I, MED18 A1552>I, and RAD1 A1415>I with
Frontiers in Oncology | www.frontiersin.org 4
distinct G peak in the cDNA but not in the corresponding
gDNA, suggesting that these sites were edited. However, no
edit of MEGF8 A9749>I and SSU27 A1727>I were observed.
Besides, the trace peaks for H6PD were misshapen, causing a
failed determination of H6PD A8760>I. Thus, the four
experimentally confirmed ATIRE sites were selected to
construct the AIRS model for BRCA OS and DFS.

Adenosine-to-Inosine RNA Editing-Based
Risk Score Construction and Its
Association With Breast Cancer Overall
Survival and Disease-Free Survival
After grouping the editing level of aforesaid screened ATIRE sites
into low, medium, and high using the X-Tile Software, the HRs
(Supplementary Table S3) for associations between these sites
and BRCA OS were used to calculate AIRS. We generated a
simple applet in Excel to easily calculate AIRS (Supplementary
File 1). As shown in Figure 3B, after grouping AIRS by the
median, we found that high AIRS trebled (HR = 3.142, 95%CI =
1.932–5.111) and doubled (HR = 2.097, 95%CI = 1.123–3.914) a
BRCA patient’s risk of death in the training and internal
validation cohorts. Being consistent, after removing 3 cases
with undetermined editing levels in any of the AIRS sites, the
high AIRS group displayed poorer OS than the low AIRS group
(HR = 2.680, 95%CI = 1.000–7.194).

Similarly, the HRs for associations (Supplementary Table S4)
between the aforesaid four sites and BRCA DFS were used to
calculate AIRS. We also generated a simple applet in Excel to easily
calculate AIRS for DFS (Supplementary File 1). As shown in
Figure 3C, compared to the patients with low AIRS, those with
high AIRS had a 4.046-fold (HR = 4.046, 95%CI = 1.814–9.026) and
2.929-fold (HR = 2.929, 95%CI = 1.054–8.137) risk of progression,
recurrence, or death in the training and internal validation cohorts.
In the external cohort, the high AIRS was associated with an
increased risk (HR = 1.844, 95%CI = 0.810–4.198), but the
association did not reach statistical significance, which may be
due to the limited sample size. Taken together, these data suggest
that AIRS is a prognostic indicator of BRCA OS and DFS.

Adenosine-to-Inosine RNA Editing-Based
Risk Score-Based Nomogram
Demonstrated a Well Predictive
Performance on Breast Cancer Survival
The multivariate Cox-PH analysis showed that AIRS, ER/PR
status, T stage, N stage, and M stage were independent predictors
of mortality in TCGA patients affected by BRCA (Figure 4A).
Thus, these factors were incorporated to develop a nomogram
for predicting BRCA OS (Figure 4B). As shown in Figure 4C,
the nomogram-predicted survival rate displayed a superior
agreement with the observed survival rate in all the three
cohorts, with Harrell’s C-indexes as 0.816 (95%CI = 0.784–
0.847), 0.742 (95%CI = 0.684–0.799), and 0.869 (95%CI =
0.835–0.902).

The aforementioned prognostic factors were also used to
develop a nomogram for predicting BRCA DFS based on the
training cohort (Figure 4D). In this nomogram, the M stage was
April 2022 | Volume 12 | Article 861439
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removed, because there was only one case with distant
metastasis. As shown in Figure 4E, the nomogram-predicted
survival rate displayed a noteworthy agreement with the
observed survival rate in the training cohort and validation
cohorts, with Harrell’s C-indexes as 0.767 (95%CI = 0.708–
0.826), 0.684 (95%CI = 0.605–0.763), and 0.635 (95%CI =
0.566–0.705). These data suggest that AIRS-based nomograms
could be used to predict BRCA OS and DFS.
Effects of the Adenosine-to-Inosine RNA
Editing-Based Risk Score Sites on Gene
Expression Network
Integrating TCGA-BRCA RNA-seq datasets with ATIRE
profiling showed that a high editing level of A2280>I was
significantly associated with a decreased level of ZNF791 when
compared to a low or medium editing level (p = 0.002).
Meanwhile, there was an inverse dose–effect relationship
between the editing level of A1552>I and MED18 expression
(p = 0.020). The editing level of A2874>I exerted a correlation
with ARSD expression with a trend towards statistical
significance (p = 0.067). However, no such effect was observed
for A1415>I editing and RAD1 expression (Figures 5A–D).
Moreover, a comparison of transcriptomic data between the
high AIRS and low AIRS groups of TCGA-BRCA samples
demonstrated that AIRS was correlated with expressions of 20
genes, of which 16 were lower and 4 were higher in the high AIRS
Frontiers in Oncology | www.frontiersin.org 5
group (Figure 5E; Supplementary File 2). KEGG pathways
enrichment analysis showed that high AIRS actives several
pathways such as oxidative phosphorylation and proteasome
and suppresses pathways such as the calcium signaling pathway
(Figure 5F). Consistently, GSEA with the 50 hallmarks found
that signaling pathways of target genes are involved in oxidative
phosphorylation, proteasome, and calcium signaling
pathway (Figure 5G).
DISCUSSION

Although an overwhelming majority of studies have established
many prognostic prediction models for BRCA via analyzing the
transcriptomics data, most of these studies around this topic
redundantly disaggregated transcriptomics data into gene sets by
functional annotation to create new nomograms such as N6-
methyladenosine regulator-related or autophagy gene-related
nomogram (21, 22). This excessive mining of transcriptomics
actually contributes little to improve predictive precision of
cancer prognosis, even if we combined these models
considering the collinearity of gene expression. Besides, a lot of
similar nomograms confuse the selection of such models for
application. To overcome these problems, new developments in
discovering novel biomarkers are needed. In this study, we for
the first time constructed an AIRS model that exerts high
associations with both OS and DFS of BRCA. We then
TABLE 1 | Frequency distributions of clinicopathological features of BRCA cases.

Variables Training set n (%) Internal validation set n (%) External validation set n (%) P valuea

Age at diagnosis
<50 years 122 (27.0) 86 (27.7) 100 (56.8) <0.001
≥50 years 330 (73.0) 225 (72.3) 76 (43.2)

T stages
Tris+1 131 (39.0) 77 (24.8) 93 (52.8) <0.001
2 260 (57.5) 190 (61.1) 76 (43.2)
3+4 61 (13.5) 44 (14.1) 7 (4.0)

N stages
0 230 (50.9) 150 (48.2) 89 (50.6) 0.774
1 141 (31.2) 111 (35.7) 57 (32.4)
2+3 81 (17.9) 50 (16.1) 30 (17.0)

M stages
0 446 (98.7) 304 (97.7) 171 (97.2) 0.403
1 6 (1.3) 7 (2.3) 5 (2.8)

Clinical stages
I 90 (19.9) 48 (15.4) 61 (34.7) <0.001
II 257 (56.9) 193 (62.1) 77 (43.7)
III+IV 105 (23.2) 70 (22.5) 38 (21.6)

ER statusb

Positive 331 (76.6) 239 (79.7) 128 (72.7) 0.219
Negative 101 (23.4) 61 (20.3) 48 (27.3)

PR statusb

Positive 291 (67.4) 211 (70.3) 101 (57.4) 0.013
Negative 141 (32.6) 89 (29.7) 75 (42.6)

HER2b

Positive 74 (24.0) 45 (21.7) 59 (33.5) 0.020
Negative 234 (76.0) 162 (78.3) 117 (66.5)
April 2022 | Volume 12 | Articl
BRCA, breast cancer; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2.
aP value from the chi-square test.
bMissing or ambiguous samples were omitted.
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A

B

C

FIGURE 2 | Identification of an ATIRE prognostic signature for OS and DFS of BRCA patients. (A) Scatter plot of p-values in −log10 scale from the univariate Cox-
PH model on associations between all ATIRE sites and OS of TCGA-BRCA patients. y-Axis refers to p-values in –log10 scale, and x-axis refers to chromosomal
location of these ATIRE sites. (B) Random forest modeling (left) and analysis of variable importance of ATIRE sites (right) to OS of BRCA. Left: survival forest of 100
trees was created, using the log-rank splitting rule with ATIRE predictors randomly selected at each split. Right: survival random forest analysis furnishes a ranking of
ATIRE predictors’ importance in determining the accuracy of prediction. (C) Random forest modeling (left) and analysis of variable importance of ATIRE sites (right) to
DFS of BRCA. Left: survival forest of 100 trees was created, using the log-rank splitting rule with ATIRE predictors randomly selected at each split. Right: survival
random forest analysis furnishes a ranking of ATIRE predictors’ importance in determining the accuracy of prediction. ATIRE, adenosine-to-inosine RNA editing; OS,
overall survival; DFS, disease-free survival; BRCA, breast cancer; TCGA, The Cancer Genome Atlas.
Frontiers in Oncology | www.frontiersin.org April 2022 | Volume 12 | Article 8614396
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C

FIGURE 3 | Correlation between AIRS, OS, and DFS of BRCA patients. (A) Validation of the selected ATIRE sites by direct sequencing. cDNA, complementary
DNA; gDNA, genomic DNA. (B) Distribution of the risk score (top), survival status (middle), and Kaplan–Meier plot (bottom) to visualize the OS probabilities for AIRS
in the training cohort (left), internal validation cohort (middle), and external validation cohort (right). (C) Distribution of the risk score (top), survival status (middle), and
Kaplan–Meier plot (bottom) to visualize the DFS probabilities for AIRS in the training cohort (left), internal validation cohort (middle), and external validation cohort
(right). Hazard ratio (HR) values were calculated by the Cox regression model, as shown in the Kaplan–Meier plot. AIRS, adenosine-to-inosine RNA editing-based risk
score; OS, overall survival; DFS, disease-free survival; BRCA, breast cancer; ATIRE, adenosine-to-inosine RNA editing.
Frontiers in Oncology | www.frontiersin.org April 2022 | Volume 12 | Article 8614397
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FIGURE 4 | Performance of nomogram based on the AIRS and clinicopathological features. (A) Forest plot to visualize the HRs and 95%CIs for associations
between the AIRS, clinicopathological features, and OS, after the multivariate Cox-PH model. (B) AIRS nomogram predicting 36-, 60-, and 96-month OS probability
of BRCA patients. Each clinicopathological variable or AIRS has a certain number of the score (top row) ranging from 0 to 100. The sum of points of each variable
was related to the probability of OS at specific time points (36, 60, and 96 months). The red dots and straight line with arrow show an example illustrating the use of
the nomogram. This patient was one of TCGA-BRCA patients. The patient was ER+/PR+ (point = 41), no lymphatic metastasis (point = 41), no distant metastasis
(point = 41), T1-stage (point = 41), 57-year-old (point = 42), and 0 ATRS (point = 6); thus, the total points of this patient is 212, which corresponds to a 99.9%
probability of 36-month OS, a 98.1% probability of 60-month OS, and a 96.5% probability of 96-month OS. (C) The calibration curves for predicting patients’ OS at
3-year (red line), 5-year (violet-red line), and 8-year (tan line) in the training cohort (left), internal validation cohort (middle), and external validation cohort (right).
(D) AIRS nomogram predicting 36-, 60-, and 96-month DFS probability of BRCA patient and an example illustrating the use of the nomogram. (E) The calibration
curves for predicting patients’ DFS at 3-year (red line), 5-year (violet-red line), and 8-year (tan line) in the training cohort (left), internal validation cohort (middle), and
external validation cohort (right). ER, estrogen receptor; PR, progesterone receptor; AIRS, adenosine-to-inosine RNA editing-based risk score; HRs, hazard ratios;
OS, overall survival; TCGA, The Cancer Genome Atlas; BRCA, breast cancer.
Frontiers in Oncology | www.frontiersin.org April 2022 | Volume 12 | Article 8614398
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developed a nomogram incorporating the AIRS and
clinicopathological features, which performed precisely in
predicting the survival of patients affected by BRCA.

Emerging evidence has demonstrated that dysregulated
ATIRE was implicated in cancer development by causing
amino acid changes, mRNA abundance and splicing anomaly,
and re-direction of mRNA–microRNA binding (23, 24). The
bioinformatics analyses on high-throughput RNA-seq data have
widely revealed ATIRE sites and reported cancer survival-related
Frontiers in Oncology | www.frontiersin.org 9
ATIRE profiles, although these sites have not been actually
verified (15, 16). Indeed, in this study, only four of the seven
preselected sites were successfully verified by direct sequencing,
demonstrating that identification of ATIRE sites via
bioinformatics had some disadvantages of the uncertainties,
with quite a deviation. Furthermore, multiple experiment
studies targeting ATIRE in indicated genes or microRNAs have
revealed several functional ATIRE sites to be associated with
various cancer survival (25–32). These findings make it possible
A B D

E F

G

C

FIGURE 5 | Correlation between the AIRS sites and gene expressions. (A–D) Correlations between editing levels of the four AIRS sites and expression levels of host
genes. Data are presented as mean ± SD, and p-values are calculated by the one-way ANOVA test. *p < 0.05,**p < 0.01, ns, not significant. (E) Visualization of
differentially expressed genes with volcano plot in high AIRS patients versus low AIRS patients. The expression difference of a log2 fold change of 1.5 (outer light gray
broken vertical line) and for an adjusted p-value of 0.05 (dark broken horizontal line). y-Axis refers to p-values in–log10 scale, and x-axis refers to the fold change in
log 2 scale. (F) Plot of the KEGG pathway enrichment analysis for AIRS-related genes based on TCGA data. y-Axis represents pathways; x-axis represents the
amount of AIRS-related genes enriched in KEGG pathways. The color and size of each bubble represent enrichment significance and the number of AIRS-related
genes enriched in KEGG, respectively. (G) GSEA enrichment plot of KEGG pathway genes in high AIRS versus low AIRS. KEGG, Kyoto Encyclopedia of Genes and
Genomes; GSEA, Gene Set Enrichment Analysis; NES, normalized enrichment score; AIRS, adenosine-to-inosine RNA editing-based risk score; TCGA, The Cancer
Genome Atlas.
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to use ATIRE sites as a potential tool in the assessment of
cancer prognosis.

By mining TCGA-BRCA ATIRE profiling with a machine
learning strategy, forest algorithm analysis, and by proving
experimentation with direct sequencing, we for the first time
identified the four ATIRE-relevant prognostic signatures and
established the AIRS model for both OS and DFS of BRCA. It
was found that the AIRS was associated with OS and DFS of BRCA
in the internal and external validation cohorts, which agrees with
the result from the training cohort. This indicates the validity of the
model. The AIRSmodel was applied together with age at diagnosis,
TNM stages, and ER and PR status to build a nomogram for
predicting OS and DFS probability of patients affected by BRCA.
Overall, our nomogram presents a good performance, robustness,
and stability on predicting BRCA OS with Harrell’s C-indexes as
0.816, 0.742, and 0.869 in the three cohorts. The nomogram also
exerts a considerable accuracy on predicting BRCA DFS with the
C-indexes as 0.767, 0.684, and 0.635 in the three cohorts. The
predictive efficiencies were also confirmed by the calibration plots.
Thus, the nomogram may help the clinics for better health
administration of patients with BRCA.

Since the four AIRS sites are all located in the 3′-UTR of host
genes, it is plausible to observe the correlations between A2280>I
editing level and ZNF791 expression, A1552>I editing level, and
MED18 expression. However, the biological functions of ZNF791
and MED18 in BRCA are largely unknown, making it impossible
to infer the plausibility of associations between the two sites and
BRCA survival. Moreover, the cellular pathway clearly
demonstrated that AIRS was associated with several signaling
pathways, such as oxidative phosphorylation (33), proteasome
(34), and calcium signaling pathway (35). These pathways are all
promising targets for the treatment of BRCA, which suggests the
AIRS as new targets for BRCA treatment.

One of the strengths of this study is that it represents a
comprehensive examination of the whole transcriptomic ATIRE
sites. The other one is that we used both internal and external
validation cohorts to verify the AIRS model and nomogram.
Nevertheless, there still remain some limitations in our research.
First, functional analysis is lacking to support the biological
plausibility of the association between the ATIRE sites and BRCA
survival. Second, the omission of detailed treatment options in
TCGA data prevents us to analyze the effect of the ATIES model on
the effectiveness of different treatment strategies, which is essential
in the future application of prognostic nomogram for treatment
selection. Finally, bias, especially selection bias, may affect the
authenticity of the association.
Frontiers in Oncology | www.frontiersin.org 10
CONCLUSION

The novel four-ATIRE signature serves as a promising model to
predict the survival of patients with BRCA, and these ATIRE
sites might be novel therapeutic targets for BRCA treatment,
which is warranted to be further studied.
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