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V-Raf murine sarcoma viral oncogene homolog B (BRAF) kinase, which was encoded by
BRAF gene, plays critical roles in cell signaling, growth, and survival. Mutations in BRAF
gene will lead to cancer development and progression. In non-small cell lung cancer
(NSCLC), BRAF mutations commonly occur in never-smokers, women, and aggressive
histological types and accounts for 1%–2% of adenocarcinoma. Traditional
chemotherapy presents limited efficacy in BRAF-mutated NSCLC patients. However,
the advent of targeted therapy and immune checkpoint inhibitors (ICIs) have greatly
altered the treatment pattern of NSCLC. However, ICI monotherapy presents limited
activity in BRAF-mutated patients. Hence, the current standard treatment of choice for
advanced NSCLC with BRAFmutations are BRAF-targeted therapy. However, intrinsic or
extrinsic mechanisms of resistance to BRAF-directed tyrosine kinase inhibitors (TKIs) can
emerge in patients. Hence, there are still some problems facing us regarding BRAF-
mutated NSCLC. In this review, we summarized the BRAF mutation types, the diagnostic
challenges that BRAF mutations present, the strategies to treatment for BRAF-mutated
NSCLC, and resistance mechanisms of BRAF-targeted therapy.
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INTRODUCTION

Lung cancer is the most commonly diagnosed cancer and the leading cause of cancer mortality in
China (1). Lung cancer could be divided into non-small cell lung cancer (NSCLC) and small cell
lung cancer (SCLC); of these, approximately 60% of NSCLC were adenocarcinoma (2). Generally,
about 80% of lung adenocarcinoma harbors driver mutations in east Asians (3). Over the past
decades, targeted therapies have dramatically revolutionized the treatment pattern of NSCLC and
greatly improved the prognosis of NSCLC patients.

V-Raf murine sarcoma viral oncogene homolog B (BRAF) gene encodes BRAF kinase, a member
of mammalian cytosolic serine/threonine kinases, which plays important roles in cell signaling,
growth, and survival (4–6). BRAFmutations are rare mutations in NSCLC, which account for 2% of
lung adenocarcinoma, and more frequently occur in never-smokers, women, and aggressive
histological types (micropapillary) (7). Additionally, BRAF V600E mutations are mostly mutually
exclusive with most druggable abnormalities present in this tumor (8, 9). It should be noted that
certain BRAF mutations can coexist with KRAS mutations (9). However, routine platinum-based
chemotherapy presents lower efficacy and is associated with poorer survival (10). Currently, the
advent of BRAF inhibitors (BRAFi) and immune checkpoint inhibitors (ICIs) has transformed the
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landscape of BRAF-mutated NSCLC. In the present review, we
will discuss BRAF biology within the context of oncogenesis. In
addition, we will describe the evolving science of molecularly
targeted therapies and ICIs for BRAF-dependent cancers.
BRAF MUTATIONS IN CANCER

BRAF is involved in mitogen-activated protein kinase (MAPK)
pathway that includes the rat sarcoma (RAS)–rapidly accelerated
fibrosarcoma (RAF)–mitogen-activated protein/extracellular signal-
regulated kinase kinase (MEK)–extracellular signal-regulated kinase
(ERK) mitogen-activated protein kinase. After activation of
epithelial growth factor receptor (EGFR), RAS–RAF–MEK–ERK
pathway will be activated and modulate cell proliferation and
survival (11) (Figure 1). In normal tissue, the BRAF kinase is
Frontiers in Oncology | www.frontiersin.org 2
generally silenced via negative feedback once the signal has moved
on to the next point in the cascade. However, when BRAF
mutations occur, the activation of the RAS–RAF–MEK–ERK
pathway will be sustained and will lead to uncontrolled cell
growth and proliferation; this makes BRAF mutations potential
oncogenic drivers (12, 13). Generally, BRAF mutations commonly
present in human cancers with an 8% incidence in all human
cancers, predominantly in hairy cell leukemia (100%) (14),
melanoma tumors (40%–50%) (15–17), thyroid carcinoma (10%–
70%, based on the histologic classification) (18, 19), colorectal
cancer (10%) (20, 21), and rarely in lung cancer (1%–2%) (11, 22).

BRAF mutations could be divided into three classes based on
mutation site. Class I mutants including V600E/K/D/R, which
occurs in the valine residue at amino acid position 600 of exon
15, promote constitutive activation of MAPK pathway, causing
strong activation of BRAF kinase; in addition, this type of
RAS
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FIGURE 1 | RAS/RAF/MEK/ERK signaling pathway. RTK, receptor tyrosine kinase; RAS, rat sarcoma; RAF, v-raf murine sarcoma viral oncogene; MEK, mitogen-
activated protein kinase kinase; ERK, extracellular signal-regulated kinase.
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mutations often presents high sensitivity to BRAF and MEK
inhibitors (23, 24). Class II mutants, including K601, L597, G464,
and G469 mutations, are located in the activation segment or P-
loop and signal as RAS-independent dimers (24, 25).

Class III mutants that occur in the P-loop, catalytic loop, or
DFG motif have impaired BRAF kinase activity; however, the
activity of MAPK pathway signaling is enhanced via Raf-1 proto-
oncogene CRAF activation (Figure 2) (24). All the class II and III
mutations are non-V600 mutations, and BRAF mutations are
usually classified as V600 mutations and non-V600 mutations in
routine clinical practice. Actually, approximately 50% of BRAF
mutations in NSCLC are non-V600 mutations (26–28). In
addition, class II and III BRAF mutations are sensitive to
current BRAF inhibitors; hence, novel-generation BRAF
inhibitors warrant being developed.
BRAF DELETION MUTATIONS

Several previous studies have demonstrated that BRAF deletion
mutations can occur in melanoma, pancreatic cancer, and thyroid
cancer; in addition, activating BRAF deletion mutations might
serve as a type of resistance mechanism to BRAF inhibitors plus
MEK inhibitors (29–31). Generally, deletion mutations happen
adjacent to the aC helix in the kinase domain of BRAF, resulting
in enhanced kinase activity by suppressing the aC helix in its
active conformation (29). This type of BRAFmutation is similar to
class I mutants functioning as RAS-independent monomers (31).
BRAF FUSIONS

At least 18 different 5´ fusion partners have been found across
different cancer types including NSCLC, and the most common
fusion partner is AGK in NSCLC (13, 32). The occurrence rate of
BRAF fusions is smaller than 1% in NSCLC, and all NSCLCs with
BRAF fusions were adenocarcinomas or NSCLC with
adenocarcinoma features. Most BRAF fusion patterns are in-
frame with breakpoints on the BRAF kinase domain (13, 32). In
addition, remarkably, conserved fusions have been reported to
occur in 85% of astrocytic pilocytomas (33). Activating BRAF
fusions occur in truncation of the N-terminal CR1 auto-inhibitory
domain, leading to the constitutive activation of BRAF pathway
that resembles class II BRAF mutants (34). Up to now, limited
data have revealed the activities of BRAF inhibitors and MEK
inhibitors in treating BRAF fusion mutations.
Frontiers in Oncology | www.frontiersin.org 3
DETECTION OF BRAF MUTATIONS

Single-gene assays for BRAF mutations are extensively used across
other cancer types including melanoma. The most commonly used
assay is RT-PCR. So far, the cobas 4800 BRAF V600 Mutation Test
and THxID-BRAF kit are Food and Drug Administration (FDA)-
approved companion diagnostic tests (35–37). In addition,
laboratory-developed tests also could be applied to test a patient’s
BRAF mutation status, although confirmatory tests via other
methods are necessary. The major advantages of RT-PCR are
faster turnaround time, better reproducibility, higher specificity
and sensitivity, and lower cost compared with multiple gene
sequencing methods. However, most of these methods are merely
for BRAF V600E mutation located in exon 15. They lack the ability
to detect exon 11mutations that also are seen inNSCLC (38). Hence,
next-generation sequencing (NGS) including a multiple gene panel
should be applied to evaluate V600E mutation and non-V600E
mutations that could happen in exon 11 and exon 15 (15, 26).

The other kind of single-gene test is immunohistochemistry
(IHC) for BRAF mutations. However, the only available antibody
used in IHC for mutant BRAF protein is monoclonal antibody VE1.
The advantage of this method is to identify a qualitative change (i.e.,
the presence or absence of the protein), but the accuracy is limited in
quantitating changes in expression than other antibody-based
assays, such as the enzyme-linked immunosorbent assay (39). The
limitation of this test is similar to RT-PCR that only can test BRAF-
V600E mutation. In addition, only a few cases of lung cancer have
shown that VE1 clone has the potential to stain between 90% and
100% of p.V600E-mutant adenocarcinomas (40). It was previously
reported that IHC using VE1 antibody is incapable of testing non-
V600E mutation (41). However, another study has demonstrated
that 599T insertion mutation in 1/21 cases stained with VE1 is
positive for VE1 antibody. Hence, no standard recommendation or
consensus was obtained for using BRAF p.V600E IHC (VE1) testing
in NSCLC; extension validation must be deployed when IHC is used
to test BRAF-V600E mutation.
NEXT-GENERATION SEQUENCING

As mentioned above, single-gene tests for BRAF mutation are
unable to identify mutations occurring in exon 11; hence, a
multiple-gene panel including BRAF mutations is more practical.
In addition, with more novel rare driver genes discovered, there is
an increased need for multigene testing compared to single-gene
N
CR1 CR2 CR3

RBD CRD

C

PKD
V600

FIGURE 2 | The structure of BRAF gene. N, C, amino and carboxyl end; RBD, Ras-binding domain; CR, conserved region; CRD, cysteine-rich domain; PKD,
protein kinase domain; CR1/2/3; conserved region-1/2/3, CR1 contains RBD and CRD, V600E mutation occurs in CR3.
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approaches. Current guidelines for gene testing in NSCLC should
include BRAF, mesenchymal epithelial transition factor receptor
(MET), rearranged during transfection (RET), Human Epidermal
Growth Factor Receptor 2 (HER2), neurotrophic tropomyosin
receptor kinase (NTRK), and Kirsten Rat Sarcoma Viral Oncogene
Homolog (KRAS) for cases in which the common oncogenic drivers
(EGFR, anaplastic lymphoma kinase (ALK), and ROS proto-
oncogene 1 (ROS1) are negative and whenever an adequate
technique is available (42). The advantages of NGS are as follows:
1) fewer tumor tissue; 2) facilitates testing of multiple biomarkers;
3) includes emerging biomarkers for clinical trial enrollment.
Generally, it is more economical than sequential testing (43, 44).
However, because of more data, interpreting the NGS reports
becomes complex and its availability in the community or rural
region is poor. Besides, the turnaround time of NGS is longer than
those of RT-PCR and IHC assay. Hence, multiple-gene RT-PCR kit
might be a more reasonable choice for gene tests.
CURRENT TREATMENT LANDSCAPE

Chemotherapy
The activities of chemotherapy have been fully explored in patients
with BRAF V600E mutation advanced NSCLC. Documented
studies have revealed that advanced NSCLC patients harboring
BRAF V600E mutations present poor prognosis when
administered with chemotherapy; in addition, patients with
BRAF V600E mutations appear to be insensitive to platinum-
based chemotherapy (45–47). However, several reports showed
that NSCLC patients harboring BRAFV600E mutations seemed to
have extended survival compared with patients without oncogenic
drivers (47, 48). Additionally, Claire Tissot et al. (49) have reported
that patients’ survival is not connected with BRAF mutation status.
Another French study also observed similar results that BRAF
mutation was not prognostic of overall survival (50). In addition, a
recent study suggested that class I BRAFV600Emutations have the
potential to be less aggressive than class II and III non-V600E
mutations, which present more possibilities to occur in brain
metastases and RAS co-alterations; hence, this specific behavior
made non-V600E patients have shorter progression free survival
(PFS) and overall survival (OS) to chemotherapy, although the
difference might be driven by fewer extrathoracic metastases and
higher use of targeted therapies in class I patients (51). However,
Frontiers in Oncology | www.frontiersin.org 4
because of limited cases included in these studies, the results
presented here should be interpreted with caution. Hence, future
larger randomized trials are urgently warranted.

Immune Checkpoint Inhibitor Monotherapy
Previous retrospective small-sample studies have found that
BRAF-mutated NSCLC patients tend to display positive
programmed cell death ligand 1 (PD-L1) expression (52–56);
however, because of limited cases, no clear correlation between
PD-L1 and BRAF mutations were found. Recently, a study
including 29 NSCLC patients harboring BRAF mutations
showed us that approximately 69% (20/29) of patients were PD-
L1 positive; among them, over 40% (13/29) of patients presented
higher PD-L1 expression (PD-L1 ≥50%). In addition, BRAF-
mutated NSCLC patients were correlated with low/intermediate
tumor mutation burden (TMB) and microsatellite-stable status
(57). In this study, researchers have reported that patients
harboring BRAF mutations displayed limited response to ICIs.
Additionally, several retrospective studies also observed a similar
phenomenon. The objective response rate (ORR) to single anti–
PD-(L)1 agent in BRAF-mutant patients is about 10%–30%, with a
median PFS of 2–4 months, which is equal to that of a second-line
ICI monotherapy in wild-type NSCLC (57–61) (Table 1).
Combining these data, we can conclude that ORR and PFS of
patients with BRAF non-V600E are higher than those in patients
harboring BRAF V600E mutations, but OS results seem
paradoxical, potential exploration might be that BRAF V600E
mutations could benefit from targeted therapy. On the other hand,
non-V600E mutations usually happen in smokers, and smoking
status was found to be related to response to immunotherapy (62).
In summary, these data indicated limited efficacy of ICIs in BRAF-
mutant NSCLC. Recently, a case with BRAF V600E mutation
presented durable response to ICI combined chemotherapy with
PFS of 20 months (63). This is the first evidence of patients with
BRAF V600E alteration treated with ICI combination regimens.
This case provided evidence that the ICI combined regimens
might be a promising choice for BRAF V600E-mutated NSCLC.
Further prospective clinical trials are eagerly needed.

Targeted Therapy
Sorafenib, an early-generation BRAF inhibitor, was developed as a
targeted therapy against BRAF mutant kinase. Sorafenib is an oral
multikinase inhibitor that displays activities to target B/C-RAF,
TABLE 1 | ICI monotherapy for BRAF-mutated NSCLC.

Trial Mutation type Numbers objective response rate
(ORR)

progression free survival
(PFS)

overall survival
(OS)

Immunotarget V600E 17 NA 1.8 8.2
Non-V600E 18 NA 4.1 17.2

Memorial Sloan Kettering Cancer center
(MSKCC)

V600E 10 10 1.4 26
Non-V600E 36 22 3.2 24

Isarel lung cancer group (ICLG) V600E 12 25 3.7 NA
Non-V600E 10 33 4.1

Expanded Access Program (EAP) Nivolumab BRAF 11 9 NA 10.3
French Lung Cancer Group (GFPC) 01-2018 V600E 26 26 5.3 22.5

Non-V600E 18 35 4.9 12
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Vascular Endothelial Growth Factor Receptor (VEGFR2/3),
platelet-derived growth factor receptor (PDGFR-b), and c-Kit
(64, 65). Preclinical models suggested that sorafenib could
suppress various cancer cell proliferation and tumor growth via
inhibiting MEK and ERK phosphorylation (64). These studies
provide a theoretical basis for sorafenib as a BRAF inhibitor.
However, a previous study showed that the antitumor activities of
sorafenib are correlated with EGFR mutation status but not K-ras
mutation status (67). Carter et al. (68) have demonstrated that
concurrent administration of sorafenib with chemotherapeutics
could effectively delay tumor growth without increasing toxicity.
These data promoted some researchers who have designed clinical
trials to testify the value of sorafenib in NSCLC; however, these
trials have not tested the patients’ BRAF mutation status (69, 70).
Hence, whether sorafenib could serve as a BRAF inhibitor remains
to be explored.

Dabrafenib and vemurafenib, novel-generation BRAF inhibitors,
are ATP-competitive inhibitors of BRAF kinase. Both agents are
specific in targeting BRAF V600E mutations. Vemurafenib was
initially tested in a “basket” study includingmultiple non-melanoma
cancers with BRAF V600 mutants. In the NSCLC cohort, 20
pretreated NSCLC patients were included and achieved a 42%
ORR and 7.3 months of PFS (Table 2) (71). Gautschi et al. (72)
also found that vemurafenib showed promising antitumor activities
in BRAF V600-mutated NSCLC patients. Additionally, a recent
research revealed that vemurafenib was specifically targeting BRAF-
V600 mutants but was ineffective in patients with BRAF non-V600
mutants (73). Combining these data, current lung cancer guidelines
recommended that vemurafenib could serve as an optional regimen
in certain circumstances. A prospective trial showed that dabrafenib
had clinical activity in BRAF V600-mutant NSCLC, and dabrafenib
might act as a promising treatment choice for patients harboring
BRAF V600E-mutant NSCLC, which lacks effective treatment
options (74). In addition, a recent study has reported that BGB-
283, a novel inhibitor of key RAF family kinases, showed promising
antitumor activity with acceptable toxicity in patients with BRAF
V600-mutated solid tumors including NSCLC (75). However, the
activity of single BRAF inhibitors is limited; hence, researchers
began to explore combination therapy. Several studies are ongoing
to investigate the novel BRAF inhibitors in BRAF-mutated
NSCLC patients.

Dabrafenib plus trametinib, a type of MEK inhibitor, was the first
explored combination regimen focusing on BRAF pathway
Frontiers in Oncology | www.frontiersin.org 5
inhibition. A previous phase 2, multicohort, multicenter, non-
randomized, open-label study included 36 patients harboring
BRAF V600E mutant who were treated with first-line dabrafenib
plus trametinib. The ORR was 64% and PFS was 14.6 months, as
assessed by an independent review committee; in addition, an OS of
24.6 months was achieved (76, 77). This study indicated that dual
blockade of the BRAF pathway with BRAF inhibitors and MEK
inhibitors could produce a much stronger efficacy. Besides,
dabrafenib plus trametinib combination as second-line or later
setting was also evaluated (76, 77). Surprisingly, dual blockade of
the BRAF pathway achieved similar results compared to that in first-
line setting, with 63.2% ORR and almost 10 months of PFS. This
study further confirmed the survival advantage of dabrafenib plus
trametinib combination compared to single agents. Furthermore,
LXH254, a novel BRAF/CRAF inhibitor, plus LTT462, an ERK1/2
inhibitor, was explored to evaluate its activity in patients with
advanced/metastatic K-ras- or BRAF-mutant NSCLC in a phase Ib
dose escalation study; preliminary analysis showed signs of efficacy in
patients with BRAF-mutant NSCLC (78). Dose expansion is
ongoing, and further efficacy analysis remains to be seen.

Immune Checkpoint Inhibitor Combined
Therapy
ICIs have transformed the treatment pattern of advanced NSCLC
without oncogenic driver mutations. However, the activity of ICIs in
NSCLC with oncogenic driver mutations remains limited. Recently,
Lu et al. reported a case diagnosed with stage IV NSCLC with BRAF
V600E mutation that achieved a longer response after being treated
with atezolizumab plus chemotherapy (63). This study suggested
that ICI combined therapy might be a promising regimen for
NSCLC with BRAF V600E mutations. In addition, preclinical data
revealed that selumetinib and trametinib could improve T-cell
activation and increase CTLA-4 expression. Besides, anti-Cytotoxic
T lymphocyte associate protein-4 (CTLA-4) antibody plus
selumetinib and trametinib presented a survival benefit in mice
bearing tumors with K-ras mutation (79, 80). Based on the
preclinical data, Hellmann et al. (81) have designed a study to
March 2022 | Volume 12 | Article 863043
TABLE 2 | Targeted therapy for BRAF-mutated NSCLC.

Trial Treatment
lines

Agents ORR PFS OS

NCT01524978 ≥2 Vemurafenib 42% 7.3 NA
EURAF
Cohort

≥2 Vemurafenib, dabrafenib, or
sorafenib

53% 5.0 10.8

AcSé ≥2 Vemurafenib 44.9% 5.2 10
NCT01336634 ≥2 Dabrafenib 33% 5.5 NA
NCT02610361 ≥2 BGB-283 20% NA NA
NCT01336634 ≥2 Dabrafenib+Trametinib 63% 10.2 18.2
NCT01336634 1 Dabrafenib+Trametinib 64% 10.9 24.6
NCT02974725 ≥2 LXH254+LTT462 66.7% NA NA
TABLE 3 | Several ongoing trials of ICIs combined with targeted therapy.

Trial Phase Treatment
lines

Experimental
arm

Enrolled
population

Status

NCT03600701 II ≥2 Atezolizumab
+combimetinib

Metastatic,
Recurrent,
or
Refractory
non-small
cell lung
cancer

Recruiting

NCT03299088 Ib ≥2 Pembrolizumab
+trametinib

Stage IV
non-small
cell lung
cancer with
K-ras gene
mutations

Active

NCT03225664 Ib/II ≥2 Pembrolizumab
+trametinib

Recurrent
non-small
cell lung
cancer

Active
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investigate the safety and clinical activity of combining a MEK
inhibitor, cobimetinib, and a PD-L1 inhibitor, atezolizumab, in
patients with solid tumors (n = 152). Among them, 28 NSCLC
patients were recruited. For NSCLC patients, the median OS was
13.2 months, and the ORR was 18% (81). Additionally, another
phase I/II trial was designed to evaluate the safety and efficacy of
durvalumab plus tremelimumab with continuous or intermittent
administration of selumetinib in advanced NSCLC patients (82)
(Table 3). Up to now, clinical trials in melanoma have demonstrated
the activities of ICI plus BRAF-targeted therapy; notably, the safety
profile of this combination regimen warranted more attention. In
addition, for NSCLC, data about ICI-combined BRAF-targeted
Frontiers in Oncology | www.frontiersin.org 6
therapies remained limited. The safety and clinical efficacy of this
pattern warrant further investigation.

Mechanisms of Resistance to BRAF
Tyrosine Kinase Inhibitors
Exactly as other targeted therapies in NSCLC, resistance to BRAF
pathway inhibitors would inevitably occur, leading to disease
progression. However, information about resistance mechanisms
of BRAF pathway inhibitors is poorly defined.

Currently, bypass activation is the main cause of secondary
resistance of targeted therapy. However, there is limited report
thus far that has revealed the resistance mechanisms of BRAF
mTOR

PI3K
PTEN loss
PI3K mutation

AKT

RAS

RAF

MEK

ERK

proliferation, growth, survival

CRAF/ARAF 
gene overexpression

BRAF inhibitors

MEK inhibitors

NRAS Q61K

MAPK8/COT

FIGURE 3 | Resistance mechanisms of targeted therapies.
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inhibitors inBRAFV600ENSCLC. Inmelanoma, other isoforms of
RAF proteins (CRAF and A-Raf proto-oncogene (ARAF)) could
also activate the MAPK pathway when BRAF was inhibited, which
leads to resistance to BRAF pathway inhibitors (83). Several studies
have also demonstrated that MAPK pathway stimulation by
MAP3K8 or COT is associated with BRAF inhibitor resistance
(83, 84) (Figure 3). However, the combination of BRAF inhibitors
and MEK inhibitors could effectively reverse the resistance to
monotherapy in BRAF-mutant NSCLC.

Additionally, Rudin et al. (85) have reported that acquired K-ras
G12D mutation might be contributing to secondary resistance to
dabrafenib. Coincidentally, K-ras G12V was also considered as
mediating resistance to BRAF inhibitors (86). Besides, in a previous
case report, researchers presented a case that was treated with
dabrafenib and trametinib that developed N-ras Q61K mutation
(87). These reports revealed that RAS gene might a critical gene
modulator in resistance mechanisms to BRAF/MEK inhibitors. The
last European Society For Medical Oncology (ESMO) congress
reported a novel combination of LXH254 and LTT462 that might
overcomeRAS-related resistance toBRAF/MEKinhibitors (78).This
regimen has shown antitumor activity in BRAF-mutant and K-ras-
mutated patients.However, further investigation remainswarranted.

Inactivationofphosphatase and tensinhomolog (PTEN), a tumor
suppressor, was also found to be involved in resistance to BRAF
inhibitors inmelanoma (88–90). A previous study has suggested that
shorter PFS to anti-BRAF drugs was found in PTEN-deficient
patients, further supporting the role of PTEN in resistance to BRAF
inhibitors (91). Notably, PTEN lack-of-function alterations may be
resistant to dabrafenib–trametinib combinations, the current
standard of care, which lacks effective resolutions to this resistance.
CONCLUSIONS

Targeted therapy in driver gene-positive NSCLC has obtained
significant progress and greatly revolutionized the landscape of
Frontiers in Oncology | www.frontiersin.org 7
NSCLC. However, the current treatment choice for BRAF-
mutated NSCLC patients is not satisfactory because of lower
incidence. Current guidelines recommend dabrafenib plus
tremetinib as the only one standard targeted therapy option for
BRAF-mutated NSCLC. However, the underlying resistance
mechanisms of this combination regimen have not been clearly
defined; in addition, current targeted therapy specifically targeted
to BRAF V600E mutation exhibited poorer efficacy against non-
V600E mutation.

Furthermore, clinical investigations will be also confronted
with ongoing challenges. Firstly, randomized prospective phase
III trials are difficult to conduct owing to the low incidence of
BRAFmutant-positive NSCLC. Secondly, the utility and ethics of
randomizing patients to a control arm with poorer efficacy and
shorter survival durations are controversial. In addition, several
studies have demonstrated that ICIs could show efficacy in this
population; the problem that lies ahead is which regimen should
be given first.

In the future, the activity of chemoimmunotherapy and
combinations of TKIs with chemotherapy, anti VEGF/VEGFR
agents, and/or immunotherapy in patients with BRAF-mutated
cancers needs to be determined. In addition, the development of
agents targeting non-V600E mutations should speed up.
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