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Non-small cell lung carcinoma (NSCLC) comprises 80%–85% of lung cancer cases.
EGFR is involved in several cancer developments, including NSCLC. The EGFR pathway
regulates the Bax/Bcl-2 cascade in NSCLC. Increasing understanding of the molecular
mechanisms of fundamental tumor progression has guided the development of numerous
antitumor drugs. The development and improvement of rationally planned inhibitors and
agents targeting particular cellular and biological pathways in cancer have been signified
as a most important paradigm shift in the strategy to treat and manage lung cancer.
Newer approaches and novel chemotherapeutic agents are required to accompany
present cancer therapies for improving efficiency. Using natural products as a drug with
an effective delivery system may benefit therapeutics. Naturally originated compounds
such as phytochemicals provide crucial sources for novel agents/drugs and resources for
tumor therapy. Applying the small-molecule inhibitors (SMIs)/phytochemicals has led to
potent preclinical discoveries in various human tumor preclinical models, including lung
cancer. In this review, we summarize recent information on the molecular mechanisms of
the Bax/Bcl-2 cascade and EGFR pathway in NSCLC and target them for therapeutic
implications. We further described the therapeutic potential of Bax/Bcl-2/EGFR SMIs,
mainly those with more potent and selectivity, including gefitinib, EGCG, ABT-737,
thymoquinone, quercetin, and venetoclax. In addition, we explained the targeting EGFR
pathway and ongoing in vitro and in vivo and clinical investigations in NSCLC. Exploration
of such inhibitors facilitates the future treatment and management of NSCLC.
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1 INTRODUCTION

Among all cancer deaths, lung cancer mortality is very common,
estimated up to 1.7 million per year worldwide (1). There are two
histological subtypes: non-small cell lung carcinoma (NSCLC)
and small cell lung carcinoma (SCLC). NSCLC comprises
around 80% to 85% of all lung cancer cases. Tobacco smoking
is the root cause of NSCLC which comprises around 80% of cases
in the United States and other countries where smoking is
common (2). Although the most common etiology behind
NSCLC and SCLC is smoking, lung adenocarcinoma (LUAD)
is mostly associated with non-smokers. Non-smoker LUAD is
commonly found in East Asian women with environmental
exposure and genetic reasons. According to the recent
document, the standard 5-year survival rate for NSCLC is
barely 16% (3). Over half of lung tumor cases are diagnosed
following metastasis, for which the mean survival time is about 8
months. Among lung tumor bone metastasis, the majority
common target organ is the vertebral column, which causes
more severe effects on patients’ recovery rate and life worth
(4, 5).

EGFR overexpression has been involved in cancers, including
NSCLC (6). EGFR is one of the most generally mutated genes in
NSCLC (7). EGFR is associated with several human malignancies
(8). Around 10%–30% of NSCLC patients have activating
mutations in EGFR (9, 10). Increased EGFR protein and
mRNA expressions are linked with poor prognosis, tumor
growth, metastasis, and resistance to chemotherapy (11). EGFR
activation is linked with proliferation, metastasis, apoptosis
inhibition, and radio-chemotherapy resistance in cancer (12).
Aberrant activation of the EGFR pathway axis has been found to
play a major role in cancer (13). A study reported MAPK1
amplification in an erlotinib-resistant EGFR-mutant NSCLC
(14). The histological transformation to SCLC in EGFR
mutant-NSCLC patients with acquired EGFR TKI resistance.
Similarly, aberrant induction of the EGFR–STAT-3–Bcl-xL
signaling axis has been observed to fuel cancer progression
(13, 15, 16). Bcl-2 and Bcl-xL are Akt/EGFR downstream
pathway proteins which were reported to be conscientious to
drug resistance in several tumors, such as SCLC (17, 18).

EGFR has been considered an important target for NSCLC
therapeutics (19). Numerous studies have documented the
mechanisms engaged in the progression of AR to EGFR TKI,
which may be potential therapeutic strategies (20, 21). The
inhibition of EGFR could be a potential clinical strategy for
Abbreviations: Bcl-2, B cell lymphoma 2; OSCC, oral squamous cell carcinoma;
MMP, mitochondrial membrane permeabilization; MMP mitochondrial
membrane potential; CLL, chronic lymphocytic leukemia; BH, Bcl-2 homology;
NSCLC, non-small cell lung carcinoma/cancer; LUSC, lung squamous cell
carcinoma; PKB, Akt/protein kinase B; NFkB, nuclear factor kB; JAK2, Janus-
activated kinase-2; EGFR, epidermal growth factor receptor; TNFR, tumor
necrosis factor receptor; MAPK, mitogen-activated protein kinase; ERK1/2,
extracellular signal-regulated kinase1/2; JNK, c-Jun N-terminal kinase; AP-1,
activator protein-1; PARP, poly-(ADP-ribose) polymerase; TQ-I3M, TQ–
indirubin-3-monoxime; IDEAL, Iressa Dose Evaluation in Advanced Lung
Cancer; TKIs, tyrosine kinase inhibitors; NTRK, neurotrophic tyrosine receptor
kinase; STAT3, signal transducer and activator of transcription-3; EGCG,
epigallocatechin-3-gallate.
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inhibiting and overcoming EMT-linked acquired drug resistance
that affords inspiration for the clinical trial of combined EGFR
and FGFR blockage in EGFR-mutated NSCLCs (21, 22).
Targeted therapy opens new dynamics in lung cancer
management by identifying altered target genes. Targeting
EGFR in the patients with stimulating mutations showed initial
and considerable success in the clinic (23, 24). However, the
inhibition of EGFR leads to upregulation of pro-apoptotic
proteins and, lastly, results in apoptosis by activating the
intrinsic apoptotic pathway (25, 26). Earlier reports (27, 28)
demonstrated the important function of Bcl-2 in the resistance of
NSCLC for EGFR TKIs. It validated that growth inhibition is
induced by the treatment activation of caspase-3 and Bax,
supposedly by EGFR, ERKs, and MMP-2 downregulation (29).
To develop effective therapies against lung cancer, it is very
important to understand its biology at the molecular level (30).
In the current study, we presented recent information on the
molecular mechanisms of the Bax/Bcl-2 cascade-mediated EGFR
pathway in NSCLC and its therapeutic implications along with
clinical investigations that facilitate the treatment and
management of several cancers, including NSCLC.
2 REGULATION OF BAX IN NSCLC

Bax is a pro-apoptotic protein that plays a pivotal role in
controlling apoptosis. It is generally present in the cytoplasm,
which is heterodimerized with anti-apoptotic proteins. When a
cell is exposed to an apoptotic stimulus, Bax protein is
translocated to the mitochondria (31). The increased expression
of Bax mediates in early apoptosis (32). Bcl-2 family members
share at least one of four types of homology, namely, BH1, BH2,
BH3, and BH4 (33). Their structure can be homodimers or
heterodimers having nine a helices and a hydrophobic a-helix
embedded in the core with a transmembrane terminal C attached
at the mitochondrial lining (33–35). The activation of Bax can be
initiated by various abiotic factors such as heat, pH change, and
stress conditions (36, 37). p53 upregulates Bax in the stress
environment as a stimulus response, further activating
downstream target genes like Bax (38). The Bax gene was first
reported as one of the important pro-apoptotic Bcl-2 family
proteins (39). The tertiary structure of Bax is exhibited
in Figure 1A.

The human Bax gene is present in chromosome 19q and
consists of six exons and four variants (41). Mutations and
alterations in the coding regions and promoters of the Bax gene
have been detected for affecting the protein expression and function
in a variety of malignancies (42, 43). Mutations in the Bax gene are
very frequent, resulting in loss of the tumor-suppressor function
and resistance to apoptosis and chemotherapy (44, 45). The single-
nucleotide polymorphism (SNP) of the Bax gene, i.e., at -125
nucleotides, a G to A transition, from the beginning of
transcription, and at -248 nucleotides from the translation
initiation, has been recognized in cancer. This SNP was linked
with altered mRNA/protein expression associated with cancer
development and chemoresistance (46, 47). An elevated risk of
HNSCC in patients having the AA genotype of G(-248)A SNP was
March 2022 | Volume 12 | Article 869672
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reported (42). Hence, Bax is an important gene in oral cancer
development. The effects of promoter methylation/SNP, mutations
of the exons, and reduced expression of Bax were associated with
oral cancer development (48).

A low expression of Bax has been drastically linked with
NSCLC patients (49) and poor prognosis in NSCLC patients
(50). A decreased expression of Bax and p53 was comparatively
resistant to cisplatin and decreased apoptosis in lung cancer cells
(51). Radio-resistant NSCLC exhibits little box/Bak activation
compared with radiosensitive NSCLCs (52). A low Bax protein
expression was demonstrated for contributing to oral cancer
progression (53, 54). A low expression of Bax is associated with
decreased apoptosis, advanced-stage neoplasms, poor prognosis,
cancer progression, and resistance to chemotherapy in colorectal
cancer (55, 56). The regulation of Bax-induced apoptosis in
NSCLC is incompletely understood.
3 REGULATION OF BCL-2 IN NSCLC

B cell lymphoma 2 (Bcl-2) is an anti-apoptotic protein encoded by
the Bcl-2 gene in the human genome specified as an oncogene (57).
It was recognized for its involvement in t(14;18) chromosomal
Frontiers in Oncology | www.frontiersin.org 3
translocations detected in non-Hodgkin’s lymphomas (57). Bcl-2
is ~250 kb in length and made up of three (03) exons and two (02)
promoters (58), exon 1 and exon 2 encoding all four BH domains,
whereas exon 3 encodes the TM domain that connects the protein
to intracellular membranes (59, 60). It was the primary protein to
be recognized among Bcl-2 family proteins. There are two
isoforms of Bcl-2: Bcl-2a and Bcl-2b. Hence, Bcl-2a is anti-
apoptotic (61). The Bcl-2 protein has a common genetic region
in the BH domain; it includes up to four conserved BH domains
(62, 63). Bcl-2 (239 amino acids) contains four domains, namely,
BH1, BH2, BH3, and BH4 (64, 65). Additionally, these domains
compose BH4 domain (10–30) residues, BH3 domain (93–107)
residues, BH1 domain (136–155) residues, and BH2 domain (187–
202) residues (64). Bcl-2 explains a tertiary structure (Figure 1B)
enclosing two hydrophobic a-helices (Ha5 and Ha6) surrounded
by amphipathic a-helices (40, 66). The Bcl-2 gene activates via a
chromosomal translocation mechanism in many human tumors
(67, 68). Bcl-2 inhibits apoptosis via inhibiting the liberation of
cyt-c, thus blocking the activation of caspases that stimulate
apoptosis (69). Bcl-2 binds with BH3 domains of Bax and
inhibits their functioning (70, 71).

Bcl-2 promotes cell survival and viability and regulates
mitochondrial dynamics like fusion and fission. An increased
A

B

FIGURE 1 | (A) The tertiary structure of Bax (PDB ID: 1F16). (B) The tertiary structure of Bcl-2; highlighted sections indicate a-helices (a1–a8) and BH1-4 domains.
However, the left panel denotes the Bcl-2 structure with a1–a8 with several colors. The right panel denotes the Bcl-2 structure with the BH1-4 domains (PDB ID:
1G5M). (Structure was drawn by PyMol, 40).
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Bcl-2 expression has been observed in NSCLC (72). The
expression of Bcl-2 and mutated p53 might be highly resistant
to cisplatin and have low susceptibility for apoptosis in lung
cancer cells (51). Bcl-2 has induced cancer growth and resistance
to chemotherapeutics in xenograft models of NSCLC (73, 74).
Bcl-2 is considered a good prognostic marker in NSCLC (75, 76)
and a constructive prognostic biomarker in LUSC (77). The
evaluation of Bcl-2 expression by tumors could provide
predictive data on the clinical manners of NSCLC (78). An
excessive expression of Bcl-2 and a suppressed expression of Bax
lead to homeostatic disbalance of cells, subsequently causing
cancer. However, according to a recent study, 76% of SCLC is
caused by the overexpression of Bcl-2 (79, 80). Bcl-2 is a critical
player in imparting resistance to cancer cells (81, 82). Increased
Bcl-2 expression is linked with advanced-stage neoplasms and
poor differentiation (83) and is found to resist chemotherapy in
many cancers (56). A high expression of Bcl-2 protein was found
in many drug-resistant cancer cells (53, 84). However, Bcl-2
transcript cleavage induces cell death and impairs cell survival
(85, 86). The upregulation of Bcl-2 defends drug-mediated cells
from apoptosis (87). Bcl-2 participates in a fundamental function
in cancer growth, angiogenesis, and tumor vascular density (88).
Therefore, Bcl-2 is involved in NSCLC.
4 REGULATION OF EGFR IN NSCLC

EGFR contains an extracellular EGF-attaching domain, a
transmembrane domain, and a cytoplasmic domain (89). EGFR
is a transmembrane cell-surface receptor. The tyrosine kinase
(TK) receptor is commonly activated in epithelial tumors (90).
The corresponding mRNA is encoded from 28 exons spanning
approximately 190,000 (nucleotides) on chromosome 7p12. It
belongs to the ErbB family of receptor tyrosine kinases that also
includes ErbB2 (HER-2 or Neu), ErbB3 (HER-3), and ErbB4
(HER-4) (91). The activated EGFR causes the activation of several
pathways, including ERK and Stat-3 pathways (92). ERK and
Stat-3 are the important signaling molecules under EGFR (93).
EGFR activates the PI3K-Akt, STAT, and MAPK pathways,
eventually leading to enhanced cell proliferation, survival, and
migration (26, 94–96) (Figure 2). EGFR overexpression has been
involved in multiple cancers, including NSCLC (6). EGFR is one
of the most generally mutated genes in NSCLC (7). Around 10%–
30% of NSCLC patients have activating mutations in EGFR (9,
10). Major scientific and clinical studies have proved that alleles of
patients with NSCLC revealed mutations in KRAS and EGFR
genes, which demonstrate their function in tumor development
and progression (100, 101). KRAS and EGFR mutations occur
mutually and have symbiotic relations where KRAS mutations
may bestow resistance to EGFR inhibitors (102, 103).

Several studies have explained mutations in the EGFR gene
(6, 104). EGFR mutations are frequently oncogenic; specifically,
they trigger the EGFR pathway in the lack of ligand and endorse
cell survival and anti-apoptotic signals (6, 105). EGFR, TK type I
receptors, and its gene are situated at the short arm of human
chromosome 7 (106). In EGFR, 28 exons form a protein, which is
Frontiers in Oncology | www.frontiersin.org 4
dispensed on the cell membrane of several epithelial cells,
wherever it attaches to EGF or heparin-binding EGF and
controls cell growth (107). By comparison, exon 20 insertions
and exon 18-point alterations/mutations are less general than
exon 19 deletions and exon 21 L858R substitutions in EGFR
mutations in NSCLC (108, 109). The regulation and activation of
EGFR and downstream genes initiate apoptosis, angiogenesis,
and proliferation (110). Hence, the most frequent are first short
in-frame deletions about the LREA motif of exon 19 (~45%–50%
mutations) and 2nd point mutations (CTG to CGG) in exon 21,
which affects the substitution of leucine via arginine on codon
858, L858R (~45%–50% mutations) (111, 112). These
alterations/mutations are more common in NSCLC (111–113).
The histological transformation to SCLC in EGFR mutant-
NSCLC patients with acquired EGFR TKI resistance.
Numerous studies have documented the mechanisms engaged
in the progression of AR to EGFR TKI, which may be potential
therapeutic strategies (20, 21).

More EGFR protein and mRNA expressions are linked with
poor prognosis, more tumor growth, metastasis, and resistance
to chemotherapy (11). EGFR plays a major role in various
human malignancies (8). EGFR activation is linked with the
malignant phenotype, blockage of apoptosis, increased
proliferation, metastasis, and resistance to radio-chemotherapy
(12). Aberrant activation of the EGFR pathway axis was found to
play a major role in HNSCC (13). EGFR is associated with oral
cancer development and chemoresistance (93, 114). EGFR
activation has been detected in oral cancer (8, 115). EGFR is
linked with inhibition of apoptosis and resistance to
chemotherapy in various tumors (116, 117). Numerous
signaling molecules lie downstream of EGFR involved in
cancer development (93).
5 TARGETING THE EGFR PATHWAY
IN NSCLC

Targeted therapy opens new dynamics in lung cancer
management by identifying altered target genes. According to
the biological function of diverse forms of EGFR in NSCLC,
EGFR-targeted therapy is divided into two parts: “EGFR mutant
targeted therapy” and “wt EGFR targeted therapy.” Among
NSCLC patients, ~10%–30% have lung cancers with EGFR
mutations (118). EGFR mutant targeted therapy targets the
main oncogene linked with tumorigenesis and is important for
cancer maintenance. However, this therapy displays a remarkable
comeback in clinical TKI treatment through induction of
apoptosis. Similarly, above 70% of NSCLC patients by wt EGFR
treated with TKIs are getting “wt EGFR targeted therapy.”
Therefore, it targets a protein not openly connected to cancer
initiation but more liable to cell growth. This therapy is far less
efficient in the clinical phase. It is normally linked with growth
arrest and stable disease (SD) (118, 119).

The EGFR mutational summary of NSCLCs is a good
predictor of reaction for therapy with the extremely efficient
TKIs (120, 121). TKIs have been considered proficient drugs in
March 2022 | Volume 12 | Article 869672
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NSCLC and have provided brilliantly targeted drugs (122). TKIs
targeting EGFR were checked in clinical trials approved by the
FDA (121, 123). Multiple agents/drugs targeting EGFR have
appeared, including gefitinib, erlotinib, panitumumab, and
cetuximab (124–126). Among the approved EGFR-TKIs,
gefitinib, lapatinib, erlotinib, and icotinib are categorized as
first-generation and afatinib, neratinib, and dacomitinib are
categorized as second-generation EGFR inhibitors. The third-
generation EGFR inhibitors include olmutinib, almonertinib,
and osimertinib (127). In addition, vandetanib, brigatinib, and
pyrotinib are categorized as multi-kinase inhibitors, because of
their inhibitory actions against kinases, excluding the
EGFR (128).

Targeting EGFR signaling represents a new strategy for
personalized medicine in NSCLC. Targeting EGFR in the
patients with stimulating mutations showed initial and
Frontiers in Oncology | www.frontiersin.org 5
considerable success in the clinic (23, 24). Some were
developed to target EGFR, including TKIs and BRAF
inhibitors (129, 130). Inhibiting EGFR-mediated activation of
the downstream pathway, EGFR TKIs can influence the cellular
level of apoptotic-linked proteins, primarily the pro-apoptotic
consequence of EGFR targeting (131, 132). EGFR may be a
potential clinical strategy for inhibiting EMT-linked acquired
drug resistance and EGFR blockage in EGFR-mutated NSCLCs
(21, 22). However, the inhibition of EGFR leads to upregulation
of pro-apoptotic proteins and, lastly, results in apoptosis by
activating the intrinsic apoptotic pathway (25, 26) (Figure 3).
Earlier reports (27, 28) demonstrated the important function of
Bcl-2 in the resistance of NSCLC for EGFR TKIs. It validated that
growth inhibition is induced by the treatment activation of
caspase-3 and Bax, supposedly by EGFR, ERK, and MMP-2
downregulation (29, 134).
FIGURE 2 | The EGFR receptor and its signaling cascade involved in cancer progression. (This figure is adapted from Ref 97–99).
March 2022 | Volume 12 | Article 869672
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6 THERAPEUTIC TARGET OF BAX/BCL-2
CASCADE AND EGFR-MEDIATED NSCLC
BY PHYTOCHEMICALS/SMALL-
MOLECULE INHIBITORS

Scientific data exhibit that phytochemicals have considerable
anticancer potential. Roughly 50% of approved antitumor drugs
originated from natural produces or derived from that place (135).
However, these phytochemicals were tested for antitumor
efficiency at in vitro and in vivo levels. They possess balancing
and overlapping mechanisms for slowing down the carcinogenic
procedure via scavenging free radicals (136), repressing growth and
proliferation (137), and reducing angiogenesis and invasiveness of
cancer cells (138). They exert an extensive and complex range of
acts on several molecular targets as well as signal transduction
pathways such as membrane receptors (139), kinases (140),
Frontiers in Oncology | www.frontiersin.org 6
downstream tumor-activator or -suppressor proteins (141), and
transcriptional factors (142). Several phytochemicals/SMIs have
been exhibited as potential therapeutics for NSCLC. The inhibitors
of Bcl-2 are used for the therapeutic targeting of several tumors
(Table 1). Some of the incredible antitumor phytochemicals/SMIs
in this regard are explained in the present study. Here, we have
discussed selective phytochemicals/SMIs including gefitinib,
EGCG, ABT-737, thymoquinone, quercetin, and venetoclax that
inhibit and target EGFR pathways in NSCLC (Figure 3).
6.1 Mechanism of Gefitinib in NSCLC
Gefitinib showed potent activity in NSCLC (160). IDEAL 1 and 2
trials have been designed to further examine the efficiency and
safety of two diverse gefitinib doses in patients with pretreated
NSCLC (161, 162). This test validated that gefitinib is dynamic in
greatly pretreated NSCLC patients, with a reaction rate of 11.8%
FIGURE 3 | The proposed possible mechanism of small molecule inhibitors (SMIs)/phytochemicals in EGFR-mediated pathways along with Bax/Bcl-2 cascade in
NSCLC cells. SMIs, small-molecule inhibitors. (This figure is adapted from Ref 97, 133). This figure was drawn by ChemBioDraw.
March 2022 | Volume 12 | Article 869672
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TABLE 1 | The inhibitors of Bcl-2 are used for the therapeutic targeting of several tumors.

Agents Structure IC50 for Bcl-2 (mM) Clinical status References

Gefitinib 17.12 Phase 2 (143)

Thymoquinone 45.78 Phase 2 (144)

Quercetin 35.69 Phase 2 (144)

EGCG 0.45 Phase 1/2 (145, 146)

ABT-737 0.12 Phase 1/2 (147, 148)

ABT-263 NA Phase 1/2 (149, 150)

ABT-199 0.1 Approved for use in CLL (151)

(Continued)
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and symptom enhancement in 43% of patients in the 250-mg
arm (162). A randomized phase II trial compared gefitinib with
docetaxel for advanced NSCLC patients (163, 164). Six phase III
trials estimated the force on survival of erlotinib/gefitinib alone
or in combination with therapy in metastatic or advanced
NSCLC patients (165–167). Hence, the in vitro actions of
gefitinib against susceptible and resistant cancer cells have
been evaluated in numerous reports (168, 169). A study (170)
examined the result of gefitinib on the cell proliferation of
NSCLC cell lines utilizing the MTS test and colony formation
tests. However, the results exhibited IC50 values of 4–42 mM.
Frontiers in Oncology | www.frontiersin.org 8
6.1.1 Effect of Gefitinib on Bax/Bcl-2 Cascade
Gefitinib-mediated apoptosis is increased via accumulation of
the BH3 mimetic ABT-737 (171). It stimulates apoptosis by
activation of Baxin cancer cells. However, it stimulates G1 arrest
and apoptosis via regulating p21 and p27 and the activation of
Bax in GBC cells (172). The less regulation of Bcl-2 via RNAi in
gefitinib-resistant H1975 cells with T790M mutation increased
the results of gefitinib and can offer a new therapeutic approach
for NSCLC treatment (28). Gefitinib could be most efficient in
NSCLC patients (173). It repressed the expression of Bcl-2 and
Bcl-xL, rendering HCC prone to cell death (174). Gefitinib
TABLE 1 | Continued

Agents Structure IC50 for Bcl-2 (mM) Clinical status References

TW-37 NA Phase 1/2 (152, 153)

Gossypol 0.28-10 Phase 1/2 (154)

GX15-070 (obatoclax) NA Phase 1 (155, 156)

HA14-1 ~9 Preclinical (155, 157)

Chelerythrine ~10 (158)

S55746 NA Phase 1 (159)
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combined with cinobufotalin obstructs viability and assists the
apoptosis of A549 cells, showing that the combined therapy may
be a potential novel treatment for lung cancer patients resistant
to gefitinib (143). This is a new therapy for the treatment
of NSCLC.

6.1.2 Effect of Gefitinib on the EGFR-Mediated
Pathway
Gefitinib has been the initial SMI of EGFR identified for clinical
application (175). Gefitinib is a TKI that treats NSCLC patients
whose cancers have particular EGFR mutations (176). It was
approved for cancer treatment in May 2003 (176) and approved
for metastatic EGFR mutation-positive NSCLC in July 2015 (177).
Gefitinib blocks EGF-mediated EGFR autophosphorylation in
many EGFR-expressing cancer cells (178). The kinase inhibitory
action of gefitinib, along with eight of the approved kinase
inhibitors, has been assessed (179, 180). The kinase inhibitory
actions have been evaluated against 310 kinases utilizing an
activity-based kinase test, and it has been observed that gefitinib
especially prevents EGFR and its mutants. In addition to the
inhibition of EGFR, the results exhibited gefitinib’s capability to
inhibit the serine/threonine kinases at IC50 = 50 and 90 nmol/l,
respectively (RICK and GAK). However, gefitinib might have
cellular option modes of activity. The cellular IC50 of gefitinib
against several EGFR mutants has been established (181). A study
reported the relationship of growth inhibition on the ERK1/2 and
Akt activation and in response to the EGFR pathway (170). Hence,
a study displays that the accumulation of a BH3 mimetic
drastically increases the killing of NSCLC cells via EGFR TKI
gefitinib (171).

6.2 Mechanism of EGCG in NSCLC
EGCG is the most plentiful polyphenol in green tea (182, 183).
The therapeutic results of EGCG were identified against various
tumors (184–186). EGCG was examined in many tumor cells
and a few clinical trials with minimum information on its
efficiency in lung cancer. EGCG damages growth in SCLC
cells. However, a variable result on the limited number of
NSCLC cells was checked (187, 188). EGCG is a promising
antioxidant with various beneficial results in oxidative stress-
mediated disorders (189). EGCG contributes to blocking NO and
H2O2 production in human skin (190). EGCG might powerfully
inhibit oxidative stress-induced protein tyrosine nitration via
oxidative stress in blood platelets (191), and antioxidants may
progress the function of mitochondria (192). However, EGCG is
a well-recognized antioxidant and quenches ROS, supporting
oxidative DNA break, cancer endorsement, and mutagenesis that
lead to anticancer effects (193).

6.2.1 Effect of EGCG on the Bax/Bcl-2 Cascade
EGCG induced apoptosis by enhancing the Bax and cleaved
caspase-3 expression and dropping the Bcl-xL expression in
cancer cells (194). EGCG diminished the regulation of Bcl-2
and Bcl-xL (40, 195). EGCG mediated apoptosis via an intrinsic
pathway by caspase-9 activation in PC3 cells (196) and MCF-7
cells (197). However, EGCG-mediated cell death of tumor cells
has been correlated with the decline in the expression of Bcl-2.
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EGCG has displayed the induction of apoptosis by enhancing
caspase-3, caspase-9, BAD, cyt-c, PTEN, SMAC, and Fas and
repressed Bcl-2, Bcl-xL, and c-Myc in cancer cells (198, 199).
Green tea improved the apoptotic efficiency in cancer (200). It
has anticancer effects, which enhanced Bax, Bak, and PUMA and
reduced Bcl-xL and Bcl-2 that activate caspases-9, inducing
apoptosis in cancers (97, 201, 202). Recently, the interaction of
EGCG with p53 disrupts p53 with its regulatory E3 ligase MDM2
and reduces the ubiquitination of p53 through MDM2. Since
EGCG interrupts the binding of p53 for its regulator MDM2, p53
is stabilized through blocking p53 ubiquitination as well as
degradation (203). EGCG was recognized from a library of
about 2,295 phytochemicals like an inhibitor of p53 with
MDM2 interaction (204).

6.2.2 Effect of EGCG on the EGFR-Mediated
Pathway
EGCG prevents several signal transduction pathways in tumor
cells. Hence, EGCG blocked proliferation in various NSCLC cells
(205). EGCG induces apoptosis by the mitochondrial pathway
and inhibits EGFR, ERK, and STAT3 signaling in HNSCC (145,
146). EGCG prevented STAT3 activation and downregulation of
the target genes, including Bcl-2, Bcl-xL, Mcl-1, cyclin D1, and
VEGF (206). However, EGCG blocked NF-kB, ERK1/2, and Akt-
induced pathways, thereby modifying the Bcl-2 family protein
ratio that activates caspases in tumor cells (207–209). Inhibition
of c-Jun N-terminal kinase via EGCG induced apoptosis in
OSCC cells (201, 210). EGCG might inhibit p-Akt/p-mTOR
expression through PTEN to control the PI3K/Akt pathway (211,
212). EGCG exposure noticeably reduced EGF-mediated EGFR,
ERK1/2, and Akt activation. However, long-term EGCG
treatment prevented the total and membranous expression of
EGFR and noticeably attenuated EGFR nuclear localization and
cyclin D1 expression, showing that EGCG treatment repressed
EGFR transactivation. However, inhibition of the EGFR pathway
could partially contribute to the antitumor action of EGCG in
lung cancer (213).

The wnt/b-catenin pathway was encouraged in lung tumor
stem cells. Hence, EGCG decreased lung tumor stem cells’ action
by reducing lung tumor stem cell markers, blocking tumorsphere
formation, reducing cell proliferation, and promoting cell death
(214). EGCG was observed for blocking angiogenesis and
diminishing xenograft cancer growth via inhibiting IGF-1 by
repressing HIF-1a and VEGF in A549 cells (215–217). EGCG
blocked HGF-induced cell growth and invasion via repression of
HGF/c-Met signaling in SCC VII/SF cells, whereas it blocked
xenograft cancer survival in vivo by increasing cell death (218).
Numerous in vitro studies explained the anticancer effect and
potential mechanisms of EGCG on tumor cells. The combination
treatment blocked the EGFR pathway and reduced the p-EGFR,
p-ERK, and p-Akt expression in vitro and in vivo. EGCG and
cDDP have exhibited a potential therapeutic effect in NSCLC
patients (219). Nano-EGCG can prevent lung cancer cell
proliferation, invasion, and migration via the activation of
AMPK pathways. However, this mechanism of nano-EGCG
recommends its application in lung cancer treatment and
prevention (220).
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6.3 Mechanism of ABT-737 in NSCLC
ABT-737 is an SMI designed to especially block anti-apoptotic
Bcl-2 proteins (221, 222). This molecule, a BH3 mimetic,
attaches with more affinity to Bcl-2, and Bcl-xL stimulates
apoptosis (221). ABT-737 may improve the radiosensitivity of
a variety of solid cancers. However, the radiosensitizing effect of
ABT-737 has been examined in NSCLC (223). Despite its
potential results in in-vitro studies and tests on animal models,
ABT-737 was approved for clinical trials due to unfavorable
pharmacological features such as thrombocytopenia (222, 224–
227). The clinical significance of Bax is largely reported in several
studies. Several Bax-targeted anticancer drugs are approved for
medical use, for example, ABT-737 (228). This class of drugs has
proved their potential in reversing the resistance effect.
Therefore, there is the bigger necessity to develop cost-effective
gene-targeted combinatorial drugs from natural products
(66, 228).

6.3.1 Effect of ABT-737 on Bax/Bcl-2 Cascade
Abbott developed ABT-737, a novel inhibitor of Bc-l-2, in the
last decade which was expected to target Bcl-2, Bcl-2-X, and Bcl-
2-w to show promising results at the research stage. These were
developed as BH3-targetable small-molecule inhibitors (SMI).
They enhance the apoptotic effects in SCLC (229). ABT-737 is a
potent inhibitor of Bcl-2, Bcl-w, and Bcl-xL (222). It is a
promising SMI of anti-apoptotic proteins such as Bcl-2 in
HNSCC (147). ABT-737 activates caspase-3, which leads to
apoptosis. ABT-737 upregulates the Noxa expression. Noxa by
small interfering RNA attenuates cell death (147). It attaches
with a very high affinity with Bcl-2. Bcl-2 is hindered because of
ABT-737 into its hydrophobic groove, and this binding
dislocates any bound BH3-enclosing proteins (148). ABT-737
induced the caspase-3 activation and cleavage of PARP that
stimulated apoptosis. Glioblastoma cells’ large quantities of Bax
protein are prebound with Bcl-2, which are acutely liberated via
ABT-737 treatment. However, the highly “addicted” cells
become Bax-neutralizing Bcl-2 proteins (230). ABT-737 holds
huge promise, as it passionately attaches the pro-survival
proteins similar to Bcl-2 and stimulates Bax/Bak-dependent
destruction. BT-737 regulated Bax/Bak-induced apoptosis (231).

6.3.2 Effect of ABT-737 on EGFR-Mediated Pathway
Several studies exhibited the potential effect of ABT-737 on
signaling molecules. BIM polymorphism is strongly linked to a
poor clinical reaction for EGFR TKIs in EGFR-mutant NSCLC
patients; hence, BH3-mimetic ABT-737 returns BIM
functionality EGFR-TKI sensitivity (232). ABT-737 drastically
increases erlotinib-mediated cell death, and more strong
responses for EGFR inhibitors in lung tumor patients harbor
EGFR kinase domain mutations (233). Bcl-2 antagonist ABT-
737 slights the apoptotic threshold to chemotherapeutic drugs
via the PI3K/Akt signaling inhibition in cancer cells. Inhibition
of Bcl-2 and Bcl-xL increases Akt/PI3K inhibition-induced
apoptosis in cancer cells (234, 235). The p53 and Akt pathways
were examined to be associated with the effect of ABT-737 and
naringenin in gastric cells (236). The PI3K/Akt inhibitor BEZ235
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with ABT-737 regulates ovarian cancer cell apoptosis (237).
However, targeting the Akt/PI3K/mTOR and/or ERK/MAPK
pathways may disturb the imbalance between anti-apoptotic and
pro-apoptotic partners that might constitute an important
approach for sensitizing cancer cells for ABT-737 (238).
Inactivation of ERK1/2 with ABT-737 enhanced the BIM
expression that induced apoptosis in oral cancer cells.
Targeting the ERK1/2-bim pathway via BH3-mimetic ABT-737
is an optional therapeutic approach for oral cancer (239). The
phosphorylation of Bcl-2 on Ser-70 through JNK and paclitaxel
synergizes by ABT-737 and reinstates paclitaxel sensitivity in
breast cancer cells (240). ABT-737 recovered the radiation
sensitivity of HeLa cells, thereby stimulating cell death, and
showed that ABT-737 reduced HeLa cell proliferation and
activated JNK (c-Jun), which resulted in more regulation of
BIM (241). The sensitizing results were detected when ABT-
737 was combined with sorafenib that effectively repressed levels
of STAT3. They suggested that targeting STAT3 in combination
with inducers of the apoptosis pathway may be a potential novel
strategy for treating tumor cells (242).

6.4 Mechanism of Thymoquinone
in NSCLC
There are numerous bioactive ingredients extracted from Nigella
sativa (black seeds), which show anticancer activities by
modulation of cell-cycle pathways, but thymoquinone (TQ) is
regarded as the most potent anticancer bioactive compound
found in black seeds (243). Others compounds are
dithymoquinone (DTQ), thymohydroquinone (THQ), and
thymol (THY) (244, 245). N. sativa has numerous valuable
constituents that effectively treat various diseases (246). TQ has
been identified to exert antioxidative, anti-inflammatory, and
anticancer effects (247, 248). TQ plays an effective role in cancer
treatment by inducing apoptosis or suppressing the expression of
carcinogens (249–251). TQ displays inhibitory results on
numerous processes of NSCLC, including apoptosis
proliferation, migration, and angiogenesis (252). TQ blocked
the growth and decreased expression of cyclin D1 in A549 cells
(NSCLC) (253, 254). However, TQ synergistically augments
conventional medicine prevention of NCI-H460 cells (252). It
displays a therapeutic role in lung cancer (255–257). TQ blocks
cell proliferation, stimulates apoptosis, and obstructs xenograft
cancers’ in vivo growth of numerous tumor cells, including lungs
(247, 252).

TQ is a powerful anti-carcinogenic and anti-mutagenic
mediator (258, 259). Aqueous and alcohol extracts of N. sativa
were effectual in inactivating MCF-7 breast cancer cells (258,
260). In-silico screening is an excellent approach used to screen
potential anticancer compounds. It also helps our body soak up
the medicine quickly when taken in petite dosages. Therefore, it
indicates a potential aspect of combinatorial therapy (261, 262).
Although there are several constituents of N. sativa which played
a beneficial role in disease management, its chief constituent TQ
has proved its active role in cancer prevention. TQ imparts
antioxidant effects in animal models (263–265). Cancer as a
disease relies on multiple factors like modification in genetic
March 2022 | Volume 12 | Article 869672

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Alam et al. Targeting EFGR Pathway in NSCLC
pathways (266, 267). Black seed preparation also helps to reduce
the toxicity and side effects of anticancer synthetic drugs (268,
269). TQ showed a protective role in oxidative stress conditions
when administered orally by inducing free radical generation
(270–272). Few researchers suggested that oral administration of
TQ alleviates quinine reductase and glutathione transferase (273,
274). Therefore, TQ can be used as a drug to counter the toxicity
of liver carcinogens (275, 276). This property of TQ attributes to
its protective role in balancing the toxicity of chemotherapy-
based treatments (277). TQ has therapeutic implications in
health and cancer management by genetic cascade
modulations. It functions through the activation of the cancer
suppression gene (278).

6.4.1 Effect of Thymoquinone on Bax/Bcl-2 Cascade
Alterations in the normal process of cell death (apoptosis)
increase the chances of cell survival and thus lead to cancer
development and progression. Bax/Bcl-2 cascade is critical to
inducing apoptosis, as already reviewed. Still, there is scope to
determine its role in other important cancer-related pathways
like modulation of Bax-Bcl-2 cascade (279). TQ phytosomes
stimulated apoptosis at 4.31 ± 2.21 µM by caspase-3 activation
and generation of ROS, besides gathering cells on G2-M and pre-
G1 in A549 cells (280). TQ increased apoptosis via enhancing the
Bax/Bcl-2 ratio and more regulating the expression of p53 in
A549 cells (281). TQ stimulates the tumoricidal action of NK
against lung tumor cells viamore regulating pro-apoptotic genes
and less anti-apoptotic genes (282, 283). TQ considerably
diminished the viability of HCT116 cells in a concentration-
and time-dependent way. However, treatment of cells with TQ-
mediated cell death has been linked with the more regulation of
Bax and downregulation of Bcl-2 and Bcl-xL (284). TQ
stimulated caspase-9,-7, and -3 and activated PARP. TQ
modulates the action of the Bax/Bcl-2 cascade. Here, TQ was
found to downregulate the expression of Bcl-2, thus inducing
apoptosis (285). This study also showed that TQ elevates ROS
expression, which leads to a decrease in MMP, also known as
DNA laddering, and the subsequent release of cyt-c (285). TQ
upregulates the Bax/Bcl-2 ratio, thus inhibiting downstream
caspases in the hepatic ischemia–reperfusion injury (I/R)
model (286). TQ also increases the Bax/Bcl-2 ratio while
upregulating the expression of Bax. In one of the studies, TQ
was found to elevate the expression of Bax in Hl-60 cells, thus
activating upstream caspase 8 results in the release of
cytochrome c (287). These observations regarding TQ inspire
the scientific community to develop gene target-based
combinatorial therapies, where TQ can play a significant role
in blocking the expression of Bcl-2 and counter toxicity of
chemotherapy drugs.

6.4.2 Effect of Thymoquinone on EGFR-Mediated
Pathway
TQ is associated with multiple pathways; treatment with TQ
reduced the phosphorylation of JAK2, Src kinase, and EGFR. TQ
stimulated apoptosis in HCT116 cells via inhibiting the STAT3
pathway by inhibi t ion of JAK2- and Src- induced
phosphorylation of EGFR-TK (253, 284, 288). TQ attenuated
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the STAT3 expression target gene products, including c-Myc,
survivin, and cyclin-D1 and -D2, and increased p27 and p21
(284). TQ might target multiple kinases, such as PI3K, MAPK,
JAK/STAT, PLK1, and tyrosine kinase, in diverse cancer cells as
well as animal models. However, inhibiting the action of kinases
or repressing their expression may be among the mechanisms of
TQ antitumor action. Targeting kinases with TQ, which is a
molecularapproach for tumor therapeutics. (288). It illustrated
the capability for suppressing the ERK1/2 pathway, which
blocked the invasion and migration of A549 cells (254), and
the therapeutic promise of TQ as an anti-metastatic drug in lung
cancer treatment. Hence, subcutaneous doses of the TQ-I3M
combination repressed the lung tumor metastasis and decreased
tumor growth by the inhibition of the NF-kB/Akt/mTOR
pathway in the xenograft model (253). It shows significant
anticancer activities via upregulation of PTEN during
transcription. It is well-known that PTEN played a role in
inducing p53 expression and inhibits the Akt pathway (267).
Apart from this, TQ also modulates various genetic pathways.
It also inhibits NF-ĸB activation, which results in the
downregulation of inflammatory genes. It upregulates miR34a
and downregulates Rac1 expression (278).

6.5 Mechanism of Quercetin in NSCLC
Quercetin (Qu) is a flavonoid found abundantly in fruits (apple)
and vegetables (onions), citrus foods, and tea. It has excellent
antioxidant properties (289). It shows anticancer properties like
growth factor suppression, apoptosis induction, and anti-
proliferative actions (290). When treating A549 and H1975
cells for 24 h using the vehicle of Qu, there was no sign of
altered viability compared to control (291). Qu suppresses the
wound closure and invasive and migratory abilities of NSCLC
cells at low concentrations (10–50 µM), indicating its anti-
proliferative properties (292). Qu notably stimulated the
apoptosis of cancer cells. It demonstrates antitumor roles both
in vivo and in vitro (293). Apart from good results both in vitro
and in vivo, some clinical studies have also evaluated the
antitumor therapeutic results of Qu in ovarian cancer (294). In
both in vitro and in vivo cancer studies, Qu was said to have a
beneficial effect against prostate cancer (295).

This antioxidant effect of Qu can be attributed to its protective
nature against the toxicity of drugs (296, 297). Studies were
conducted to access its apoptosis induction potential and
chemosensitivity, and the results were found to be appreciable
and show the tumor inhibitory actions of Qu (298–300). Due to
its antioxidant properties, it can also be used as a nutritional
supplement in human health management. Several studies
proved that it protects from the harmful effects of free radicals
caused by smoking (296). Qu has excellent modulation
properties toward inflammatory agents. It inhibits the core
inflammatory enzyme COX (301–305). In one such study
conducted by Cruz-Correa et al., combination doses of
curcumin (480 mg) and Qu (20 mg) were orally administered
to familial adenomatous polyposis (FAP) patients for 6 months
three times a day. The result shows that this combination
treatment reduces the size of rectal adenomas with no side
effects (306). Qu inhibits hexavalent chromium (Cr[VI]) and
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shows a chemical carcinogen-induced cell transformation such
as cell visibility loss, ROS generation, and microRNA-21 (miR-
21) elevation in human colon cancer Caco-2-cells (307, 308).

6.5.1 Effect of Quercetin on Bax/Bcl-2 Cascade
Qu inhibits cell proliferation, stimulates apoptosis, and functions
as an antioxidant. It may modulate apoptosis by Bcl-2 family
proteins that downregulate Bcl-xL and Bcl-2 and upregulate Bax
and Bad (309, 310). However, Qu modulates the expression of the
Bax/Bcl-2 cascade and thus mediates apoptosis (311–313). It
stimulates apoptosis in caspase-3-dependent signaling via
blocking Cox-2 expression and controls Bcl-2 and Bax
expression. It might be a promising and potent agent that can be
safely utilized in leukemia therapy (314). The results
recommended that NSCLC H-520 cells with Qu enhanced the
cisplatin-mediated apoptosis. However, this has been accompanied
by downregulation of Bcl-2 and Bcl-xL and upregulation of Bax.
Qu acts as an efficient chemo-sensitizer in the chemotherapy of
lung tumor through controlling the expression of several
apoptosis-linked genes (315). TQ and Qu drastically decrease the
expression of Bcl-2 and induce Bax, indicative of sensitizing
NSCLC cells stimulating apoptosis (144). Bcl-2 and Bcl-xL
protein expressions were significantly decreased, and Bax and
caspase-3 were increased treated by Qu (312).

6.5.2 Effect of Quercetin on the EGFR-Mediated
Pathway
The role of Qu-mediated molecular regulation in repressing
NSCLC metastasis recommends that it has promising
therapeutic functions for metastatic NSCLC (292). Qu is an
effectual inhibitor for managing NSCLC harboring the EGFR
C797S mutation. However, Qu displayed promising cytotoxic
results on NSCLCs harboring the EGFR C797S mutation via
preventing AXL and stimulating cell death (316). It mimics the
interfaces of ATP in the active location of RTKs (EGFR, FGFR1,
and c-Met) that lead to the prevention of C RTK overexpression
(317). Qu and its permethylated form blocked migration and cell
viability, downregulated VEGFR-2, and decreased Akt, JNK, and
ERK levels on human primary endothelial cells (318). Qu altered
the Akt/mTOR/AMPK/signaling (319). Qu used the anti-NSCLC
effect by blocking Src-mediated Fn14/NF-kB signaling in vitro
and in vivo (320). The antitumor roles of Qu generally occur via
the modulation of VEGF, apoptosis, P13K/Akt/mTOR, MAPK/
ERK1/2, and Wnt/b catenin pathways (321). Qu blocks the
proteasome action via modulation of pathways including Akt/
PI3K and ERK (322, 323). Qu was reported to suppress the
melanoma and breast cancer cells by inhibiting MMP3 expression
(324). Qu significantly shows anti-migratory effects (292).

6.6 Mechanism of Venetoclax in NSCLC
Researchers developed a successful Bcl-2 inhibitor called
venetoclax (325). It inhibited Bcl-2 only and developed the
same BH3 mimetic SMI (326). After showing successful results
in clinical trials while treating chronic lymphocytic leukemia
(CCL), venetoclax was approved by FDA as a second-line drug to
treat CCL (327). It is a selective inhibitor of Bcl-2 family proteins
that stimulate apoptosis in several cancers, including lung cancer.
Frontiers in Oncology | www.frontiersin.org 12
Venetoclax (ABT-199) has revealed clinical efficiency in
numerous hematological tumors (328)

6.6.1 Effect of Venetoclax on Bax/Bcl-2 Cascade
Venetoclax is a selective and potent inhibitor of Bcl-2. It has
revealed clinical efficiency in numerous hematological tumors
(328). This inhibitor continues to attach to Bcl-2 (329).
Venetoclax stimulated BIM-dependent cell death in vitro,
inhibited cancer growth, and stimulated tumor failures in mice
bearing more Bcl-2–expressing SCLC cancers in vivo. However,
venetoclax is a potential therapy for more Bcl-2-expressing
SCLCs (330). SCLC displays elevated Bcl-2 expression and may
be accountable to single-drug treatment via venetoclax.
Increased Bcl-xL venetoclax explained preclinical trial action in
breast tumor cells (151). Hence, venetoclax is a promising Bcl-2
inhibitor. Bcl-2 is a target in specific subtypes of human T-ALL
that can be utilized by venetoclax (331). The new combination of
decitabine with venetoclax was proficient and well tolerated in
old AML patients (332). However, venetoclax presents the first-
in-class Bcl-2 inhibitor careful platelets (333).

6.6.2 Effect of Venetoclax on EGFR-Mediated
Pathway
Venetoclax can work by diverse signaling pathways for
accomplishing synergistic cytotoxicity with AZD9291 in
NSCLC (H1975AR). Hence, this inhibitor might provide an
effective choice in combination therapy with EGFR-TKIs for
treating NSCLC with EGFR-TKI resistance (334). However,
combining radiation for EGFR and Bcl-2 obstruction may be a
new plan for targeting cancer stem cells (335). A study supports a
preventive, therapeutic targeting of bioenergetics and
mitochondrial primarily for impacting early drug-escape
appearance using the EGFR accuracy inhibitor combined with
a wide BH3 mimetic for interrupting Bcl-xL/Bcl-2 together
(336). NF-kB was drastically less regulated in AZD9291+ABT-
199 treatment groups than AZD9291 or ABT-199 treatment only
(334). The combination of ABT-199 + irradiation + cetuximab
enhanced the blockage of the 2D and 3D cell proliferation,
migration, and resistance to cell death. Additionally, in a nude
model with a heterotopic tumor xenograft, a treatment
combining ABT-199 with fractional cetuximab irradiation
delayed the cancer growth and enhanced in vivo lifespan
without side effects (335). ABT-199 has been checked in
combinations with TKIs such as imatinib, nilotinib, and
dasatinib in cells with blast-crisis CML. This study revealed in
a CML mouse model that ABT-199 alone or in combination is
better than nilotinib in removing CML stem cells in vivo.
However, to study the dual inhibition of Bcl-2 and Mcl-1,
HHT and ABT-199 were combined and examined in seven
diffuse large B-cell lymphoma cells (337).
7 COMBINED THERAPEUTIC STRATEGY
FOR EGFR-MEDIATED NSCLC

EGFR belongs to the tyrosine kinase family. EGFR dimerization is
responsible for cell proliferation, survival, and invasion (26, 338).
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Inhibiting pathways by EGFR presents an excellent strategy for
therapeutic interference. Gefitinib and erlotinib are selective
EGFR TKIs explaining anticancer action either singly or
combined with radiation therapy and chemotherapy in human
cancer xenografts (339–341). Effective drugs used in EGFR-
embattled therapies are erlotinib and gefitinib (121, 342), also
known as EGFR TKIs, which face resistance during the treatment
of advanced-stage NSCLC (95, 343, 344). This resistance is due to
a mutation caused by exon 19 deletions andmissense mutation on
exon 21 (120, 345, 346). Until the current utilization of TKIs, the
standard first-line management and treatment for patients with
unresectable NSCLC and excellent presentation status have
engaged the employment of combined chemotherapy with
regimens (347).

Vemurafenib and dabrafenib are used in single-agent target
therapy against NSCLC patients with BRAF mutation (348–351).
This mutation is caused due to a single transversion at exon 15,
where valine is replaced through glutamate (residue 600) (352).
Hence, other potential gene targets in the case of NSCLC are
HER2, NTRK, Bax, and Bcl-2 (353, 354). Cetuximab-induced
targeting of EGFR stimulated tumor cell death (355, 356). The
TGFa-EGFR pathway in both cancer-associated endothelial cells
and cancer cells themselves is essential in the development of
colon cancer. However, repealing the pathway activation via a
double tyrosine kinase inhibitor in combined therapy may
significantly reduce cancer cell proliferation and stimulate
apoptosis in both cells. However, targeting the VEGFR and
EGFR pathway in cancer vasculature with anti-neovascular
therapy offers a new plan for colon cancer treatment.
Cetuximab, an anti-EGFR antibody, is moderately effective in
EGFR-expressing cells (357). The T790M mutation is a
promising target for NSCLC patients (358). However, new
therapies are required to conquer resistance to the drug.
Crizotinib (MET inhibitor) might enhance the gefitinib
susceptibility in NSCLC (359).

Numerous in vitro studies explained the anticancer effect and
potential mechanisms of EGCG on tumor cells. The combination
treatment blocked the EGFR pathway and reduced the p-EGFR,
p-ERK, and p-Akt expression. EGCG and cDDP have exhibited
a potential therapeutic effect in NSCLC patients (219). BIM
polymorphism is strongly linked to a poor clinical reaction for
EGFR TKIs in EGFR-mutant NSCLC patients; hence, BH3-
mimetic ABT-737 returns BIM functionality EGFR-TKI
sensitivity (232). ABT-737 drastically increases erlotinib-
mediated cell death, and more strong responses for EGFR
inhibitors in lung tumor patients harbor EGFR kinase domain
mutations (233). TQ is associated with many pathways and
stimulated apoptosis in tumor cells via inhibiting the STAT3
pathway by inhibiting JAK2- and Src-induced phosphorylation
of EGFR-TK (253, 284, 288). However, Qu displayed potent
cytotoxic results on NSCLC cells harboring the EGFR C797S
mutation via preventing AXL and stimulating cell death (316).
Venetoclax may work by synergistic cytotoxicity with AZD9291
in NSCLC (H1975AR). Hence, this inhibitor might provide a
productive choice in combination therapy with EGFR-TKIs for
treating NSCLC with EGFR-TKI resistance (334). Therefore,
several therapeutic strategies to target the EGFR pathway
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demonstrated various efficiencies that overcome drug
resistance and cancer development.
8 CONCLUSIONS AND FUTURE
PROSPECTS

The EGFR pathway is associated with several cancer
progressions, including NSCLC. The EGFR pathway regulates
Bax/Bcl-2 cascade in NSCLC. Inhibition of EGFR leads to
upregulation of pro-apoptotic proteins and stimulates
apoptosis by activating the intrinsic apoptotic pathway.
Targeted therapy might finally alter the treatment model for
lung cancer and provide an expectation for patients with
inadequate treatment opportunities. New targeted therapies
offer a novel hope for cancer patients, including NSCLC, a rare
disease for standard treatments. In the last decades, the
improvement in cellular, molecular, and cancer biology
research could be distinct by some foundational pillars—one of
the most significant ones being the beginning of SMIs/
phytochemicals. Targeting the EGFR with SMIs is a suitable
validated strategy in tumor therapy. EGFR SMIs have been
approved worldwide for the treatment of multiple cancers.
However, these drugs explained high efficiency in cancer therapy.

Several clinical trials for the SMIs/agents of targeted cancer
therapy are ongoing and have illustrated potent and promising
effects to date. Hence, these trials assist in describing the function
of targeted cancer therapy in the management and treatment of
tumors, including NSCLC. Therefore, the dispute for the clinical
improvement and utilization in cancer therapy of anti-EGFR
agents alone and/or in combination with other SMIs/
phytochemicals treatments would be the suitable assortment of
potentially responding NSCLC patients. In the future, combined
therapies with molecular mechanisms might lead to the eventual
therapeutic option. However, targeting EGFR-mediated Bax/Bcl-
2 cascade would be a potential therapy for NSCLC. In prospect
studies, this study should significantly assist in the approach of
new inhibitors for the EGFR-mediated Bax/Bcl-2 cascade that
facilitate the treatment and management of NSCLC.
Additionally, a close collaboration between molecular
biologists, clinicians, and pathologists is critical for developing
target therapy for NSCLC.
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