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Pádraig D’Arcy,
Linköping University, Sweden
Claudio Brancolini,
Facoltà di Medicina e Chirurgia,
Università di Udine, Italy

*CORRESPONDENCE

Qi Chen
qchen@kumc.edu

SPECIALTY SECTION

This article was submitted to
Cancer Molecular Targets
and Therapeutics,
a section of the journal
Frontiers in Oncology

RECEIVED 06 February 2022

ACCEPTED 13 September 2022
PUBLISHED 05 October 2022

CITATION

Wang T, Chen P, Weir S, Baltezor M,
Schoenen FJ and Chen Q (2022)
Novel compound C150 inhibits
pancreatic cancer through
induction of ER stress and
proteosome assembly.
Front. Oncol. 12:870473.
doi: 10.3389/fonc.2022.870473

COPYRIGHT

© 2022 Wang, Chen, Weir, Baltezor,
Schoenen and Chen. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 05 October 2022

DOI 10.3389/fonc.2022.870473
Novel compound C150 inhibits
pancreatic cancer through
induction of ER stress and
proteosome assembly

Tao Wang1, Ping Chen1, Scott Weir2, Michael Baltezor3,
Frank J. Schoenen4,5 and Qi Chen1*

1Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center,
Kansas, KS, United States, 2Department of Cancer Biology, University of Kansas Medical Center,
Kansas, KS, United States, 3Biotechnology Innovation and Optimization Center, University of Kansas,
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Pancreatic cancer is a devastating disease with a dismal prognosis and poor

treatment outcomes. Searching for new agents for pancreatic cancer

treatment is of great significance. We previously identified a novel activity of

compound C150 to inhibit pancreatic cancer epithelial-to-mesenchymal

transition (EMT). Here, we further revealed its mechanism of action. C150

induced ER stress in pancreatic cancer cells and subsequently increased

proteasome activity by enhancing proteasome assembly, which subsequently

enhanced the degradation of critical EMT transcription factors (EMT-TFs). In

addition, as cellular responses to ER stress, autophagy was elevated, and

general protein synthesis was inhibited in pancreatic cancer cells. Besides

EMT inhibition, the C150-induced ER stress resulted in G2/M cell cycle arrest,

which halted cell proliferation and led to cellular senescence. In an orthotopic

syngeneic mouse model, an oral dose of C150 at 150 mg/kg 3× weekly

significantly increased survival of mice bearing pancreatic tumors, and

reduced tumor growth and ascites occurrence. These results suggested that

compound C150 holds promises in comprehensively inhibiting pancreatic

cancer progression.
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Introduction

Pancreatic cancer is among the most malignant types of

cancers and will soon become the third leading cause of cancer-

related death in the United States (1). The current estimated

overall 5-year survival rate is only 10% (1). Despite our

increasing understanding of the genetic and molecular

makeups of the disease over the past few decades, the

prognosis of pancreatic cancer remains very poor. Current

first-line chemotherapy options include gemcitabine plus nab-

paclitaxel and the regimen of FOLFIRINOX (oxaliplatin,

irinotecan, fluorouracil, and leucovorin). These therapies

improved the median survival by a few months compared to

gemcitabine mono treatment, but they added significant

toxicities to patients (2, 3).

The homeostasis between protein loading and protein

folding in the endoplasmic reticulum (ER) is essential for cell

survival. Cellular insults that perturb the homeostasis lead to

misfolded protein accumulation and ER stress (4). In response to

ER stress, cells activate the unfolded protein response (UPR)

pathways to restore homeostasis in the ER, as a survival

mechanism (5). The UPR is controlled by three ER

membrane-bound proteins, protein kinase RNA-like ER kinase

(PERK), inositol-requiring protein 1a (IRE1a), and activating

transcription factor 6 (ATF-6) (5). Activation of PERK, IRE1a,
and ATF-6 activates their direct downstream transcription

factors, ATF-4, XBP1-s, and spliced-ATF-6, respectively,

leading to increased gene expressions of chaperone proteins to

enhance protein folding capacity in the ER (6, 7). In addition,

PERK activation results in the attenuation of mRNA translation

through eIF2a phosphorylation, therefore reducing new protein

load to the ER (8). Finally, ER stress also activates the ER-

associated degradation (ERAD) pathway to facilitate misfolded

protein removal through the ubiquitin–proteasome system and

autophagy (9, 10). By increasing the level of protein folding

chaperones, reducing protein synthesis, and enhancing protein

removal through ERAD, the UPR signaling functions as a pro-

survival mechanism to restore ER homeostasis (10). However,

severe or prolonged ER stress that goes beyond the UPR rescue

capacity would lead to cell proliferation arrest, cell death, and/or

senescence (11–13).

As the major protein degradation system in the cell,

proteasome levels and activities are often elevated upon ER

stress, to facilitate the clearance of misfolded or damaged

proteins (14). The two major forms of proteasomes in the

mammalian cells are 20s proteasome and 26s proteasome,

both of which are multi-subunit protein complexes. The 20s

proteasome is made up of two sets of a subunits (a1-7) and two

sets of b subunits (b1-7) with a stoichiometry of a1-7b1-7b1-7a1-7,

while the 26s proteasome is composed of a 20s proteasome

flanked at one or both ends by a 19s regulatory particle (19s RP)

that is made up of 19 different subunits (15). Therefore, the
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assembly of a full 26s proteasome requires the steps of 20s

proteasome assembly, 19s RP assembly, and the docking of

19sRP to the 20s proteasome (16). The 26s proteasomes serve

as the main complex for cellular protein degradation in an ATP-

and ubiquitin-dependent manner (17), while the 20s are also

capable of degrading a portion of cellular proteins independent

of ATP and ubiquitin (18, 19).

Because of the essential role of ER balance in cell survival,

disrupting ER balance has been proposed as a potential

therapeutic approach in cancer treatment (20, 21). We have

previously reported that a quinoline compound (namely, C150)

enhanced the proteasome-mediated degradation of Snail protein

in pancreatic cancer cells, causing EMT inhibition and reduced

cancer cell invasion (22). In this study, we further revealed that

C150 induced profound ER stress in pancreatic cancer cells and

led to the increase of proteasome assembly, cellular autophagy,

and attenuation of general mRNA translation. C150 treatment

arrested pancreatic cancer cells in the G2/M phase, induced

cellular senescence, and increased cellular sensitivity to

gemcitabine treatment. C150 treatment significantly increased

survival and reduced tumor growth in a syngeneic pancreatic

cancer mouse model.
Materials and methods

Cell culture and reagents

Human pancreatic cancer cells PANC-1 and MIA PaCa2

were obtained from the American Type Culture Collection

(ATCC). Murine pancreatic cancer Pan02 cells were

generously donated by Dr. Shrikant Anant from the University

of Kansas Medical Center. Cells were cultured in DMEM (10-

013-CV, Corning Life Sciences) with 10% FBS (F0926, Sigma-

Aldrich) and 100 units/ml penicillin/streptomycin (30-001-CI,

Corning Life Sciences) in a 37°C cell incubator with humidified

5% CO2. All cells were cultured within 20 passages in our

laboratory. Compound C150 was purchased from ChemBridge

Chemical Library (ChemBridge, San Diego, CA) and stocked in

dimethyl sulfoxide (DMSO). All C150 treatments were diluted in

cell culture medium with a final DMSO concentration lower

than 0.1% (v/v%). Control cells were treated with the same

concentrations of DMSO with respect to drug-treated groups

(<0.1% v/v%).
Proteasome activity assay

PANC-1 cells were seeded and grown in 100-mm petri

dishes at 1 × 106 cells/dish. The next day, medium was

replaced with fresh medium containing C150 or DMSO, and

cells were treated for 24 h. After treatment, cells were lysed in
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proteasome activity lysis buffer (50 mM HEPES, 10 mM NaCl2,

1.5 mMMgCl2, 1 mM EDTA, 2 mMATP, and 1% Triton X-100)

on ice for 1 h. The supernatants of the cell lysates were collected

by centrifugation at 16,000 × g for 15 min and kept on ice. The

Pierce BCA protein assay (23225, Thermo Scientific) was

performed to determine protein concentrations in the cell

lysates. In a black-wall 96-well plate, 150 µl of fluorescent

proteasome substrate solution Suc-LLVY-AMC (BML-P802-

0005, Enzo Life Science, Farmingdale, NY) and 50 ml of cell
lysates were added per well to a final substrate concentration of

100 mM. The proteasome inhibitor epoxomicin (4 mM) was

added in the negative control group. The plate was then placed

in a fluorescent plate reader with 37°C incubation and read

under the kinetic mode at 360/460 nm every 20 min for 80 min.

Fluorescent readings were then normalized to the protein

amounts in the cell lysates of each sample.
Western blots

Cells were lysed in Pierce RIPA buffer (89901, Thermo

Scientific) supplemented with protease and phosphatase

inhibitor cocktails (P8340, P5726, and P0044, Sigma-Aldrich).

Protein concentrations of the lysates were determined using the

Pierce BCA protein assay (23225, Thermo Scientific). The cell

lysates were then mixed with 2× Laemmli SDS loading buffer

(161-0737, Bio-Rad), run in 8% or 10% SDS-PAGE gel, and

transferred onto 0.2-mm PVDF membranes (ISEQ00010,

MilliporeSigma). Membranes were blocked in 5% blocking

grade milk in 0.1% TBST solution (0.1% Tween-20 in 1× TBS)

for 2 h at room temperature, then incubated with primary

antibody at 4°C overnight in 5% BSA/0.1% TBST solution.

Mouse monoclonal antibodies against 20s subunits b-1 (sc-

374405), b-2 (sc-58410), b-5 (sc-393931), a-5 (sc-137240), a-6
(sc-271187), and 19s subunits PSMC-2 (sc-166972), PSMC-3

(sc-100462), and PSMC-4 (sc-166115) were purchased from

Santa Cruz Biotechnology (Dallas, TX). Rabbit monoclonal

antibodies against Bip (3177T), ATF-4 (11815S), ATF-6

(65880T), XBP-1s (40435S), LC-3 (3868S), phospho-eIF2a
(3398T), Vinculin (4650S), and GAPDH (2118S) were

purchased from Cell Signaling Technology (Danvers, MA).

Mouse monoclonal anti-puromycin (PMY-2A4) and anti-

eIF2a (PCRP-EIF2S1-1E2) antibodies were purchased from

Developmental Studies Hybridoma Banks (the University of

Iowa, Iowa City, IA). Following primary antibody incubation,

membranes were washed three times in 0.1% TBST solution and

then incubated with HRP-linked anti-rabbit (7074S) or anti-

mouse (7076S) secondary antibodies (Cell Signaling Technology,

Danvers, MA) in 5% milk for 2 h at room temperature. Blotting

bands were then detected by using Pierce ECL plus reagents

(32132, Thermo Scientific).
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Native gel analysis for
assembled proteasome

PANC-1 cells were seeded and treated the same way as in the

proteasome activity assay. After treatments, cells were lysed in

proteasome activity assay lysis buffer on ice for 1 h. The

supernatants of the cell lysates were collected by centrifugation

at 16,000 × g for 15 min and kept on ice. After determining the

protein concentrations in the lysates with Pierce BCA protein

assay, the samples were then mixed with 2× non-denaturing

loading buffer (161-0738, Bio-Rad). A total of 30 mg of protein

from each sample was loaded and separated in 4% Tris-Borate

native gel at 100 V for 3.5 h in running buffer (89 mM Tris, 89

mM boric acid, 2 mM EDTA, 5 mM MgCl2, and 1 mM ATP).

The 4% Tris-Borate native gels were made as follows (10 ml):

7.5 ml of H2O + 1.333 ml of 30% polyacrylamide (1610158, Bio-

Rad) + 50 ml of MgCl2 (1 M) + 100 ml of ATP (0.1 M) + 1 ml of

10× Tris-Boric-EDTA buffer (161-0733, Bio-Rad) + 100 ml of
10% APS + 10 ml TEMED. After electrophoresis, gels were

soaked in 1× Tris-Glycine buffer with 0.1% SDS for 30 min.

Proteins in gels were then transferred onto 0.2 mm PVDF

membranes at 100 V for 3.5 h at 4°C in transferring buffer (1×

Tris-Glycine buffer with 20% methanol). Subsequently,

membranes were stained with Ponceau S to reveal protein

bands, then washed in 0.1% TBST solution and blocked in 5%

blocking grade milk for 2 h at room temperature before

incubating with anti-20s b-5 antibody and anti-19s PSMC-3

antibody for overnight at 4°C. The membrane was then washed

in 0.1% TBST buffer and incubated with HDR-conjugated anti-

mouse secondary antibody (7076S, Cell Signaling Technology,

Danvers, MA). Protein bands were detected with Pierce ECL

plus reagents (32132, Thermo Scientific).
RT-qPCR

Total RNA was extracted from cells using TRIZOL reagents

(AM9738, Invitrogen) according to the manufacturer’s

protocol. The synthesis of cDNA was carried out with 1 mg
of total RNA using the OneScript cDNA Synthesis Kit (G234,

Applied Biological Materials, Richmond, BC, Canada). cDNA

was then diluted five times in nuclease-free H2O for RT-qPCR

reaction. RT-qPCR was performed using the Bio-Rad iQ

iCycler detection system with One-Step BrightGreen reagents

(MasterMix-S, Applied Biological Materials, Richmond, BC,

Canada) according to the manufacturer’s protocol. Each

reaction was carried out in 10 ml volume with 5 ml of 2×

BrightGreen qPCR MasterMix, 0.6 ml of forward and reverse

primer mix (10 mM), 2 ml of diluted cDNA, and 2.4 ml of
nuclease-free H2O. All qPCR reactions were run under the

following cycling conditions according to the protocol from the
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kit: enzyme activation at 95°C for 10 min, followed by 40 cycles

of denaturation (95°C for 15 s) and annealing/extension (60°C

for 60 s). The melting curve was detected at 55°C–95°C with

0.5°C increments. Three independent experiments were carried

out, and reactions were run in triplicate for each sample. Gene

expression was quantified using the 2DD-Ct method with

GAPDH as the internal control gene. Primers for detected

genes are listed in Table 1.
Cell cycle analysis

PANC-1 cells were seeded and grown in 60-mm petri dishes

at 5 × 105 cells/dish. The next day, the medium was changed into

fresh medium with C150 or DMSO. At 24 h or 48 h, cells were

collected by trypsinization, washed with 1× PBS twice, and fixed

in 70% ethanol at −20°C overnight. Cells were then washed with

1× PBS and stained in PI staining solution (20 mg/ml propidium

iodide in 1× PBS solution with 0.1 mg/ml RNase A and 0.1%

Triton X-100) at 37°C for 15 min protected from light. Cells

were kept in the staining solution overnight at 4°C protected

from light before being analyzed for cell cycle distribution with

flow cytometry (BD LSR II, BD Biosciences).
Cell growth curve by MTT assay

Cells were seeded in 96-well plates at 5,000 cells/well and

incubated in the cell culture incubator overnight. The next day,
Frontiers in Oncology 04
the medium was changed into fresh medium containing C150 at

the indicated concentrations. Cells were further incubated for 0,

24, 48, 72, and 96 h, then MTT (3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide) was added to each well to a

final concentration of 0.5 mg/ml, and the plates were further

incubated for 4 h. The medium was then removed and 150 ml of
DMSO was added to each well. Absorbance was measured at 570

nm using a microplate reader (BioTek, Winooski, Vermont).
Gemcitabine combination treatment

PANC-1 cells were seeded in 96-well plates at 5,000 cells/

well and incubated overnight, and then changed into fresh

medium with treating drug combinations in a matrix design as

shown in Figure 3D. Cells were treated for 72 h and viability was

detected by MTT assay. The combination index was calculated

according to Chou-Talalay’s method using CompuSyn

software (23).
Immunofluorescent staining for
LC-3 puncta

PANC-1 cells were seeded and grown in eight-chamber

microscope cell culture slides (PEZGS0816, MilliporeSigma) at

6 × 104 cells per chamber. The next day, the medium was

replaced with fresh medium containing C150 or DMSO, and the

cells were treated for 24 h. After treatment, cells were washed
TABLE 1 Gene primer sequences for RT-qPCR.

Gene name Forward (5’ -> 3’) Reverse (5’ -> 3’)

PSMG-1 (PAC-1) TCC TTT CCT GAG AGC CCT AAA A TGT TCT AGC AAT GGA CAA CAC G

PSMG-2 (PAC-2) ACC GAT TGT CTT GTG CCA ATG AGG CAA TGA ATA CAC TTC AGC AT

PSMG-3 (PAC-3) GAA GAC ACG CCG TTG GTG ATA GAA GGA CTT TTG TGG TGA GCA

PSMG-4 (PAC-4) GTC CAC TTC CAC GTC ATG C GGG AGG TAG ACA CGG GGA T

POMP ACT TGG ATC TGA GCT AAA GGA CA GGG GAT GAC TAG GCA AAA GTT C

PAAF-1 GGA GGT CTT GGT GTG TCT TCT CAA CGA TGG CTG TAT CCA GGA

PSMD-10 GGG TGT GTG TCT AAC CTA ATG G GGC CAG AAT ACT CTC CTT CAA CT

PSMD-5 GCG CTG CTG AGA GAG GTA G AGT CTT TTC CCT ATG GTT CTC GT

PSMD-9 AGG AGG AGA TAG AAG CGC AGA GTG CGG ACT TGG TAC AGG T

IL6 CCCCTCAGCAATGTTGTTTGT CTCCGGGACTGCTAACTGG

IL7 CCCTCGTGGAGGTAAAGTGC CCTTCCCGATAGACGACACTC

IL-13 CCTCATGGCGCTTTTGTTGAC TCTGGTTCTGGGTGATGTTGA

IL-15 TTTCAGTGCAGGGCTTCCTAA GGGTGAACATCACTTTCCGTAT

CCL5 CCAGCAGTCGTCTTTGTCAC CTCTGGGTTGGCACACACTT

CXCL10 GTGGCATTCAAGGAGTACCTC TGATGGCCTTCGATTCTGGATT

PAI-1 CCACCTCCGTGAAGGAATGAC GGTAGTGTGGCATAAACAGCA

TNF-a CCTCTCTCTAATCAGCCCTCTG GAGGACCTGGGAGTAGATGAG

MCP1 CAGCCAGATGCAATCAATGCC TGGAATCCTGAACCCACTTCT

GAPDH CCA GGT GGT CTC CTC TGA CTT CAA CA AGG GTC TCT CTC TTC CTC TTG TGC TC
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twice with 1× PBS and fixed in ice-cold 100% methanol at −20°C

for 15 min. Cells were then washed three times with 1× PBS and

blocked in 5% normal goat serum (5425S, Cell Signaling

Technology, Danvers, MA) in 1× PBS with 0.3% Triton X-100

for 1 h at room temperature. Cells were then incubated with

anti-LC-3 antibody (3868S, Cell Signaling Technology, Danvers,

MA) at 4°C overnight in antibody incubation buffer (1× PBS

with 0.3% Triton X-100 and 1% BSA). After three washes with

1× PBS, cells were incubated with Alexa-488 conjugated

secondary antibody (4412S, Cell Signaling Technology,

Danvers, MA) for 2 h at room temperature and protected

from light. After three washes with 1× PBS, the slide was then

coverslipped with the anti-fade mounting solution with DAPI

(8961S, Cell Signaling Technology, Danvers, MA) and cured in

the dark overnight at room temperature to stain the nuclei

before being imaged with fluorescence microscopy at

600× magnification.
b-galactosidase staining for
cellular senescence

The senescence b-galactosidase staining kit (9860S, Cell

Signaling Technology, Danvers, MA) was utilized according to

the manufacturer’s protocol. Briefly, PANC-1 cells were seeded

and grown in 24-well plates at 5 × 104 cells per well. The next

day, the old medium in the plates was replaced with fresh

medium containing C150 or DMSO, and cells were treated for

24 and 48 h. After treatment, cells in the plates were washed with

1× PBS twice and fixed in 0.5 ml fixative solution for 15 min at

room temperature. Following cell fixation, 0.5 ml staining

solution with X-gal (1 mg/ml) at pH 6.0 was added to each

well. The plates were then sealed with parafilm, wrapped in

aluminum foil, and incubated in a 37°C dry oven for 24 h. After

removal of the staining solution, cells were washed three times

with 1× PBS and covered in 0.5 ml 70% glycerol. At least five

random fields per well were imaged using a light microscope

under the bright field at 200× magnification. Positively stained

cells and the total cells in each image were counted using the

multi-point manual counting tool in ImageJ software.
Syngeneic mouse model of
pancreatic cancer

All animal experiments followed an Animal Care and Use

Protocol (2018-2443) approved by the Institutional Animal Care

and Use Committee at the University of Kansas Medical Center.

Female C57BL/6 mice (6–8 weeks old) were purchased from the

Jackson Laboratory (Bar Harbor, ME). For tumor cell

implantation, mice were put under anesthesia by isoflurane

inhalation (5% isoflurane for induction of anesthesia and 2%

for maintenance). A subcostal laparotomy was performed to
Frontiers in Oncology 05
expose the pancreas. A total of 4 × 105 Pan02 mouse pancreatic

cancer cells suspended in 50 ml of 1× PBS were injected into the

tail of the pancreas. The wound was then sealed with wound

clips. Twenty-one days after tumor cell inoculation, two random

mice were sacrificed to confirm tumor formation. Subsequently,

mice were randomly grouped into two groups (vehicle: n = 9,

treatment: n = 8). Treatments were then commenced with 150

mg/kg of C150 or vehicle (5% Tween-80 + 95% H2O) by oral

gavage. Mice were treated three times a week for 2 weeks and

monitored twice daily for signs of moribund state. The

moribund state was determined using body score (<2), or any

signs of extreme lethargy, lack of responsiveness to manual

stimulus, immobility, or hypothermia. When these signs were

observed, the mice were euthanized and counted as death events.

Necropsy was then immediately performed, and tumors were

weighed and collected. If ascites were present, ascites volume was

measured. All survived mice at the endpoint (35 days after tumor

inoculation) were euthanized and tumors and ascites were

collected upon necropsy.
Statistics

All data were presented as mean ± SD unless otherwise

stated. The Student’s t-test was performed for two-group

comparisons. One-way ANOVA with the Tukey post-hoc test

was performed for multi-group comparisons. A p-value < 0.05 is

considered statistically significant.
Results

C150 increased proteasome activity
in PANC-1 cells by increasing
proteasome assembly

We have previously reported that C150 enhanced the

proteasomal degradation of the pro-EMT transcription factor

Snail in PANC-1 cells (22). In addition, we found that b-catenin,
TP53, and Sox2 protein levels were also reduced by C150

treatment (Figure 1A). All of these transcription factors are

proteasome substrates (24–26). Therefore, we postulated that

C150 increased proteasome activity in the cell. To examine the

cellular proteasome activity upon C150 treatment, PANC-1 cells

were first treated with C150 (1 mM and 2 mM) for 24 h. The cell

lysates were collected under non-denaturing conditions and

incubated with a proteasome substrate, Suc-LLVY-AMC,

which generates fluorescence upon proteasomal degradation.

The results showed that lysates from C150-treated cells

exhibited a significantly higher proteasome activity compared

to the DMSO-treated group (Ctrl) in a concentration-dependent

manner to C150 (Figure 1B). This increase was completely

attenuated by a specific proteasome inhibitor epoxomicin
frontiersin.org
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FIGURE 1

C150 enhanced proteasome activity by increasing 20s proteasome and 26s proteasome assembly. (A) C150 decreased b-catenin, TP53, and
Sox-2 protein level. PANC-1 cells were treated with DMSO (Ctrl) or C150 (1 mM and 2 mM) for 24 h. Total cell lysate was analyzed. b-Actin was
blotted as loading control. (B, C) Proteasome activity in PANC-1 cells treated with C150. PANC-1 cells were treated with C150 (1 mM and 2 mM)
or DMSO (Ctrl) for 24 h. Cell lysates were collected and incubated with proteasome substrate Suc-LLVY-AMC at 37°C, in the absence (B) and
presence (C) of epoxomicin (4 mM), and the kinetics of fluorescence signal was detected every 20 min for 80 min at 360/460 nm. Fluorescence
signal intensity was quantified to the protein amounts in each reaction. (D) Proteasome activity in PANC-1 cell lysate incubated with C150.
DMSO (Ctrl) or C150 (1 mM and 2 mM) was directly added into lysates of non-treated PANC-1 cells and incubated at room temperature for
30 min before mixing with Suc-LLVY-AMC substrate. (E) Native gel blots for assembled 20s and 26s proteasome. Anti b-5 antibody was used to
show the 20s and anti-PSMC-3 was used to show the 26s proteasomes. Lower panels show Ponceau S staining. (F) Western blots of
proteasome subunits. PANC-1 cells were treated with C150 (1 mM and 2 mM) or DMSO (Ctrl) for 24 h. Total cell lysates were used. Vinculin was
a loading control. (G) RT-qPCR for mRNA expressions of proteasome assembly chaperones. PANC-1 cells were treated with C150 (1 mM and
2 mM) or DMSO (Ctrl) for 24 h. Results were quantified and normalized to Ctrl group using the 2−DDCt method with GAPDH as a housekeeping
gene. (H) Western blots of PSMG-1 (PAC-1 gene product) and PSMD-10 proteins. The left panel is a representative image of the Western blots.
The right panel shows fold changes of relative bands intensity normalized to Vinculin. All data are presented as mean ± SD of three independent
experiments. *p < 0.05, **p < 0.01 , ***p < 0.001 (vs. Ctrl) by either Student’s t-tests between two groups, or one-way ANOVA with Tukey HSD
tests among multiple groups.
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(Figure 1C). To examine whether C150 directly increased the

activity of proteasome, non-treated PANC-1 cell lysates were

incubated with C150 and the proteasome substrate. The direct

incubation of C150 in non-treated cell lysates did not affect

proteasome activity (Figure 1D). These data suggested that

C150-mediated increase in proteasome activity was dependent

on a cellular process that requires the integrity of the cell but was

not through direct interaction with proteasomes.

We then investigated the total levels of the assembled 20s and

26s proteasome in the PANC-1 cells treated with C150. Anti-b-5
subunit antibody was used to show the 20s proteasomes. Because

the 26s proteasome is composed of a 20s proteasome flanked by

one or two 19s caps at its ends, an anti-PSMC-3 subunit for 19s

RP was also used to show the 1-cap or 2-cap 26s proteasomes.

Native gel protein electrophoresis and Western blots showed that

the assembled 20s proteasomes and 2-cap 26s proteasomes were

both elevated upon C150 treatment (Figure 1E). To determine if

the increased 20s and 26s proteasome levels were the results of the

increased expressions of their subunits, we detected a panel of 20s

and 19s subunits by Western blot. All the examined subunits

remained unchanged by C150 treatment (Figure 1F). Because the

abundance of proteasomes in the cell is also regulated by their

chaperone-dependent assembly (14, 27), we then examined the

expressions of nine proteasome assembly chaperones by RT-

qPCR. We found that 24-h C150 treatment (1 mM and 2 mM)

significantly increased the expressions of the chaperones PAC-1,

PAC-3, PSMD-5, PSMD-10, and PAAF-1, with the other four

chaperones showing a trend of increase (Figure 1G). We then

detected the protein expression of PSMG-1 (PAC-1 gene product)

and PSMD-10 as representatives of the increased chaperones. The

protein levels of PSMG-1 were increased upon 2 mM C150

treatment at 24 and 48 h (Figure 1H), and the protein levels of

PSMD-10 were significantly increased at 48 h of treatment

(Figure 1H). Taken together, the data suggested that C150

enhanced proteasome activity in PANC-1 cells by increasing

proteasome assembly.
C150 induced ER stress, increased
autophagy, and attenuated protein
synthesis in PANC-1 cells

An increase in proteasome levels can be induced by ER stress

(28, 29). We next investigated whether C150 treatment induced

ER stress in PANC-1 cells. At 24-h treatment, C150 (1 mM and 2

mM) resulted in a profound upregulation of ER stress markers,

Bip, ATF-4, and XBP-1s (Figure 2A). During ER stress response,

autophagy is often initiated to further assist the removal of

misfolded and damaged proteins (30). Our data showed that

C150 treatment significantly increased LC-I and LC-3II, and the

LC-3II level was further enhanced by the additional treatment of

chloroquine at 20 mM for 4 h (Figure 2B), suggesting an
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increased autophagy flux by C150 treatment. The increased

autophagy was further confirmed by immunostaining of LC-3

puncta in the cells (Figure 2C). There was a robust increase in

the phosphorylation of the translation initiation factor eIF2a
upon C150 treatment (Figure 2D). The phosphorylation of

eIF2a is known to downregulate global translation, but to

stimulate translation of some mRNAs such as those involved

in stress responses (31). Our data in the increased expression of

chaperone proteins PSMG-1 and PSMD-10 (Figure 1H) were

consistent with this. Expecting a possible reduction of global

protein synthesis (32), we then performed a puromycin

incorporation assay (33) to detect protein neosynthesis (33).

Puromycin can effectively incorporate into newly synthesized

peptides and later be detected using Western blotting (33, 34).

PANC-1 cells were treated with C150 (1 mM and 2 mM) for 24

and 48 h, and then pulse-treated with 2 mM puromycin for

20 min. Newly synthesized proteins were detected by Western

blots in survived cells using an anti-puromycin antibody.

Significant decreases in the levels of incorporated puromycin

were detected with the treatments at either 24 or 48 h

(Figure 2E), consistent with the eIF2a phosphorylation.
C150 caused G2/M cell cycle arrest,
induced cell senescence, and synergized
with gemcitabine in PANC-1 cells

It was reported that ER stress was able to induce cell cycle

arrest (11, 35). Upon C150 treatment (1 mM and 2 mM) for 24 h

and 48 h in PANC-1 cells, there was a robust increase in the cell

population in the G2/M phase as demonstrated by PI cell cycle

analysis (Figure 3A), suggesting a G2/M cell cycle arrest under

C150 treatment. Cell growth curves showed a significantly

reduced proliferation rate by C150 treatment (Figure 3B).

Sustained cell cycle arrest commonly results in apoptosis and/

or cell senescence (36). Our previous data have shown that C150

treatment did not induce apoptosis (22). Notably, data here

showed that C150 treatments at 24 and 48 h effectively induced

senescence in PANC-1 cells as indicated by the increased b-
galactosidase (SA-b-galactosidase) staining at pH 6.0

(Figure 3C). Western blots showed that two of the known

markers of cellular senescence PAI-1 and TNF-a were

significantly upregulated in PANC-1 cells treated with C150

(Figure 3D) at 24 and 48 h, consistent with the observed

senescent phenotype. Induction of senescence was reported to

sensitize pancreatic cancer cells to chemotherapeutic agents (37).

We found that the combination treatment of C150 with

gemcitabine more effectively reduced PANC-1 cell viabilities

compared to single-agent treatment (Figure 3E). Strong

synergistic effects were shown when C150 was added to

gemcitabine, with Chou-Talalay’s combination index (CI) (23)

being far less than 1 (Figure 3E).
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C150 reduced tumor growth and
increased survival in a syngeneic
pancreatic cancer mouse model

A syngeneic pancreatic cancer mouse model was used to

evaluate the activities of C150 in vivo. Compared with xenografts

in immune-compromised mice, the syngeneic model preserves

the intact immune functions, which plays an important role in

cancer progression and responses to treatment. Pan02 mouse

pancreatic cancer cells were orthotopically injected into the

pancreas of C57BL/6 mice. Three weeks (21 days) after cell

implantation, mice were treated with C150 (150 mg/kg) or

vehicle by oral gavage three times a week for 2 weeks. Data

showed that C150 treatments significantly improved the survival

rate of mice at 35 days after tumor inoculation (80% survival rate

in C150-treated group versus 10% in the vehicle-treated group)

(Figure 4A). The tumor weight at necropsy was significantly

reduced by C150 treatment (n = 8) compared to vehicle-treated

controls (n = 9) (Figure 4B). Moreover, 89% (8/9) of mice in the

vehicle-treated group developed ascites, whereas only 50% (4/8)

in the C150 group had ascites (Figure 4C). In the mice that had

ascites, the average volume was lower in C150-treated mice

(Figure 4D). The expression levels of ER markers were examined
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in tumor tissues. Consistent with our in vitro data, the ER stress

markers Bip, cleaved-ATF-6, ATF-4, and XBP-1s were elevated

in C150-treated tumors compared to vehicle-treated controls

(Supplementary Figure 1). A panel of cellular senescence

markers were detected for their expression in the tumor

samples using RT-qPCR. Data showed a significant increase in

the mRNA levels of PAI-1, MCP-1, IL6, CCL5, and TNF-a in

tumors treated with C150 (Figure 4E). Lamin B1, whose level

decreases during cellular senescence (38), was also found to be

decreased in C150-treated tumors (Figure 4F).

Because ascites developed in the tumor-bearing mice, we

decided bodyweight was not a good indication of toxicity in this

scenario. Instead, we examined the histology of liver and kidney

at necropsy. There was no difference found in both organs

between the contro l group and the C150-trea ted

group (Figure 4G).
Discussion

Interrupting ER homeostasis has been shown as an effective

way to inhibit tumor progress because of the vital role the ER

plays in cellular protein homeostasis and cell survival (39, 40).
B

C

D

E

A

FIGURE 2

C150 induced ER stress, resulted in autophagy and attenuation of protein translation in PANC-1 cells. PANC-1 cells were treated with DMSO
(Ctrl) or C150 (1 mM and 2 mM) for 24 h. (A) Western blots of ER stress makers. GAPDH was blotted as loading control. (B) Western blots of the
autophagy marker LC-3. CQ, chloroquine (20 mM, 4 h treatment). (C) Immunofluorescence staining for LC-3 puncta. Cells were fixed and
stained against LC-3 (green) and DAPI (blue). Scale bar, 10 mm. (D) Western blots of eIF2a and p-eIF2a. (E) Puromycin incorporation showing
protein synthesis inhibition. PANC-1 cells were treated with 2 mM puromycin for 20 min after 24 or 48 h of treatment with C150. Total cell
lysates were analyzed and blotted with anti-puromycin antibody. GAPDH was blotted as loading control. The left panel is a representative image
of the Western blots. The right panel shows total band intensity normalized to GAPDH. Data are presented as mean ± SD of three independent
experiments. *p < 0.05, **p < 0.01 (vs. Ctrl) by one-way ANOVA with Tukey HSD tests.
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Due to h igh pro l i f e r a t i on demand and hypox i c

microenvironment, cancer cells are under higher endogenous

ER stress, resulting in a higher endogenous activation level of

UPR signaling (41). As such, pancreatic tumor tissues have

higher Bip and ATF-6 expression levels than the normal

pancreatic tissues (42). The high basal activation of UPR

renders pancreatic cancer cells more vulnerable to the

disturbance in ER homeostasis. Disrupting UPR signaling by

either inhibiting or further activating it would both impede the

cellular capacity to rescue ER stress, leading to catastrophic

effects in the cancer cells (39, 43, 44). In agreement with this

notion, our study found that C150 induced profound ER stress

and further aggravated UPR signals in pancreatic cancer cells,

which subsequently impeded cell proliferation, triggered cell

cycle arrest, and led to pancreatic cancer cell senescence.
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Findings in our study showed that C150 treatment

significantly increased proteasome activity by enhancing

proteasome assembly. The increased proteasome activity under

ER stress is a pro-survival response of pancreatic cancer cells to

restore ER proteomic homeostasis (45). However, C150-

mediated increase in proteasome activity accelerated the

degradation of several critical transcription factors in EMT/

CSC/cell death pathways, such as Snail (22), b-catenin, Sox2,
and TP53, as detected in this study. It is possible that many other

important proteins in cancer cell growth/proliferation, invasion,

and stemness are also influenced. The degradation of Snail and

the other regulatory proteins consequently led to the inhibition

of EMT and cell invasion in pancreatic cancer cells, as we

previously reported (22). These results indicated that the

increased proteasome activity under C150-induced ER stress
B

C D

E

A

FIGURE 3

C150 caused G2/M cell cycle arrest, cellular senescence, and synergized with gemcitabine in PANC-1 cells. (A) Cell cycle analysis. PANC-1 cells
were treated with DMSO (Ctrl) or C150 (1 mM and 2 mM) for 24 and 48 h. Cells were stained with propidium iodide (PI) and analyzed for cell cycle
distributions with flow cytometry. Bar graph shows the quantification of the percentage of cells in each cell cycle. Data presented as mean ± SD of
three independent experiments. (B) Cell growth curve. PANC-1 cells were seed at 5,000 cells per well in 96-well plates in triplicates and treated for
0, 24, 48, 72, and 96 h. Viable cells were detected by MTT assay. Data presented as mean ± SD of three experiments. (C) SA-b-galactosidase
staining at pH 6.0 for cell senescence. Senescent cells were identified by the green-blue staining under bright field light microscopy at 200×
magnification. Scale bar, 100 mm. Bar graph shows the percentage of senescent cells per imaging field with five random fields in each sample. Data
presented as mean ± SD of two independent experiments each done in triplicate. (D) Western blots of two cell senescence markers PAI-1 and TNF-
a. Band intensities were normalized to Vinculin and then compared to the untreated control. Bar graphs show fold changes versus control. Data
presented as mean ± SD of two independent experiments each done in duplicate. (E) Heatmap of cell viabilities and combination index of C150 and
gemcitabine in PANC-1 cells. PANC-1 cells were treated with C150 and gemcitabine at the indicated concentrations for 72 h. Cell viability was
detected using MTT assay. Data presented as mean viability from three independent experiments each done in duplicate. The drug combination
index was calculated according to the Chou-Talalay’s method. Mean CI values from three experiments were presented. *p < 0.05, **p < 0.01 (vs.
Ctrl) by one-way ANOVA with Tukey HSD test.
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may have a broad effect on degrading proteins important to

pancreatic oncogenesis, resulting in comprehensive inhibition of

pancreatic cancer progression through multiple pathways.

Cellular senescence is effectively evaded in pancreatic

cancer due to the highly frequent loss-of-function mutations

of CDKN2A and p53 (46, 47). Re-introduction of senescence

has been reported as an effective approach to inhibit pancreatic

cancer growth (48, 49). In our study, C150 successfully

induced senescence regardless of the mutations of CDKN2A

and p53 in PANC-1 cells (50). Senescence was also detected in

Pan02 orthotopic mouse xenografts treated with C150, as

shown by the decreased level of Lamin B1 (Figure 4E).

Tumor growth was significantly inhibited, and survival of

mice was improved. Moreover, C150-induced senescence

greatly sensitized PANC-1 cells to gemcitabine treatment

(Figures 3D, E). Therefore, C150 holds great promises in

combination treatment with gemcitabine in pancreatic

cancer. This synergy may be extended to other drugs, too.

Further investigations are worthwhile to validate the

synergistic effects in animal studies.
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FIGURE 4

C150 treatment increased survival rate and reduced tumor growth in a syngeneic mouse model. (A) Kaplan–Meier survival curve of tumor-
bearing mice. *p < 0.05 (vs. vehicle) by log-rank test. (B) Tumor weight at necropsy (n = 9 for vehicle, n = 8 for C150). p < 0.05 by Student’s t-
test. (C) Ascites occurrence rate. (D) Average volume of ascites presented as mean ± SD (n = 9 for vehicle, n = 8 for C150). (E) RT-qPCR for
mRNA expressions of senescence markers. Tumor samples from three mice in the control group and six mice in the treated group were
evaluated. Results were quantified and normalized to the Ctrl group using 2−DDCt method with GAPDH as a housekeeping gene. (F) Western
blotting of Lamin B1 in mouse tumor tissues. Tumors from seven individual mice in each group were analyzed. GAPDH was blotted as loading
control. Bar graph shows the quantification of band density relative to GAPDH. Data presented as mean ± SD. **p < 0.01 (vs. Vehicle) by
Student’s t-test. (G) H&E staining of liver and kidney tissues. Five animals from each group were examined. Representative images were shown.
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