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Purpose : To establish and verify the ability of a radiomics prediction model to distinguish
invasive adenocarcinoma (IAC) and minimal invasive adenocarcinoma (MIA) presenting as
ground-glass nodules (GGNs).

Methods: We retrospectively analyzed 118 lung GGN images and clinical data from 106
patients in our hospital from March 2016 to April 2019. All pathological classifications of
lung GGN were confirmed as IAC or MIA by two pathologists. R language software
(version 3.5.1) was used for the statistical analysis of the general clinical data. ITK-SNAP
(version 3.6) and A.K. software (Analysis Kit, American GE Company) were used to
manually outline the regions of interest of lung GGNs and collect three-dimensional
radiomics features. Patients were randomly divided into training and verification groups
(ratio, 7:3). Random forest combined with hyperparameter tuning was used for feature
selection and prediction modeling. The receiver operating characteristic curve and the
area under the curve (AUC) were used to evaluate model prediction efficacy. The
calibration curve was used to evaluate the calibration effect.

Results: There was no significant difference between IAC and MIA in terms of age, gender,
smoking history, tumor history, and lung GGN location in both the training and verification
groups (P>0.05). For each lung GGN, the collected data included 396 three-dimensional
radiomics features in six categories. Based on the training cohort, nine optimal radiomics
features in three categories were finally screened out, and a prediction model was
established. We found that the training group had a high diagnostic efficacy [accuracy,
sensitivity, specificity, and AUC of the training group were 0.89 (95%CI, 0.73 - 0.99), 0.98
(95%CI, 0.78 - 1.00), 0.81 (95%CI, 0.59 - 1.00), and 0.97 (95%CI, 0.92-1.00), respectively;
those of the validation group were 0.80 (95%CI, 0.58 - 0.93), 0.82 (95%CI, 0.55 - 1.00),
0.78 (95%CI, 0.57 - 1.00), and 0.92 (95%CI, 0.83 - 1.00), respectively]. The model
calibration curve showed good consistency between the predicted and actual probabilities.
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Conclusions: The radiomics prediction model established by combining random forest
with hyperparameter tuning effectively distinguished IAC from MIA presenting as GGNs
and represents a noninvasive, low-cost, rapid, and reproducible preoperative prediction
method for clinical application.
Keywords: lung tumor, ground-glass nodules, radiomics, random forest, diagnosis
1 INTRODUCTION

Ground-glass nodule (GGN) refers to a nodular shadow with
slightly increased density on high-resolution computed
tomography (HRCT), in which the vascular and bronchial
bundles are not covered (1, 2). With the popularization of
HRCT and the extensive application of low-dose screening for
lung cancer, the detection rate of lung GGN has been constantly
increasing (3). Lung GGN is a characteristic but non-specific
imaging manifestation. Theoretically, with any decrease in air
content in the lung tissue, increase in cell density, and
proliferation of columnar cells in the alveolar wall leading to a
decrease in gas filling in the terminal saccules and alveoli,
ground-glass opacities can appear before alveoli collapse
completely. Research has shown that persistent lung GGNs are
mostly attributed to precancerous lesions or early-stage lung
adenocarcinoma (4). The 2011 International Association for the
Study of Lung Cancer/American Thoracic Society/European
Respiratory Society International Multidisciplinary Lung
Adenocarcinoma Classification (5) and WHO (2021)
Classification of Lung Tumors Pathology (6) divided lung
adenocarcinoma into three categories: pre-invasive lesions,
minimally invasive adenocarcinoma (MIA), and invasive
adenocarcinoma (IAC), among which pre-invasive lesions
include atypical adenomatous hyperplasia (AAH) and
adenocarcinoma in situ (AIS). AAH, AIS, MIA, and IAC are a
dynamic process of continuous progression involving multiple
genes, and AAH and AIS can gradually develop into MIA and
IAC (7). According to the literature, when a lung GGN was
completely removed and the margin was negative, the 5-year
disease-free survival of AIS and MIA was 100% or close to 100%
(8), the 10-year disease-specific survival (DSS) was 100% or
97.3%, and the 10-year DSS of IAC was 74.8% or 80.2%. Thus,
the prognosis of IAC was significantly worse than that of MIA
and AIS (9). The difference in prognosis determines the
difference in clinical diagnosis and treatment schemes.
Although it is still controversial, most researchers believe that
scheduled follow-up or sublobar resection (wedge resection or
segmental resection) is suitable for pre-invasive lesions and MIA,
which can preserve more lung tissue as well as reduce the
mortality and morbidity related to surgery, while lobectomy
should be performed for IAC (10, 11). Therefore, accurate
preoperative differentiation between IAC and MIA+ pre-
invasive lesions, especially IAC and MIA, will assist in
determining the appropriate surgical methods and the
judgment of prognosis (12).

Radiomics is a newly emerging field and was first proposed by
Dutch scholars Lambin et al. It refers to extracting a large volume
2

of data that are hard to observe with the naked human eye from
medical images such as B-mode ultrasonography, CT, magnetic
resonance imaging, and positron emission tomography;
radiomics uses a data characterization algorithm to transform
the medical image data into minable feature space data with high
resolution (13). Quantifying the heterogeneity of tumors using
radiomics analysis software can help to obtain more information.
Moreover, radiomics is not affected by the inherent limitations of
the professional level or subjective analysis and traditional image
interpretation; it can help us to effectively carry out pathological
classification, treatment plan formulation, and treatment
outcome and prognosis evaluation, among other tasks. It is
widely known that heterogeneity is a recognized malignant
feature of tumors, which is related to their adverse biological
behavior. The heterogeneity of tumors is related to various gene
subtypes, growth expression, and neovascularization and tumor
microenvironment factors, which lead to local differences in the
proliferation, metabolic activity, apoptosis, and blood supply
among different tumors (14). At present, radiomics has been
gradually applied in differentiating benign from malignant
pulmonary nodules (15), evaluating treatment outcomes of
lung cancer (16), and predicting the recurrence and metastasis
of lung cancer (17), among other tasks. There are few studies on
predict ing the pathological subtypes of GGN lung
adenocarcinoma, and most of them were used to differentiate
MIA/IAC from pre-invasive lesions (AAH/AIS). Weng et al. (18)
attempted to differentiate IAC from MIA by combining
morphology with omics; however, no research has been
reported on differentiation between IAC and MIA by pure
omics labeling models. In this study, random forest (19)
combined with hyperparameter tuning was used to establish
and verify the ability of a radiomics prediction model to
distinguish IAC and MIA presenting as lung GGN and to
evaluate the consistency between the probability predicted by
the model and the actual probability.
2 MATERIALS AND METHODS

2.1 Research Subjects
The study design was approved by the appropriate ethics review
board, and the requirement for obtaining informed patient
consent was waived owing to the retrospective nature of
the study.

In this study, we retrospectively analyzed data from patients
treated in our hospital from March 2016 to April 2019. The
inclusion criteria were as follows (6, 20, 21): (i) GGN on pre-
operation chest HRCT scans; (ii) the images were scanned using
May 2022 | Volume 12 | Article 872503
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the same scanning protocol on the same CT machine; (iii)
presence of lesions on at least five sections on HRCT axial
images; (iv) all lesions were confirmed as lung IAC or MIA by
pathology after surgical resection of specimens or percutaneous
biopsy: because the pathological classification of lung
adenocarcinoma would have been influenced by the subjective
experience of the pathologists, the pathological classification was
confirmed by two pathologists who had worked for 10 years after
reaching a consensus according to the new 2015 classification
criteria for lung adenocarcinoma; and (v) treatment-naive cases
before HRCT. Cases that did not meet the diagnostic
requirements where only a routine CT scan was performed or
the respiratory motion artifact was too severe were excluded.

2.2 Examination Methods
A Brilliance 64-slice CT (Philips Medical Systems, Netherlands)
machine was used for scanning. All patients received strict
breathing training before scanning, adopted the head-first
supine position, and adopted an end-inspiratory hold during
scanning. The scanning scope covered all areas from the apices to
the bottom of the lungs. Exposure conditions: 120 kV, 150 mA,
collimation 0.625 mm × 64, pitch 0.64, scanning and
reconstruction matrix both at 1024 × 1024, reconstruction slice
thickness and interval both at 0.67 mm. Scanning image
observation: mediastinal window (window position: 30–50 Hu;
window width: 250–350 Hu); pulmonary window (window
position: −450 to −600 Hu; window width: 1500–2000 Hu).
The conventional CT scan images could not accurately identify
lung GGNs; therefore, this study did not use them.

2.3 Image Analysis
First, all Digital Imaging and Communications in Medicine
images of lung GGNs were imported into the A.K. (Analysis
Kit) software developed by GE (USA) for pre-processing. Then,
ITK-SNAP software (Version 3.6) was used to manually outline
the regions of interest (ROIs) layer by layer along the inner edges
of lung GGNs based on pixel points, and then they were fused
and saved into three-dimensional (3D) images (Figure 1). All
lung GGN images were outlined by a resident who had worked
for 5 years and a deputy chief physician who had worked for 15
years. The intraclass correlation coefficient (ICC) was used for
consistency analysis, and an ICC >0.8 indicated good consistency
(22). The sketchers were blinded to the pathological results of the
lung GGNs.

To acquire radiomics feature, the original images of lung
GGNs after pre-processing and the corresponding ROI 3D
images were imported into A.K. software in batches, and six
types of radiomics features were quantitatively calculated:
histogram, form factor, texture, gray level co-occurrence
matrix (GLCM), run-length matrix (RLM), and gray level zone
size matrix (GLSZM).

2.4 Statistical Methods
2.4.1 Statistical Analysis of the Clinical Data
Using R language software (Version 3.5.1), descriptive statistical
analysis was carried out between the training and verification
groups. The chi-square test was used for qualitative variables,
Frontiers in Oncology | www.frontiersin.org 3
and the t-test or rank sum test was used for continuous variables,
with P<0.05 indicating that the difference was statistically
significant. In addition, the Bootstrap method is used to
estimate the confidence interval.

2.4.2 Screening of Radiomics Features and
Construction of a Random Forest Prediction Model
In this study, random forest combined with hyperparameter
tuning was used for prediction modeling. As a leader of ensemble
learning methods, random forest trains decision tree models with
partial data and partial features and then fuses these tree models,
and finally, uses voting to solve classification problems. Random
forest can directly deal with high-dimensional data, and there is
no need for feature screening before modeling. Random forest
hyperparameter tuning includes model framework parameters
and decision tree parameters. For model framework parameters,
the number of weak learners is mainly tuned, i.e., the number of
decision trees, and the range set in this study was 50–500.
Decision tree parameters tuning includes tree depth (3–10
layers) and the number of leaf nodes (10–50). Using random
grid search and 10-fold cross-validation, the results of
hyperparameter tuning in each iteration were evaluated by
accuracy. Finally, we found the best random forest
hyperparameters. Based on the training data, we found the
following optimal hyperparameters in this study: the number
of decision trees was 184, the tree depth was 5, and the number of
leaf nodes was 20. The best random forest model was also utilized
in the training data to assess the importance of features and
feature selection.

Using this set of hyperparameter settings, prediction analysis
of the training group and verification group based on the random
forest algorithm was carried out again, and the receiver operating
characteristic (ROC) curve was used to evaluate the prediction
efficacy of the model. The calibration curve was used to evaluate
the consistency between the probability predicted by the model
and the actual probability.
3 RESULTS

3.1 Comparison of the General Clinical
Data of Patients in the Training and
Verification Group
A total of 118 lung GGNs [36 pure GGNs (pGGNs) and 82
mixed GGNs (mGGNs)] in 106 patients were included in this
study, including 27 men (25.5%) and 79 women (74.5%) whose
ages ranged from 28 to 76 years, with an average age of 55.61 ±
11.50 years. The surgical and pathological analysis confirmed 61
IAC lesions in 56 patients and 57 MIA lesions in 53 patients; 42
lesions were located in the left lung (18 in the upper left lobe and
24 in the lower left lobe), and 76 in the right lung (10 in the upper
right lobe, 42 in the middle right lobe, and 24 in the lower right
lobe) (Figure 2). Thirteen patients had a history of smoking, and
eight had a history of a malignant tumor, all of which were lung
cancer, two of them also had a history of thyroid cancer. Ninety-
six patients had single lung GGNs, whereas 10 had multiple,
May 2022 | Volume 12 | Article 872503
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among which two patients had three lung GGNs resected at the
same time. Postoperative pathology results showed three IAC
lesions in one patient and two IAC lesions and one MIA lesion in
the other patient. All patients underwent video-assisted
thoracoscopic surgery, 56 patients underwent lobectomy, 40
patients underwent sublobar resection (segmental resection or
wedge resection), and 10 patients underwent lobectomy and
sublobar resection. No lymph node or distant metastasis was
found in any patient after the operation. The random function of
R language software (Version 3.5.1) was used to divide the 118
lung GGNs into the training group and verification group at a
ratio of 7:3. There were 83 lesions (including 43 IAC lesions and
40 MIA lesions) in the training group and 35 lesions (including
18 IAC lesions and 17 MIA lesions) in the verification group.
There was no significant difference between IAC and MIA in
terms of age, gender, smoking history, tumor history, and lung
GGN location in both groups (P>0.05) (Table 1).

3.2 Acquisition and Screening of
Radiomics Features
A total of 396 valid radiomics features in six categories were
collected by A.K. software for each lung GGN (Table 2): 42
histogram, 9 form factor, 144 texture, 11 GLCM, 180 RLM, and
10 GLSZM features. The ICC was used for consistency analysis,
and the characteristic features with an ICC <0.8 were eliminated.
Based on the data of the training group, random forest combined
with hyperparameter tuning was used to tune parameters and
Frontiers in Oncology | www.frontiersin.org 4
evaluate the importance of the radiomics features (19). Then we
extract the top-n features for training and evaluation, and the
experiment reveals that the top-9 features yields the best
outcome. Finally, nine optimal radiomics features were
screened out. The names, categories, importance, and ICC of
each radiomics features were shown in Table 3 and Figure 3, and
the difference between IAC and MIA in each feature was
statistically significant (P<0.05) (Table 4). A total of nine
features were classified into three main categories: RLM, gray
level co-occurrence matrix, and histogram features. Among
them, the seven RLM features included three short run low
grey level emphasis features, one long run low grey level
emphasis feature, one run length nonuniformity feature, one
grey level nonuniformity feature, and one low grey level run
emphasis feature. There was one gray level co-occurrence matrix
feature and one histogram feature, which were GLCM energy
and frequency size, respectively. Figure 4 shows the distribution
of the values of the radiomics features of all the IAC and MIA
patients mentioned above in the training and test datasets.

3.3 Prediction Efficacy of the Radiomics
Random Forest Model
Based on the data of the training group, random forest combined
with hyperparameter tuning results were used for prediction
modeling, and prediction analysis of the training group and
verification group based on the random forest algorithm was
carried out again with this set of hyperparameter settings; the
FIGURE 1 | Acquisition process for the radiomics features. (A) Digital Imaging and Communications in Medicine image of the transverse section of the ground-glass
nodule was pre-processed by A.K. software and then imported into ITK-SNAP software. (B) ROI was manually outlined layer by layer along the inner edge of the
lesion based on pixel points. (C) ROI was outlined. (D) It was fused and saved as an ROI three-dimensional image and imported into A.K. software together with the
pre-processed original image (A) in batches to quantitatively calculate the radiomics features. ROI, Region of interest.
May 2022 | Volume 12 | Article 872503
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ROC curve was used to evaluate the prediction efficacy of the
model (Figure 5). The accuracy for the training group was 0.89
(95%CI, 0.73 - 0.99), sensitivity was 0.98 (95%CI 0.78 - 1.00),
specificity was 0.81 (95%CI, 0.59 - 1.00), and area under the
Frontiers in Oncology | www.frontiersin.org 5
curve (AUC) was 0.97(95%CI, 0.92-1.00); the accuracy for the
verification group was 0.80 (95%CI, 0.58 - 0.93), sensitivity was
0.82 (95%CI, 0.55 - 1.00), specificity was 0.78 (95%CI, 0.57 -
1.00), and AUC was 0.92 (95%CI, 0.83 - 1.00). The calibration
TABLE 1 | Comparison of the general clinical data of patients in the training and verification groups (N = 118).

Clinical data Training group Verification group

IAC MIA P1 IAC MIA P

Number of cases (cases) 42 38 16 15
Number of lesions (number) 43 40 18 17
Age (years) 56.21 ± 11.15 54.23 ± 9.98 0.3978 56.94 ± 12.80 54.71 ± 11.62 0.5938
Gender (male/female) (12/30) (9/29) 0.6198 (5/11) (4/11) 0.2504
Smoking history (cases) 4 5 0.1109 2 2 0.6406
Tumor history (cases) 3 2 0.2476 1 2 0.0629
GGN location (left/right) (16/27) (12/28) 0.4876 (9/9) (5/12) 0.2140
May 20
22 | Volume 12 | Article
P<0.05 indicates statistically significant difference.
GGN, ground-glass nodule; IAC, invasive adenocarcinoma; MIA, minimally invasive adenocarcinoma.
FIGURE 2 | CT Findings of representative IAC and MIA nodules. (A) M/55y, pGGN of the right upper lobe with a long diameter of 1.2 cm, pathological diagnosis
showed that the lesion was IAC. (B) M/32y, mGGN of the right upper lobe with a long diameter of 1.5 cm, pathological diagnosis showed that the lesion was IAC.
(C) F/62y, pGGN with a long diameter of 1.2 cm in the right middle lobe, pathological diagnosis showed that the lesion was MIA. (D) F/55y, pGGN with a long
diameter of 1.0 cm in the right lower lobe, pathological diagnosis showed that the lesion was MIA. CT, computed tomography; pGGN, pure ground-glass nodule;
mGGN, mixed ground-glass nodules; IAC, invasive adenocarcinoma; MIA, minimally invasive adenocarcinoma.
872503
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curve of the prediction model (Figure 6) showed good
agreement between the predic ted probabi l i ty and
actual probability.
4 DISCUSSION

4.1 Epidemiology
Lung cancer is the leading cause of cancer-related death
worldwide (23) and at present, it has the fastest growing
prevalence and mortality among human malignancies (24) and
the trend is rising. Adenocarcinoma is the most common
pathological type of lung cancer, accounting for approximately
50% of cases of lung cancer. The proportion of males is higher
than that of females, and smoking is the most important risk
factor (25). In this study, the proportion of female patients was
much higher than that of male patients (79/27), and the
proportion of smokers (13/106) was relatively low, which is
inconsistent with previous reports. It might be related to the case
selection in this study, and at the same time, it is necessary to
consider that the incidence in females has been increasing year
after year due to indoor air pollution and second-hand smoke
exposure, among other factors. There were no significant
differences in age, gender, smoking history, tumor history, or
GGN location between IAC and MIA patients, which is
consistent with the literature (26). The National Lung
Screening Trial in the United States showed that CT low-dose
screening was helpful in reducing the mortality of lung cancer
Frontiers in Oncology | www.frontiersin.org 6
(27). In recent years, the detection rate of GGN lung
adenocarcinoma has been increasing, and early diagnosis and
accurate pathological classification have become the keys to
treatment. However, due to the overlapping of traditional
imaging manifestations among pathological subtypes, it is still
difficult to accurately classify them, especially distinguishing
between IAC and MIA, which are both invasive lesions.
Therefore, a systematic and objective differential diagnosis
method must be urgently developed.

4.2 Correlation Between Radiomics
Features and Pathological Subtypes of
GGN Lung Adenocarcinoma
Through univariate analysis, in the verification group, there was
no significant difference in tumor history between IAC and MIA
(P=0.0629). However, due to the small sample size, the results
presented here should be carefully considered. Notably, since a
purely radiomics prediction model was employed in this study,
biological differences in tumor history have limited potential
impact on model efficacy. When using combined clinical-
radiomic prediction models, propensity score matching should
be used to control for confounding variables in the presence of
statistically significant biological differences in tumor history to
improve data comparability. Using radiomics, numerous
imaging features can be extracted via software analysis of
lesion heterogeneity, which is objective, does not cost much
and facilitates the prediction of clinical outcomes (13). In this
study, nine optimal radiomics features were screened out by
combining random forest with hyperparameter tuning, which
were classified into three categories: RLM, gray level co-
occurrence matrix, and histogram features. Except for one
histogram feature that belongs to the low-order texture, the
other eight features belong to the high-order texture which
shows the distribution of pixel points. This also reveals that
high-order texture can better reflect the spatial heterogeneity
changes of lung GGNs.

The histogram is a function of the image gray level (28) which
describes and compares the distributions of pathological or
biological indicators quantitatively. Histogram features are
related to the attributes of a single pixel, and the distribution
of voxel intensity in CT images is described by common and
basic indices; thus, the calculation results of voxel values are
more accurate. It has been reported that the histogram pattern
based on CT pixels can assist in distinguishing AAH from
bronchioloalveolar carcinoma (29, 30). Although frequency
size was the only histogram feature selected in this study, it
ranked fourth in importance (Figure 3), which reflects its value
in terms of the differential diagnosis of IAC and MIA. The
GLCM is a two-dimensional gray histogram that examines a pair
of pixels separated by a fixed spatial relationship, which reflects
the change speed and amplitude of pixel gray levels at different
intervals and in different directions in the image. It is the basis for
analyzing the arrangement rules and local patterns of images,
including 11 indices such as energy, entropy, inertia, and
correlation (31), which reflect the internal characteristics and
spatial heterogeneity of tumors. Energy is a set of feature values
that indicates the complexity of image texture. A large energy
TABLE 3 | Names, categories, importance, and ICC of the selected radiomics
features.

Radiomics features Importance ICC

Run-length matrix features
Short run low grey level emphasis_angle135_offset1 1.06635 0.988
Run length nonuniformity_AllDirection_offset1 1.06588 0.997
Long run low grey level emphasis_AllDirection_offset4 1.06569 0.993
Grey level nonuniformity_AllDirection_offset1 1.06564 0.984
Short run low grey level emphasis_AllDirection_offset4 1.06563 0.995
Low grey level run emphasis_angle90_offset1 1.06560 0.982
Short run low grey level emphasis_angle135_offset7 1.06554 0.965
Gray level co-occurrence matrix features
GLCM energy_AllDirection_offset1_SD 1.06594 0.999
Histogram features
Frequency size 1.06570 0.996
GLCM, gray level co-occurrence matrix; SD, square deviation; ICC, intraclass correlation
coefficient.
TABLE 2 | Types and numbers of valid radiomics features.

Type of valid radiomics features n

Histogram features 42
Form factor features 9
Texture features 144
Gray level co-occurrence matrix features 11
Run-length matrix features 180
Gray level zone size matrix features 10
May 2022 | Volume 12 | Article 872503
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value indicates that the image has very good uniformity or very
similar pixels, and vice versa. Heterogeneity of malignant tumors
is caused by tissue structure changes resulting from uneven
distribution of cell density, hemorrhage, necrosis, and mucoid
degeneration, among other factors (32). Pathologically, IAC is
more heterogeneous than MIA, and the complexity of image
texture is also higher, though it is not easy to detect using the
naked eye. The energy value of IAC in this study was significantly
less than that of MIA (Table 4), which objectively reflected the
difference in image texture between them. The RLM features
Frontiers in Oncology | www.frontiersin.org 7
mainly reflect the roughness and directionality of the image.
Directional texture will have a longer run length at a certain
angle, in which the value of short run emphasis is larger on
rougher images, and that of long run emphasis is larger on
smoother images. The run length is related to the gray level
distribution of the image, and the heterogeneity of the tumor
often reflects the gray level changes of the image; thus, the RLM
is very sensitive to the texture changes of lung GGNs. Among the
nine optimal radiomics features that were finally selected, seven
were RLM features, and short run emphasis ranked first in
TABLE 4 | Comparative analysis of selected radiomics features between IAC and MIA.

Radiomics Features Pathological type Value P

Short run low grey level emphasis_angle135_offset1 IAC 4.24×10-4 ± 4.31×10-4 0.0000
MIA 1.55×10-3 ± 1.13×10-3

Run length nonuniformity_AllDirection_offset1 IAC 1705.55 ± 1686.94 0.0013
MIA 320.71 ± 380.09

Long run low grey level emphasis_AllDirection_offset4 IAC 5.81×10-3 ± 6.97×10-3 0.0005
MIA 2.39×10-2 ± 1.80×10-2

Grey level nonuniformity_AllDirection_offset1 IAC 19.56 ± 24.42 0.0000
MIA 4.72 ± 5.61

Short run low grey level emphasis_AllDirection_offset4 IAC 4.20×10-4 ± 4.27×10-4 0.0000
MIA 1.54×10-3 ± 1.12×10-3

Low grey level run emphasis_angle90_offset1 IAC 1.50×10-3 ± 1.76×10-3 0.0000
MIA 6.05×10-3 ± 4.51×10-3

Short run low grey level emphasis_angle135_offset7 IAC 4.20×10-4 ± 4.26×10-4 0.0000
MIA 1.53×10-3 ± 1.12×10-3

GLCM energy_AllDirection_offset1_SD IAC 1.21×10-8 ± 4.18×10-8 0.0000
MIA 5.93×10-7 ± 2.13×10-6

Frequency size IAC 1821.46 ± 1838.75 0.0000
MIA 340.68 ± 417.84
May 2022 | Volume 12 | Article
P<0.05 indicates statistically significant difference.
IAC, invasive adenocarcinoma; MIA, minimally invasive adenocarcinoma; GLCM, gray level co-occurrence matrix; SD, square deviation.
FIGURE 3 | Names, importance, and sorting of radiomics features.
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importance (Figure 3). This shows that the RLM is most valuable
for distinguishing IAC from MIA.

Form factor features are of great value in the differential
diagnosis of pathological subtypes of GGN lung adenocarcinoma.
Chae et al. (33) showed that mass (volume*density) was
significantly different between pre-invasive lesions (AAH/AIS)
and invasive lesions (MIA/IAC) presenting as mGGNs. However,
none of the form factor features in this study were selected as an
optimal feature, which might be related to the similarity and
overlapping of morphological features between IAC and MIA,
which is why it is more difficult to differentiate them.
Frontiers in Oncology | www.frontiersin.org 8
4.3 Value and Superiority of the Radiomics
Random Forest Model
Quantitative features such as the geometry, wavelet, and texture
in the internal space of tumors were collected in a high-
throughput way using radiomics software. The characteristic
variables were screened out by computer artificial intelligence
technology, and a quantitative prediction model was constructed,
which made it a brand-new imaging diagnosis decision-making
and analysis tool. Its application scope covers the qualitative
analysis, clinical staging and grading, treatment outcome
evaluation, and prognosis prediction of tumors (34).
FIGURE 5 | Receiver operating characteristic curve analysis of the radiomics random forest prediction model in differentiating lung ground-glass nodule-type invasive
adenocarcinoma and minimal invasive adenocarcinoma in the training group (blue line) and the verification group (red line). The areas under the curve of the training
and verification groups were 0.97(95%CI, 0.92-1.00) and 0.92 (95%CI, 0.83 - 1.00), respectively. CI, confidence intervals.
FIGURE 4 | Heat map of radiomics features. Each row represents a feature, and each column represents a lung ground-glass nodule. The figure shows the
difference between invasive adenocarcinoma and minimal invasive adenocarcinoma in each feature and indicates the classification ability of the features.
May 2022 | Volume 12 | Article 872503
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At present, studies using radiomics prediction models to
distinguish pathological subtypes of lung adenocarcinoma mainly
focus on MIA/IAC and AAH/AIS or IAC and AIS/MIA, and have
achieved promising results. For example, the predictive model
between IVA and AIS/MIA based on pGGNs established by Xu
et al. (35), the AUC value of the combined model was 0.848 (95%
CI, 0.750-0.946); the combined clinical model ofWu et al. (36) - The
AUC values of the radiological model were 0.917 and 0.876 in the
training and validation groups, respectively. It is worth noting that
in 2021, the “WHO Classification of Thoracic Tumors (5th
Edition)” has excluded AIS from the category of lung
malignancies and classified it as a glandular precursor lesion
together with AAH. Although both MIA and IAC require
surgical treatment, MIA is suitable for sublobar resection (wedge
resection or segmentectomy) with a 5-year disease-free survival rate
of approximately 100% after complete resection, and IAC is suitable
for standard lobectomy and extensive lobectomy. With lymph node
dissection, the 5-year disease-free survival rate was 74.6%.
Therefore, accurate preoperative identification of IAC and MIA
will help guide the selection of surgical methods and the judgment
of prognosis. Currently, studies to differentiate MIA from IAC are
very rare. A previous study (18) constructed a combined prediction
model integrating lesion shape and radiological features to
distinguish MIA from IAC, with an AUC of 0.888. In this study,
by using the same equipment, using the same scanning protocol and
the same reconstruction scheme to acquire images, and using AK
software for image preprocessing to ensure image consistency, we
finally obtained AUC superior to the above studies values.

Fan et al. (37) established an individualized prediction model
based on the patient’s age, spicule sign, pleural indentation sign,
and radiomic labels, and established a clinical model based on the
patient’s age, spicule sign, and pleural indentation sign to
distinguish GGN lung adenocarcinoma from invasive lesions
(AAH/AIS). The results showed that the AUC increased from
0.743 in the clinical model to 0.934 in the individualized prediction
model, indicating the importance of radiomic labeling. She et al.
(38) included 402 patients with lung GGNs and extracted 60
Frontiers in Oncology | www.frontiersin.org 9
radiomics features, among which five features were the most
critical diagnostic factors. The results showed that the AUCs of
the radiomics prediction model in the training group and
verification group were 0.95 and 0.89, respectively, indicating
that radiomics had advantages in differentiating IAC from MIA/
AIS. Weng et al. (18) included 119 pulmonary mGGN patients to
differentiate IAC from MIA and extracted 396 radiomics features,
among which four were optimal distinguishing features for
establishing a radiomics model. The results showed that the
AUCs of the radiomics feature model for the training and
verification groups were 0.854 and 0.813, respectively. Then, a
CT feature model was established using lesion morphology and
the diameter of the solid components; the AUC was 0.755. Finally,
the lesion morphology and radiomics features were combined, and
the AUCwas 0.888. In this study, A.K. software was used to collect
the radiomics features; the optimal radiomics features were
screened out by random forest combined with hyperparameter
tuning and a predictionmodel was established. The results showed
that the AUCs of the training and verification groups were 0.97
(95%CI, 0.92 - 1.00) and 0.92 (95%CI, 0.83 - 1.00), respectively,
indicating that the prediction model could differentiate IAC and
MIA presenting as lung GGN non-invasively. This study
established a pure radiomics labeling model, and the
differentiation objects were IAC and MIA with more similar
pathological features. The prediction efficacy was similar to that
of individualized prediction models, which might be related to the
fact that this study collected cases scanned with the same CT
machine and the same scanning protocol, and pre-processed all
images before outlining ROIs, which reduced the influences of
equipment and scanning parameters on the results to some extent.

Chae et al. (33) used an artificial neural network to establish a
radiomics prediction model to distinguish pre-invasive lesions
(AAH/AIS) from invasive lesions (MIA/IAC) of mGGN lung
adenocarcinoma and achieved good results (AUC=0.981).
Although an artificial neural network can solve dichotomy
problems well, its generalization ability in specific models is
limited due to potential over-fitting and a complex structure.
FIGURE 6 | Calibration curve of the radiomics random forest prediction mode.
May 2022 | Volume 12 | Article 872503
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Random forest is an algorithm that integrates multiple decision
trees through the idea of ensemble learning, and it essentially
belongs to the ensemble learning method in machine learning. It
can handle both continuous data and discrete data and can also
handle missing data and sort the importance of variables. The
results of random forest models have higher accuracy and
generalization performance; thus, they are often used to predict
the risk of diseases and susceptibility of patients (39).

4.4 Limitations
This study had some limitations. First, owing to the retrospective
nature of the study, there is potential bias; thus prospective studies
are required to confirm our results. Second, the manual sketching
of ROIs made it difficult to eliminate bronchi and blood vessels in
the nodules; thus, the accuracy of some features might be affected.
Third, the boundary between some nodules and normal lung
tissue was unclear, and boundary leakage might occur during
image segmentation. Moreover, similar to some previous studies
(22, 35, 36, 40), this study divides the lesions are divided into train
and test sets – this leads to the possibility of overfitting as two
lesions from the same patient may end up in different subsets.
Finally, the sample size was too small, and the prediction accuracy
of the model might be unstable to some extent. Therefore, future
studies with larger sample sizes are warranted.
5 CONCLUSION

The radiomics prediction model established by combining
random forest with hyperparameter tuning could effectively
Frontiers in Oncology | www.frontiersin.org 10
differentiate IAC and MIA presenting as lung GGN and
could provide a noninvasive , low-cost , rapid, and
reproducible preoperative prediction method that is
clinically applicable.
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Epidemiology: Contemporary and Future Challenges Worldwide. Ann Transl
Med (2016) 4:150. doi: 10.21037/atm.2016.03.11

25. McGuire S. World Cancer Report 2014. Geneva, Switzerland: World Health
Organization, International Agency for Research on Cancer, WHO Press. Adv
Nutr (2016) 7:418–9. doi: 10.3945/an.116.012211

26. Song YS, Park CM, Park SJ, Lee SM, Jeon YK, Goo JM. Volume and Mass
Doubling Times of Persistent Pulmonary Subsolid Nodules Detected in
Patients Without Known Malignancy. Radiology (2014) 273:276–84.
doi: 10.1148/radiol.14132324

27. National Lung Screening Trial Research Team. Reduced Lung-Cancer
Mortality With Low-Dose Computed Tomographic Screening. N Engl J
Med (2011) 365:395–409. doi: 10.1056/NEJMoa1102873

28. Castellano G, Bonilha L, Li LM, Cendes F. Texture Analysis of Medical
Images. Clin Radiol (2004) 59:1061–9. doi: 10.1016/j.crad.2004.07.008

29. Nomori H, Ohtsuka T, Naruke T, Suemasu K. Differentiating Between
Atypical Adenomatous Hyperplasia and Bronchioloalveolar Carcinoma
Using the Computed Tomography Number Histogram. Ann Thorac Surg
(2003) 76:867–71. doi: 10.1016/s0003-4975(03)00729-x

30. Ikeda K, Awai K, Mori T, Kawanaka K, Yamashita Y, Nomori H. Differential
Diagnosis of Ground-Glass Opacity Nodules: CT Number Analysis by Three-
Dimensional Computerized Quantification. Chest (2007) 132:984–90.
doi: 10.1378/chest.07-0793

31. Haralick RM, Sternberg SR, Zhuang X. Image Analysis Using Mathematical
Morphology. IEEE Trans Pattern Anal Mach Intell (1987) 9:532–50.
doi: 10.1109/TPAMI.1987.4767941
Frontiers in Oncology | www.frontiersin.org 11
32. Ganeshan B, Goh V, Mandeville HC, Ng QS, Hoskin PJ, Miles KA. Non–small
Cell Lung Cancer: Histopathologic Correlates for Texture Parameters at CT.
Radiology (2013) 266:326–36. doi: 10.1148/radiol.12112428

33. Chae HD, Park CM, Park SJ, Lee SM, Kim KG, Goo JM. Computerized
Texture Analysis of Persistent Part-Solid Ground-Glass Nodules:
Differentiation of Preinvasive Lesions From Invasive Pulmonary
Adenocarcinomas. Radiology (2014) 273:285–93. doi: 10.1148/
radiol.14132187

34. Yang B, Guo L, Lu G, Shan W, Duan L, Duan S. Radiomic Signature: A non-
Invasive Biomarker for Discriminating Invasive and non-Invasive Cases of
Lung Adenocarcinoma. Cancer Manag Res (2019) 11:7825–34. doi: 10.2147/
CMAR.S217887

35. Xu F, Zhu W, Shen Y, Wang J, Xu R, Qutesh C, et al. Radiomic-Based
Quantitative CT Analysis of Pure Ground-Glass Nodules to Predict the
Invasiveness of Lung Adenocarcinoma. Front Oncol (2020) 10:872.
doi: 10.3389/fonc.2020.00872

36. Wu L, Gao C, Xiang P, Zheng S, Pang P, Xu M. CT-Imaging Based Analysis of
Invasive Lung Adenocarcinoma Presenting as Ground Glass Nodules Using
Peri- and Intra-Nodular Radiomic Features. Front Oncol (2020) 10:838.
doi: 10.3389/fonc.2020.00838

37. Fan L, Fang M, Li Z, Tu W, Wang S, Chen W, et al. Radiomics Signature: A
Biomarker for the Preoperative Discrimination of Lung Invasive
Adenocarcinoma Manifesting as a Ground-Glass Nodule. Eur Radiol (2019)
29:889–97. doi: 10.1007/s00330-018-5530-z

38. She Y, Zhang L, Zhu H, Dai C, Xie D, Xie H, et al. The Predictive Value of CT-
Based Radiomics in Differentiating Indolent From Invasive Lung
Adenocarcinoma in Patients With Pulmonary Nodules. Eur Radiol (2018)
28:5121–8. doi: 10.1007/s00330-018-5509-9

39. Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine Learning for Medical
Imaging. Radiographics (2017) 37:505–15. doi: 10.1148/rg.2017160130

40. Autrusseau PA, Labani A, De Marini P, Leyendecker P, Hintzpeter C, Ortlieb
AC, et al. Radiomics in the Evaluation of Lung Nodules: Intrapatient
Concordance Between Full-Dose and Ultra-Low-Dose Chest Computed
Tomography. Diagn Interventional Imaging (2021) 102:233–9. doi: 10.1016/
j.diii.2021.01.010

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zhao, Fan, Shan, Zhou, Pang, Fu, Yang, Wu, Sun, Yang and
Huang. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) and the copyright owner(s) are
credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.
May 2022 | Volume 12 | Article 872503

https://doi.org/10.1016/j.ijrobp.2017.10.046
https://doi.org/10.1016/j.crad.2019.07.026
https://doi.org/10.1016/j.crad.2019.07.026
https://doi.org/10.1023/A1010933404324
https://doi.org/10.1023/A1010933404324
https://doi.org/10.1148/radiol.2020192431
https://doi.org/10.21037/tlcr-20-370
https://doi.org/10.1007/s00330-020-06776-y
https://doi.org/10.1001/jamaoncol.2016.5688
https://doi.org/10.21037/atm.2016.03.11
https://doi.org/10.3945/an.116.012211
https://doi.org/10.1148/radiol.14132324
https://doi.org/10.1056/NEJMoa1102873
https://doi.org/10.1016/j.crad.2004.07.008
https://doi.org/10.1016/s0003-4975(03)00729-x
https://doi.org/10.1378/chest.07-0793
https://doi.org/10.1109/TPAMI.1987.4767941
https://doi.org/10.1148/radiol.12112428
https://doi.org/10.1148/radiol.14132187
https://doi.org/10.1148/radiol.14132187
https://doi.org/10.2147/CMAR.S217887
https://doi.org/10.2147/CMAR.S217887
https://doi.org/10.3389/fonc.2020.00872
https://doi.org/10.3389/fonc.2020.00838
https://doi.org/10.1007/s00330-018-5530-z
https://doi.org/10.1007/s00330-018-5509-9
https://doi.org/10.1148/rg.2017160130
https://doi.org/10.1016/j.diii.2021.01.010
https://doi.org/10.1016/j.diii.2021.01.010
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Predictive Efficacy of a Radiomics Random Forest Model for Identifying Pathological Subtypes of Lung Adenocarcinoma Presenting as Ground-Glass Nodules
	1 Introduction
	2 Materials and Methods
	2.1 Research Subjects
	2.2 Examination Methods
	2.3 Image Analysis
	2.4 Statistical Methods
	2.4.1 Statistical Analysis of the Clinical Data
	2.4.2 Screening of Radiomics Features and Construction of a Random Forest Prediction Model


	3 Results
	3.1 Comparison of the General Clinical Data of Patients in the Training and Verification Group
	3.2 Acquisition and Screening of Radiomics Features
	3.3 Prediction Efficacy of the Radiomics Random Forest Model

	4 Discussion
	4.1 Epidemiology
	4.2 Correlation Between Radiomics Features and Pathological Subtypes of GGN Lung Adenocarcinoma
	4.3 Value and Superiority of the Radiomics Random Forest Model
	4.4 Limitations

	5 Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


