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Cancer stem cells, a relatively small group of self-renewing cancer cells, were first isolated
from acute myeloid leukemia. These cells can play a crucial role in tumor metastasis,
relapse, and therapy resistance. The cancer stem cell theory may be applied to lung
cancer and explain the inefficiency of traditional treatments and eventual recurrence.
However, because of the unclear accuracy and illusive biological function of cancer stem
cells, some researchers remain cautious about this theory. Despite the ongoing
controversy, cancer stem cells are still being investigated, and their biomarkers are
being discovered for application in cancer diagnosis, targeted therapy, and prognosis
prediction. Potential lung cancer stem cell markers mainly include surface biomarkers
such as CD44, CD133, epithelial cell adhesion molecule, and ATP-binding cassette
subfamily G member 2, along with intracellular biomarkers such as aldehyde
dehydrogenase, sex-determining region Y-box 2, NANOG, and octamer-binding
transcription factor 4. These markers have different structures and functions but are
closely associated with the stem potential and uncontrollable proliferation of tumor cells.
The aberrant activation of major signaling pathways, such as Notch, Hedgehog, and Wnt,
may be associated with the expression and regulation of certain lung cancer stem cell
markers, thus leading to lung cancer stem cell maintenance, chemotherapy resistance,
and cancer promotion. Treatments targeting lung cancer stem cell markers, including
antibody drugs, nanoparticle drugs, chimeric antigen receptor T-cell therapy, and other
natural or synthetic specific inhibitors, may provide new hope for patients who are
resistant to conventional lung cancer therapies. This review provides comprehensive
and updated data on lung cancer stem cell markers with regard to their structures,
functions, signaling pathways, and promising therapeutic target approaches, aiming to
elucidate potential new therapies for lung cancer.
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1 INTRODUCTION

Considerable achievements have been made in improving
patient survival by providing better treatments. However,
several obstacles remain because of drug resistance, metastasis,
and the lack of specific targeted drugs. The cancer stem cell
(CSC) theory suggested that there is a relatively small group of
self-renewing cancer cells that play a crucial role in tumor
metastasis, relapse, and therapy resistance (1). However,
because of the unclear accuracy and illusive biological function
of CSCs, some researchers remain cautious and find this theory
controversial (2, 3). In lung cancer, CSC theory may also explain
the inefficiency of traditional treatments and eventual
recurrence. Despite the ongoing controversy, CSCs are still
being investigated and discovered (4).

CSCs are a subtle group of tumor cells with potential
multidirectional differentiation capacity, high self-renewal, and
tumorigenicity (1). They were first isolated from acute myeloid
leukemia (5, 6) and may be derived from either regular tissue-
specific stem cells or differentiated cells at tumor initiation to
activate survival pathways and gain the ability to proliferate
indefinitely (7). Because of their importance, CSC biomarkers
can be used in cancer diagnosis, targeted therapy, and prognosis
prediction. Potential markers of lung CSCs mainly include
surface biomarkers, such as CD44, CD133, epithelial cell
adhesion molecule (EpCAM), and ATP-binding cassette
subfamily G member 2 (ABCG2), along with intracellular
biomarkers, such as aldehyde dehydrogenase (ALDH), sex-
determining region Y-box 2 (SOX2), NANOG, and octamer-
binding transcription factor 4 (OCT4). This review focuses on
the most frequently studied lung CSC markers with their
structures, functions, potential mechanisms, and signaling
Frontiers in Oncology | www.frontiersin.org 2
pathways of therapy resistance and cancer relapse. The
objective of this review was to provide updated data on lung
CSC markers as promising therapeutic targets in patients with
lung cancer, hoping to bring new hope on lung cancer treatment.
2 STRUCTURE AND FUNCTION OF LUNG
CANCER STEM CELL MARKERS

Various possible lung CSC markers have been identified to label
heterogeneous lung CSC populations. A summary of the
potential biomarkers for lung CSC, including surface and
intracellular markers, is discussed below. Tables 1, 2 provide a
comprehensive list of the most frequent stem cell markers in
non-small cell lung cancer (NSCLC) and small cell lung cancer
(SCLC), respectively, and describe their structures and main
functions. Notably, one marker is usually not enough to
distinguish lung CSCs accurately. Thus, using marker
combinations is a wise approach to identify and isolate cells
that may stimulate cancer formation, chemoresistance,
and recurrence.

2.1 Potential Surface Markers for Lung
Cancer Stem Cell
2.1.1 CD44
CD44 (P-glycoprotein 1), a type I transmembrane glycoprotein,
belongs to the family of cell adhesion molecules, and its gene is
located on human chromosome 11 (11p13). Human CD44
weighs 85–200 kDa and consists of 742 amino acids (8).
Through selective shearing and post-translational modification,
CD44 can form a variety of isoforms that can combine with a
range of ligands on the cell surface and are involved in the
TABLE 1 | Potential non-small cell lung cancer stem cell markers, structures, and functions.

Stem cell markers Structure Function

Surface markers, CD
CD44 Type I transmembrane glycoprotein (85–250 kDa) Hyaluronic acid receptor
CD90 Glycosylphosphatidylinositol-anchored glycoprotein (25–35 kDa) Cell-cell/environment communication
CD117 Type I transmembrane glycoprotein (approximately 145 kDa) Tyrosine kinase growth factor receptor
CD133 Cholesterol-binding five-fold transmembrane glycoprotein (97–120 kDa) Interacts with VEGF, participates in signal transduction
CD166 Type I transmembrane glycoprotein (100–105 kDa) Activated leukocyte adhesion molecule
Surface markers, not CD
EpCAM Single transmembrane protein (30–40 kDa) Cell adhesion, proliferation, differentiation, and migration
ABCG2 Half transporter (approximately 72 kDa) composed of six transmembrane

domains and only one ATP-binding domain
Xenobiotic transporter and multidrug efflux pump
related to chemoresistance

FZD 7-transmembrane protein (approximately 64 kDa) Wnt signaling receptor
CXCR4 G protein-coupled seven-transmembrane protein (40–70 kDa) Chemokine receptor
Intracellular markers
ALDH Polypeptide tetramer (50–55 kDa) Alcohol metabolism; cell differentiation, drug resistance,

and oxidative stress response
SOX2 Member of the SRY-related HMG box family (~2.4 kb) Cell proliferation, apoptosis, EMT, tumor migration,

invasion, and chemoresistance
OCT4 Member of the POU transcription factor family (16.4 kb) Cell pluripotency, tumor metastasis, and therapy

resistance
NANOG DNA binding homeobox transcription factor (~150 kb) Cell pluripotency, proliferation, and apoptosis
BMI1 A protooncogene Cell proliferation, senescence, and tumor promotion
VEGF, vascular endothelial growth factor; EMT, epithelial-to-mesenchymal transition; EpCAM, epithelial cell adhesion molecule; ABCG2, ATP-binding cassette subfamily G member 2;
FZD, frizzled receptors; PDZ, PSD-95, DLG, and ZO1; CXCR4, C-X-C motif chemokine receptor 4; ALDH, aldehyde dehydrogenase; SOX2, sex-determining region Y-box 2; SRY, sex-
determining region Y; HMG, high-mobility group; OCT4, octamer-binding transcription factor 4; BMI1, B-cell-specific Moloney murine leukemia virus integration site 1.
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physiological and pathological processes of cells. CD44 is a
hyaluronic acid receptor, and the communication between
CD44 and hyaluronic acid is speculated to induce cell
shedding, metastasis, and invasion (9). CD44 is expressed in
almost all types of tumors and is a potential marker of
mesenchymal stem cells and CSCs (10). It was found that
CD44high/CD24low cells lost epithelial cell markers and
expressed more mesenchymal cell markers. These cells
achieved the ability of self-renewal and heterogeneous
differentiation, demonstrating that epithelial-to-mesenchymal
transition (EMT) may help normal and tumor cells acquire
stemness (11). In lung cancer, studies have shown that CD44
expression is higher in NSCLC than in SCLC, and the highest
expression level was observed in lung squamous cell carcinoma
(12). Cells derived from NSCLC cell lines were found to have
chromosomal aberrations and 1p36 deletion, which significantly
reduce the expression of the tumor suppressor gene miR-34a
located at 1p36. However, overexpression of miR-34a attenuates
the stem phenotype of CD44+ cells (13). CD44 regulates several
signaling pathways to promote cancer progression, including
Notch, Hedgehog (HH), Wnt, STAT3, Hippo, JNK, and
RhoGTPase, and is a coreceptor that mediates signaling
pathways by receptor tyrosine kinases (14, 15). Besides, CD44
is a key mediator of adhesion between endothelial cells, thus
playing a major role in pathological angiogenesis (16). By
binding to ezrin, radixin and moesin proteins, CD44 can bind
to the cytoskeleton with the cell membrane, which facilitates
cancer cell growth and metastasis. CD44 can also mediate tumor
proliferation and immune evasion by promoting PD-L1
Frontiers in Oncology | www.frontiersin.org 3
expression on the tumor cell surface (17). CD44 expression
may play a significant role in epidermal growth factor receptor
(EGFR)-mutant neoplasms, particularly in early NSCLC (18, 19),
and CD44 is important in predicting EMT upon EGFR-TKI
monotherapy in patients with lung cancer (20). CD44 and
ALDH co-expressing cells, which are higher in lung squamous
cell carcinoma, always show increased self-renewal capacity,
enhanced migration ability, and tumorigenicity (21).

2.1.2 CD133
CD133 (prominin-1) is a cholesterol-binding five-fold
transmembrane glycoprotein that was first isolated in 1997 from
mouse neural and CD34+ human progenitor and hematopoietic
stem cells (22). Subsequently, CD133 was identified as a potential
CSC marker, and research on CD133 has been focused on lung,
breast, colon, and liver cancers. The structure of CD133 contains
one extracellular N-terminal, two intracellular loops rich in cysteine,
two extracellular loops that possess nine N-linked glycosylation
parts, and one cytoplasmic C-terminal. The human CD133 gene
contains at least 37 exons, more than 150 kb in length, and is
controlled by five promoters, encoding a 97–120 kDa glycoprotein
composed of 865 amino acids (23).

In terms of its function in lung cancer, CD133 is not only a
potential biomarker of lung CSC but also a potential therapeutic
target and prognostic factor. CD133 correlates with metastasis,
therapy resistance, and worse outcomes. CD133+ cells can
expand, invade, and self-renew, whereas CD133- cells are
terminally differentiated in lung cancer (24). Thus, targeting
and destroying CD133+ lung CSCs may significantly inhibit
TABLE 2 | Potential small cell lung cancer stem cell markers, structures, and functions.

Stem cell
markers

Structure Function

Surface markers, CD
CD24 Sialo-glycoprotein (30–70 kDa) anchored to the plasma membrane via a GPI link Cell surface adhesion and signal transducing molecule
CD44 Type I transmembrane glycoprotein (85–250 kDa) Hyaluronic acid receptor
CD87/uPAR Highly glycosylated, GPI-anchored membrane protein (45–65 kDa) uPA receptor; proteolysis regulation; cell adhesion, migration, and

proliferation
CD90 GPI-anchored glycoprotein (25–35 kDa) Cell-cell/environment communication
CD133 Cholesterol-binding five-fold transmembrane glycoprotein (97–120 kDa) Interact with VEGF, participates in signal transduction
CD166 Type I transmembrane glycoprotein (100–105 kDa) Activated leukocyte adhesion molecule
Surface markers, not CD
EpCAM Single transmembrane protein (30–40 kDa) Cell adhesion, proliferation, differentiation, and migration
ABCG2 Half transporter (~72 kDa) composed of six transmembrane domains and only

one ATP-binding domain
Xenobiotic transporter and multidrug efflux pump related to
chemoresistance

PODXL1 Transmembrane glycosylated
cell surface sialo-mucin (~55 kDa)

Sodium-hydrogen exchange regulatory cofactor 2; cell morphology
and adhesion

PTCH Patched gene (~70 kb) composed of 5 alternative first exons in addition to the
other 22 exons

Cell differentiation and branching morphogenesis

Intracellular markers
ALDH Polypeptide tetramer (50–55 kDa) Alcohol metabolism; cell differentiation, drug resistance, and

oxidative stress response
SOX2 Member of the SRY-related HMG box family (~2.4 kb) Cell proliferation, apoptosis, EMT, tumor migration, invasion, and

chemoresistance
OCT4 Member of the POU transcription factor family (16.4 kb) Cell pluripotency, tumor metastasis, and therapy resistance
BMI1 A protooncogene Cell proliferation, senescence, and tumor promotion
GPI, glycosylphosphatidylinositol; uPAR, urokinase plasminogen activator receptor; uPA, urokinase plasminogen activator; VEGF, vascular endothelial growth factor; EMT, epithelial-to-
mesenchymal transition; EpCAM, epithelial cell adhesion molecule; ABCG2, ATP-binding cassette subfamily G member 2; PODXL1, podocalyxin-like 1; PTCH, patched; ALDH, aldehyde
dehydrogenase; SOX2, sex-determining region Y-box 2; SRY, sex-determining region Y; HMG, high-mobility group; OCT4, octamer-binding transcription factor 4; BMI1, B-cell-specific
Moloney murine leukemia virus integration site 1.
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tumor cell proliferation, migration, and invasion. However, the
exact molecular mechanisms of CD133-related drug resistance
remain elusive and require more attention. To date, evidence has
shown that CD133 may regulate the growth and chemoresistance
of CSCs by activating Wnt signaling, PI3K-AKT signaling, SRC-
FAK signaling, interaction with EGFR, vascular endothelial
growth factor autophagy, lipid metabolism, and low reactive
oxygen species levels (25–27). In combination with other CSC
biomarkers, such as CXCR4 (28) and BMI1 (29), CD133 is also
positively correlated with EMT. And in hypoxic environment,
up-regulation of OCT4 and SOX2 can induce CD133 expression
in lung cancer cells (30).

2.1.3 EpCAM
EpCAM, also known as CD326, is a type I transmembrane
polypeptide and weighs approximately 40 kDa. EpCAM is
composed of 314 amino acids with a long extracellular N-
terminal, a single-spanning transmembrane domain, and a short
intracellular C-terminal. The human EpCAM gene is approximately
14 kb and is located on chromosome 2 (2p21) (31). EpCAM is a
potential biomarker for neoplasms of epithelial origin and a
homotypic calcium-independent cell adhesion molecule. In lung
cancer, EpCAM has been found to be a downstream target of
metastasis-associated protein 1 (MTA1), andMTA1 overexpression
can increase EpCAM levels and enhance tumor metastasis, leading
to poor prognosis (32). EpCAM expression is also related to CD44
and CD166, and the triple-positive (EpCAM+/CD44+/CD166+)
markers in NSCLC indicate higher self-renewal ability, clonal
heterogeneity, and stemness-associated gene expression (33).

2.1.4 ABCG2
ABCG2, also known as breast cancer resistance protein, is a 72 kDa
xenobiotic half-transporter with 655 amino acids, and chromosome
4 (4q22) encodes the ABCG2 gene. ABCG2 consists of six
transmembrane domains and only one ATP-binding domain, and
it is detected in normal tissue cells and CSCs. Using cryo-electron
microscopy, scholars have observed the high-resolution architecture
of human ABCG2 and its interaction with inhibitory 5D3 antibody,
suggesting its mechanism of multidrug recognition and
transportation (34). ABCG2 is abundant in the side population
phenotype in CSCs and effluxes Hoechst 33342 from cancer cells,
associating ABCG2 with multidrug resistance (35). In lung CSCs,
ABCG2 levels are elevated, and this may be related to the
transcription factors Sp1 and Sp3, which can link with the
promoter region of ABCG2 (36). Treatment of lung cancer cells
with tobacco concentrates can lead to significant upregulation of
ABCG2 and its transcription factors Sp1 and Nrf2, indicating that
smoking may induce lung cancer partly through ABCG2
upregulation (37). Co-expression of ABCG2 and CD133 may lead
to a higher risk of cisplatin resistance and tumor relapse (38).

2.2 Potential Intracellular Markers for Lung
Cancer Stem Cell
2.2.1 ALDH
ALDH is crucial in acetyl-coenzyme oxidation and differentiation
regulation of normal stem cells. In NSCLC, ALDH levels are
Frontiers in Oncology | www.frontiersin.org 4
significantly enhanced and are involved in therapy resistance,
mainly due to the increased expression of ALDH1A1 (39).
ALDH1A1 is a 50–55 kDa protein sharing 501 amino acids, and
the human ALDH1A1 gene is located on chromosome 9 (9q21.13).
ALDH exists and functions as tetramer or dimer, and its monomers
comprise the coenzyme binding, catalytic, and “arm-like”
oligomerization parts (40). ALDH1A1 may be a potential CSC
marker in solid tumors, and its expression is positively correlated
with an epithelial-like phenotype in NSCLC (41). Compared with
ALDH- cells, ALDH+ cells have greater self-renewal and
tumorigenic capacity, and the level of ALDH1A1 correlates with
poor survival. ALDH1A1 also correlates with Notch3, CD44, and
CD133, which are related to chemoresistance and poor prognosis
(21, 42).

2.2.2 Transcription Factors
Transcription factors can drive cell migration and functional
maturation, as well as control the multidirectional differentiation
potency of embryonic stem cells and CSCs. They are the center of
the cellular pluripotency regulatory network and control the
transcription of pluripotency-related genes. In lung cancer, many
studies have shown that intracellular transcription factors, such as
SOX2, OCT4, and NANOG, are maladjusted and may therefore
activate stemness genes and suppress differentiation genes.

SOX2 belongs to the sex-determining region Y-related high-
mobility group box family and contributes to the maintenance of
the pluripotency of embryonic stem cells and CSCs. SOX2
involves approximately 317 amino acids, and chromosome 3
(3q26.3) encodes the human SOX2 gene (43). SOX2 is a
pleiotropic protooncogene related to stemness and EMT in
lung cancer (44). It can regulate oncogenes, including c-MYC,
Wnt1, Wnt2, and NOTCH1, and plays a major role in FGFR1-
ERK1/2-SOX2 axis to stimulate metastasis (45). SOX2 can
induce the expression of the tumor-related factors p63 and
keratin 6 and suppress CDKN1A, which can rescue G1 cell
cycle arrest in squamous cell carcinoma (46, 47), leading to
cancer differentiation, migration, and invasion. In SCLC, SOX2
is crucial in the PIK3-AKT-SOX2 signaling pathway and may
mediate chemoresistance (48). Genome-wide analysis has
revealed that SOX2 amplification can drive the occurrence and
development of SCLC.

OCT4, also known as POU5F1 or OCT3, is a member of the
POU transcription factor family. Chromosome 6 (6p21.31)
encodes the human OCT4 gene (POU5F1 gene) and has an
average length of 16.4 kb. With multiple transcription initiation
sites, it can transcribe different mRNA isoforms, thus translating
into a variety of proteins (49). The translated protein contains an
N-terminal domain that activates transcription, a conserved
DNA-binding domain, a POU binding domain, and a C-
terminal transactivation part. OCT4 plays a major role in
maintaining and regaining pluripotency. In lung cancer, OCT4
expression is related to therapy resistance, cancer relapse, and
worse outcomes (50). Studies have also shown that OCT4
promotes lung cancer progression by transcriptionally
regulating the long non-coding RNAs NEAT1 and
MALAT1 (51).
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NANOG, a DNA-binding homeobox transcription factor,
may promote cell proliferation, renewal, and stem properties
(52). It has approximately 305 amino acids, and chromosome 12
(12p13.31) encodes the NANOG gene. NANOG protein is
roughly divided into N-terminal, DNA-binding homeodomain,
and C-terminal transcriptional activation part (53). In lung
cancer, NANOG expression correlates with TNM stage, tumor
differentiation, and survival (54). Thus, NANOG overexpression
may be a promising target and predictive marker.
3 MAJOR SIGNALING PATHWAYS
RELATED TO LUNG CANCER STEM
CELL MARKERS

The ability of normal tissue stem cells to self-renew and differentiate
is regulated by several signaling pathways, while the aberrant
activation of these signals may be attributed to CSC maintenance,
chemotherapy resistance, and cancer promotion. Certain
biomarkers of lung CSCs are related and are partly regulated by
these signals. The major signaling pathways currently found to be
closely related to lung CSCs and their markers mainly include
Notch, HH, and Wnt signaling (Figure 1 and Table 3).

3.1 Notch Signaling Pathway
Notch signaling is widely distributed in different cell types and
plays a major role in cell communication, proliferation,
differentiation, apoptosis, adhesion, and EMT. It is also
conducive to mediating the crosstalk between the different
compartments of the tumor microenvironment. Notch signals
pass through Delta-like ligand 1 (DLL1), DLL3, DLL4, Jagged1,
Frontiers in Oncology | www.frontiersin.org 5
or Jagged2 on a cell to the Notch receptor paralog (Notch1,
Notch2, Notch3, or Notch 4) on an adjacent cell, which releases
the Notch intracellular domain and converts Notch receptors
into downstream signal transducers (55). Notch signaling is
critical for stem characteristics, and its abnormal activation
may stimulate the growth and metastasis of tumor cells
through its downstream proteins. The main regulatory genes
include the HES family genes, the proto-oncogenes MYC, cyclin-
dependent kinase inhibitor 1A, cyclin D3 human epidermal
growth factor receptor 2, and Notch regulated ankyrin repeat
protein (56). The HES family genes are transcriptional repressors
that control stem cell characteristics. Genetic mutations in Notch
can sustain the survival of CSCs and extend to all levels of
NOTCH signal members (57).

Notch signaling is crucial in various neoplasms including
leukemia, lymphoma, breast cancer, lung cancer, glioblastoma,
and colon cancer. It is related to certain lung CSC markers, such
as CD44, CD133, ALDH, OCT4, and SOX2 (58–60). In NSCLC,
Notch 1 and Notch 2 are highly expressed (61, 62) and gain self-
renewal by the transcription factor HES1. Notch 1 also protected
lung CSCs from cisplatin-induced cell death through a pathway
independent of HES1 (63). In addition to promoting the
proliferation of NSCLC cells, the Notch signaling pathway can
also mediate the metastasis of NSCLC through the circulatory and
lymphatic systems. However, the function of abnormal Notch
activation in SCLC is debated. Studies have shown that Notch
signaling in SCLC is both a tumor suppressor and a pro-oncogene
(64). Notch gene function loss and Notch activation inhibition in
SCLC suggest that Notch signaling inhibits SCLC growth and that
the Notch pathway can prevent the differentiation of precursor cells
into neuroendocrine differentiation during lung development (65–
67). However, in preclinical models, Notch signaling blockade
FIGURE 1 | Potential lung cancer stem cell with its markers and major signaling pathways. CSCs can live deep in the hypoxic center of tumor and hypoxia may
induce CSCs phenotype and the expression of CSC markers, thus promoting chemoresistance, while specific targeted therapy towards CSCs may solve this
problem. Potential markers of lung cancer stem cells mainly include surface biomarkers, such as CD44, CD133, EpCAM and ABCG2, along with intracellular
biomarkers, such as ALDH, SOX2, NANOG and OCT4, and they may act as promising therapeutic targets. Signaling pathways such as Notch, Hedgehog, and Wnt
may jointly induce the expression of certain lung cancer stem cell markers and stimulate EMT, thus allowing tumor cells to obtain stemness and chemoresistance.
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combined with chemotherapy can inhibit tumor growth and delay
tumor recurrence, which suggests a pro-carcinogenic part of Notch
in SCLC (64, 68). In addition, Notch signaling blockade with
shRNA against NOTCH or g-secretase inhibitors can significantly
suppress the growth of CD44+, CD133+, or ALDH+ tumor cells,
consistent with a decrease in lung cancer cell growth and
chemoresistance (58, 59, 69). Studies have also shown that
cisplatin resistance induces the enrichment of CD133+ cells,
which is partly due to the abnormal activation of Notch signaling,
suggesting that this pathway is a potential target in regulating lung
CSCs (59).

3.2 HH Signaling Pathway
The HH signaling pathway is crucial for embryonic development,
and its abnormal activation is also associated with stem cell
regulation and tumor occurrence. The HH ligands have various
isoforms, including sonic HH, Indian HH, and desert HH, which
can link with the transmembrane receptors Patched and
Smoothened. Only when the protein family members maintain
full length can they function as transcription promoters, activating
the expression of downstream genes. After Patched and
Smoothened transcription, released signal cascades contribute to
the activation of glioma-associated oncogene (GLI) transcription
factors, thereby driving HH target gene transcription and thus
leading to better stem property maintenance (70).

Abnormal activity of HH signals is common in various solid
tumors, such as medulloblastoma, glioma, myeloma, pancreatic
cancer, esophageal cancer, gastric cancer, breast cancer, and lung
cancer. Sonic HH and GLI-1 are highly active in the repair of lung
airway epithelial injury. Both in SCLC and NSCLC, the expression
of GLI-1 and sonic HH proteins was evaluated and associated with
chromosome instability and stemness (71–73). The HH and Wnt
pathways can jointly induce CSC biomarkers, such as CD44,
CD133, BMI1, and LGR5, and promote EMT, thereby
promoting tumor cell infiltration and distant metastasis and
allowing tumor cells to obtain stem cell characteristics and drug
resistance capacity (74). GLI-1 is also a strong regulator of SOX2
and develops resistance to EGFR inhibitors in NSCLC (75).
Studies have found that phosphorylated SOX2 can be recruited
to the hedgehog acyltransferase (HHAT) promoter to enhance
HHAT levels, which is conducive for maintaining stemness.
Frontiers in Oncology | www.frontiersin.org 6
Activation of the PKC1-SOX2-HHAT signal axis is conducive to
maintaining the stem function of primary lung squamous cells
(76). Activated HH signaling is also significantly related to drug
transporters, such as ABCG2, thus promoting chemotherapeutic
drug resistance. This pathway may regulate several aspects of the
lung CSC state and increase cancer metastasis. It is, therefore, not
surprising that the inhibitors of this pathway offer great
clinical hope.

3.3 Wnt Signaling Pathway
As a complex protein network,Wnt signaling is mostly found in the
development of the central nervous system and mammalian
embryos (77). However, it is also associated with abnormal
processes in various tumors, such as breast cancer, colorectal
cancer, liver cancer, leukemia, and lung cancer. The three primary
Wnt pathways are the canonical Wnt pathway, which is involved in
gene expression, the noncanonical Wnt/planar cell polarity
pathway, which coordinates the cytoskeleton, and the
noncanonical Wnt/calcium pathway, which adjusts the
concentration of intracellular calcium (78). All three Wnt
signaling pathways are activated by Wnt protein ligands binding
to Frizzled receptors and coreceptors, such as low-density
lipoprotein receptor-related protein 5 and 6, which transmit the
signal to various intracellular proteins. Wnt ligands are secreted
proteins, and this pathway is often paracrine or autocrine. The Wnt
signaling pathway can regulate cell differentiation and proliferation,
and is important in carcinogenesis, invasion, progression, and CSC
maintenance (79). Hypoxia can activate Wnt signaling pathway,
promote the non-differentiation and self-renewal ability of CSCs
(80, 81). What’s more, tumor-associated fibroblasts in the
environment can activate Wnt and Notch signaling pathways,
produce metalloproteinases such as MMP2, MMP3 and MMP9
to reshape the extracellular matrix and promote self-renewal of
EMT and CSCs (82). And some inflammatory microenvironments,
which promote NF-kB and Wnt signaling, can induce tumor non-
stem cells to acquire tumor-initiation capabilities (83).

In human lung cancer, the main Wnt ligands are Wnt1, Wnt2,
Wnt5a, and Wnt7a, and an increase in Wnt proteins, Wnt1 or
Wnt5a alone, is significantly related to poor prognosis in NSCLC
(84). Studies suggest that b-catenin promotes the number of lung
CSCs mainly by decreasing differentiation, rather than promoting
TABLE 3 | Signals sustaining lung cancer stem cells and related stem cell markers.

Pathways Function Related stem cell markers

Notch signaling pathway Control cell fate decisions and regulate self-renewal capacity CD44, CD133, ALDH, SOX2, OCT4, BMI1
Hedgehog signaling pathway Promote stem phenotype and cell proliferation CD44, CD133, EpCAM, ABCG2, SOX2,

OCT4, NANOG, BMI1
Wnt signaling pathway Promote stem phenotype and cell proliferation CD44, CD133, EpCAM, ABCG2, FZD, ALDH,

LGR6
PI3K/AKT signaling pathway Stimulate cell proliferation and inhibit apoptosis CD44, CD87/uPAR, CD133, ABCG2, CXCR4,

ALDH, SOX2, OCT4, NANOG
STAT3 signaling pathway Regulate cell cycle and migration CD24, CD44, CD133, ABCG2, CXCR4,

ALDH, SOX2
Hippo signaling pathway Regulate stem cell self-renewal, growth, apoptosis CD44, CD133, EpCAM, ABCG2, SOX2, OCT4
JNK signaling pathway Control cell proliferation, embryonic development, and apoptosis CD44, CD133, ALDH, SOX2, NANOG
ALDH, aldehyde dehydrogenase; SOX2, sex-determining region Y-box 2; OCT4, octamer-binding transcription factor 4; BMI1, B-cell-specific Moloney murine leukemia virus integration
site 1; EpCAM, epithelial cell adhesion molecule; ABCG2, ATP-binding cassette subfamily G member 2; FZD, frizzled receptors; LGR6, leucine-rich repeat-containing G-protein coupled
receptor 5; uPAR, urokinase plasminogen activator receptor; CXCR4, C-X-C motif chemokine receptor 4.
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direct stem cell proliferation (85). The mutation of b-catenin in
tumor cells can cause itself to be inactivated by phosphorylation and
degraded by ubiquitination. b-catenin accumulates in large amounts
in the cytoplasm and enters the nucleus to regulate cell division and
stem cell-related genes, leading to uncontrolled cell proliferation and
tumorigenesis (86). Wnt signaling can regulate various lung CSC
markers such as NANOG and OCT4, and the different Wnt
microenvironments in different types of NSCLC lead to imparities
in ABC transporter expression, such as ABCB1 and ABCG2 (87–
89). Through the non-canonical Wnt pathway, Wnt5a can increase
the stem properties of ALDH+ lung CSC in cisplatin-resistant
NSCLC (90). In addition, Wnt signaling activation partly results
from EMT, which is crucial in CSC reorganization and
maintenance. EMT has been reported to induce b-catenin/E-
cadherin/SOX15 conversion into b-catenin/Twist1/TCF4, thus
inducing the transcription of the lung CSC marker ABCG2 (91).
Cell subpopulations with nuclear high b-catenin, Twist1, CD133
together with low E-cadherin, and SOX15 can be used as diagnostic
markers in lung cancer (91, 92).
4 LUNG CANCER STEM CELL MARKERS
AS THERAPEUTIC TARGETS

Although great achievements have been made in improving
survival in patients with lung cancer through conventional
treatments and combinatorial therapies, concomitant
congenital or acquired drug resistance still limits the
therapeutic effect and leads to poor clinical outcomes.
Targeting CSCs in the lung cancer microenvironment may be
Frontiers in Oncology | www.frontiersin.org 7
a promising therapy for patients who are currently resistant to
traditional lung cancer treatments. From this perspective, lung
CSC markers may not only help to identify and isolate these lung
CSC subpopulations but may also be conducive to specific
targeted therapies. Therapies targeting lung CSC markers
mainly depend on the specific recognition and binding of
antibodies to lung CSC surface markers, thus leading to a
variety of antibody drugs and nanoparticle drugs. In addition,
novel chimeric antigen receptor T (CAR-T) cell immunotherapy
as well as inhibitors, such as natural compounds and siRNA
knockdown, also play an increasingly important role in
experiments and future clinical trials (Figure 2 and Table 4).
Besides, there are some novel clinical trials regarding lung CSCs
targeting like CSC-loaded DC vaccines without posted outcome
(ClinicalTrials.gov: NCT02084823i) and targeting lung CSCs
expressing TRAIL which is still recruiting (ClinicalTrials.gov:
NCT03298763ii). In the succeeding sections, we will provide
update on and discuss promising data of lung CSC markers as
therapeutic targets, as well as emphasize topics for
future investigations.

4.1 Antibody Drugs Targeting Lung Cancer
Stem Cell Markers
In recent years, antibody drugs have become the main new drugs
developed because of their high specificity and low adverse
reactions. They have been approved for a variety of clinical
applications, as well as in the field of CSCs. Targeted therapies
occur when antibodies specifically recognize and bind to certain
lung CSC surface markers or signaling pathways. Antibodies
targeting lung CSC markers mainly include monoclonal
FIGURE 2 | Promising therapies targeting lung cancer stem cell markers. CSCs are resistant to conventional therapy and lead to cancer recurrence, unless being
specifically targeted. Therapies targeting lung cancer stem cell markers mainly rely on the specific recognition and binding of antibodies to lung cancer stem cell
surface markers, thus leading to a variety of antibody drugs including monoclonal antibody, antibody-drug conjugate, bispecific antibody, and emerging nanoparticle
drugs. In addition, novel CAR-T cell immunotherapy as well as inhibitors also play an increasingly important role in the experiments and future clinical trials.
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antibody (mAb), antibody/aptamer-drug conjugate (ADC),
bispecific antibody (BsAb), and emerging nanoparticle drugs.

Therapeutic mAbs are a class of antibody drugs that have high
homogeneity and pharmacological effects against a single antigen
epitope. mAbs are characterized by strong targeting, low toxicity,
and relatively easy development, ranking the mainstream of
biotechnology drug research for a long time. At present, many
mAbs targeting lung CSC markers have been used in basic
experiments or clinical trials; for instance, mAb SWA11
targeting CD24 (93) and MEM-85 targeting CD44 (94). In
addition, mAbs targeting lung CSC markers may strongly alter
the tumor microenvironment and retard tumor growth (95).

ADCs are a class of drugs that conjugate mAbs to different
numbers of small molecular cytotoxins through chemical
conjugates. Chemotherapy and radiotherapy, as important
complementary approaches of surgical treatment, play an
active role in cancer treatment. However, chemotherapy
drugs and radioactive substances can not only act on tumor
cells, but also accidently injure normal tissue cells, thus causing
greater adverse reactions. Fortunately, ADC drugs solve this
issue by wisely conjugating cytotoxic drugs or radioactive
substances to mAb, in which way ADCs combine the
advantages of strong targeting and high tumor cytotoxicity
and reduce the side effects to innocent normal cells. ADC drugs
have also become a research hotspot for lung CSC targeting
treatment in recent years. Some ADC drugs targeting CD44,
such as conjugation of hyaluronan with irinotecan (96),
cisplatin (97), and apoferritin (98), are effective in reducing
or even eliminating stem cells in lung cancer. Numerous studies
have shown that ADCs targeting CD133 (99–101), CD166
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(102), EpCAM (103), and CXCR4 (104) can effectively inhibit
the growth of lung CSCs. Because of the existence of the blood-
brain tumor barrier in mAb treatment, systemic drugs have
very limited efficacy in treating brain metastases. To address
this problem, targeted drugs loaded with nanomaterials have
been designed to effectively solve this problem through cross-
cell and cell bypass pathways (105, 106).

BsAbs are novel antibodies that bind two different antigens
simultaneously and do not exist naturally. The modified Fab
fragment in the BsAb can bind to the epitope of cytotoxic drugs
or the surface antigen of immune cells. Thus, BsAbs can not only
target cancer cells and prevent cytotoxic effects on normal tissues,
but also link with NK cells or CD8 T cells, which may eradicate
cancer cells through a direct killing effect. In NSCLC, researchers
have found that c-MET/CTLA-4 BsAb-targeting lung CSCs have
potential therapeutic effects (107). Catumaxomab (108–110) or
MuS110 (111, 112) can target EpCAM and CD3 and potentially
inhibit local cancer growth. Scientists then combined EpCAM/CD3
BsAb with MUC-1/CD3 BsAb and surprisingly found greater
specificity and better outcome (113), showing a possible
immunotherapeutic approach.

Targeted therapy with antibody drugs brings new light to
conquer tumors and CSCs. However, similar to other therapies,
several concerns exist regarding safety risks, such as off-target effects,
allergies, and cytokine storm. Compared with other tumors,
antibody drugs for lung CSCs are few, probably because of the
scarcity of suitable targets. Under these circumstances, basic and
clinical research should be conducted to find more specific and
better antigens toward lung CSCs and develop new carrier materials
to promote the entry of antibody drugs into cancer tissue.
TABLE 4 | Potential therapies targeting lung cancer stem cell markers.

Approach Target Intervention

Monoclonal antibody CD24 mAb SWA11
CD44 mAb MEM-85

Antibody/aptamer-drug conjugate CD24 MOC31- DOX, SWA11-DOX
CD44 Conjugated HA-irinotecan

Conjugated HA-cisplatin
Conjugated HA-apoferritin
Apt1-Lip

CD133 Salinomycin sodium lipid-polymer hybrid nanoparticles
Docetaxel liposome surface modified with CD133 aptamer
M-Gef-CD133

CD166 Probody drug conjugate CX-2009
EpCAM Drug-loaded nano- and EpCAM immuno-nanoparticles
CXCR4 CXCR4 antagonist LFC131 conjugated PLGA nanoparticles

Bispecific antibody EpCAM/CD3, MUC-1/CD3 EpCAM/CD3 BsAb with MUC-1/CD3 BsAb combined treatment
EpCAM/CD3 MuS110

Catumaxomab
Chimeric antigen receptor T cells uPAR Senescence-targeted CAR-T cells

CD133 Combination of enhanced CD133-specific CAR-T, CD73 blockage and anti PD-1 therapy
Other inhibitors ABCG2, CD117 Axitinib

ALDH Salinomycin
Silibinin
Disulfiram
mAb, monoclonal antibody; DOX, doxorubicin; HA, hyaluronan; Apt1, 2′-F-pyrimidine-containing RNA aptamer; Lip, liposome; M-Gef-CD133, gefitinib-loaded poly(ethylene glycol) 2000-
distearoylphosphatidylethanolamine nanomicelles; EpCAM, epithelial cell adhesion molecule; CXCR4, C-X-C motif chemokine receptor 4; PLGA, poly lactic-co-glycolic acid; BsAb,
bispecific antibody; CAR-T, chimeric antigen receptor T; uPAR, urokinase plasminogen activator receptor; ABCG2, ATP-binding cassette subfamily G member 2; ALDH, aldehyde
dehydrogenase.
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4.2 CAR-T Therapies Targeting Lung
Cancer Stem Cell Markers
CAR-T therapy is used to isolate T cells from patients. It uses
genetic engineering technology to transduce the CAR gene that
specifically recognizes a tumor cell antigen into T cells, expands in
vitro, and finally transplants it into patients to exert tumor-killing
effect. It is MHC-free and therefore avoids tumor escape due to
reduced MHC expression in tumor cells. CAR is composed of three
parts: the intracellular region, which is the signaling molecule that
mediates T cell activation, transmembrane region, and extracellular
region, which is the variable region of mAb that can bind specific
tumor antigens. As an innovative and promising therapeutic
strategy, CAR-T therapy has remarkable efficacy and safety in the
treatment of hematological tumors (114). It has also shed new light
on solid cancer treatment, including lung cancer. However, CAR-T
therapy is confronted with difficulties in treating solid tumors,
mainly because of the scarcity of real tumor-specific antigens and
the heterogeneity of tumor-associated antigens on the surface of
solid tumors. Therefore, selecting specific antigens as targets for
CAR-T cells to treat solid tumors is important, and the promising
experimental and clinical use of CAR-T cells still needs more
attention and effort. Given the potential to identify surface stem
cell markers or antigens, CAR-T has become an appealing practice
to target CSCs specifically. uPAR-specific CAR-T cells have also
been reported to prolong survival and relieve liver fibrosis in mice
with lung cancer (115). In SCLC, CAR-T cells targeting CD133 can
migrate to cancer lesions, kill cancer cells, and improve survival, but
cannot eliminate cancer cells. Combining CD133-specific CAR-T,
CD73 blockage, and anti PD-1 therapy can particularly eradicate
lung CSCs and may contribute to curable influence in a terminal
disease (116). From this perspective, we should exert more effort to
create stronger CAR-T structures and find better specific targets and
therapy combination strategies.
5 CONCLUSIONS

Lung CSC is a subtle group of lung cancer cells with potential
multidirectional differentiation capacity, high self-renewal, and
tumorigenicity. Potential markers of lung CSCs mainly include
surface biomarkers, such as CD44, CD133, EpCAM, and ABCG2,
along with intracellular biomarkers, such as ALDH, SOX2,
NANOG, and OCT4. These markers have different structures, but
they are all related to the stem potential and uncontrollable
proliferation of tumor cells. The aberrant activation of major
signaling pathways, such as Notch, HH, and Wnt signaling
pathways, may be related to the expression and regulation of
Frontiers in Oncology | www.frontiersin.org 9
certain lung CSC markers. For patients who are resistant to
conventional lung cancer therapies, treatments targeting lung CSC
markers may bring new hope. These treatments mainly include
antibody drugs, nanoparticle drugs, CAR-T therapy, and other
natural or synthetic specific inhibitors.

Although lung CSC theoretically provides many new ideas,
the challenges brought about by it cannot be underestimated.
First, the known lung CSC markers may not only exist in lung
CSCs, and they merely have reference significance. lung CSCs
and normal stem cells have similar functions and pathways,
which makes them difficult to distinguish from each other
during treatment; thus, it is difficult to show a satisfying
targeting effect. More studies are needed to explore more
specific markers and more targeted therapies against lung
CSCs. Second, the specific molecular mechanisms and
detailed signaling pathways that each lung CSC is used to
control and regulate stem cell phenotypes are not well
understood. Third, there is a lack of suitable animal models
of lung CSCs for study. Establishing a new animal model, such
as real human lung cancer, is important to clarify the
mechanism of malignant transformation from lung stem cells
to lung CSCs. Fourth, the tumor environmental factors and
interactions between lung CSCs and other cells are poorly
understood. Finally, more innovative and powerful
approaches for the therapeutic targeting of lung CSCs should
be explored. CAR-T therapy in solid cancer is promising but
does not go smoothly, and lung CSC surface marker-specific
CAR-T is rare. Identifying better CAR-T-specific targets and
combination therapy against lung CSCs is important. Only
continuous in-depth exploration can update the treatment and
improve the prognosis of lung cancer in the future.
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