
Frontiers in Oncology | www.frontiersin.org

Edited by:
Hailong Pei,

Soochow University, China

Reviewed by:
Haiqing Ma,

Guangdong Provincial People’s
Hospital, China
Haopeng Yang,

University of Texas MD Anderson
Cancer Center, United States

*Correspondence:
Panpan Liu

liupp@sysucc.org.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Molecular and Cellular Oncology,
a section of the journal
Frontiers in Oncology

Received: 12 February 2022
Accepted: 17 March 2022
Published: 08 April 2022

Citation:
Liu J, Li J-n, Wu H and

Liu P (2022) The Status and
Prospects of Epigenetics in the

Treatment of Lymphoma.
Front. Oncol. 12:874645.

doi: 10.3389/fonc.2022.874645

REVIEW
published: 08 April 2022

doi: 10.3389/fonc.2022.874645
The Status and Prospects of
Epigenetics in the Treatment
of Lymphoma
Jiaxin Liu1,2†, Jia-nan Li1,2†, Hongyu Wu1,2 and Panpan Liu1,2*

1 State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, Guangzhou, China, 2 Department of Medical Oncology, Sun Yat-Sen University Cancer Center,
Guangzhou, China

The regulation of gene transcription by epigenetic modifications is closely related to many
important life processes and is a hot research topic in the post-genomic era. Since the
emergence of international epigenetic research in the 1990s, scientists have identified a
variety of chromatin-modifying enzymes and recognition factors, and have systematically
investigated their three-dimensional structures, substrate specificity, and mechanisms of
enzyme activity regulation. Studies of the human tumor genome have revealed the close
association of epigenetic factors with various malignancies, and we have focused more on
mutations in epigenetically related regulatory enzymes and regulatory recognition factors
in lymphomas. A number of studies have shown that epigenetic alterations are indeed
widespread in the development and progression of lymphoma and understanding these
mechanisms can help guide clinical efforts. In contrast to chemotherapy which induces
cytotoxicity, epigenetic therapy has the potential to affect multiple cellular processes
simultaneously, by reprogramming cells to achieve a therapeutic effect in lymphoma.
Epigenetic monotherapy has shown promising results in previous clinical trials, and
several epigenetic agents have been approved for use in the treatment of lymphoma. In
addition, epigenetic therapies in combination with chemotherapy and/or immunotherapy
have been used in various clinical trials. In this review, we present several important
epigenetic modalities of regulation associated with lymphoma, summarize the
corresponding epigenetic drugs in lymphoma, and look at the future of epigenetic
therapies in lymphoma.
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1 INTRODUCTION

Lymphoma is the most common lymphoid malignancy and is among the ten most prevalent cancers
worldwide. It can roughly be subclassified into Hodgkin’s lymphoma (HL) and Non-Hodgkin’s
lymphoma (NHL) (1, 2). NHL accounts for about 90% of all lymphomas and the remaining 10% are
referred to as HL (3). NHL is the sum of a group of independent diseases with strong heterogeneity
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that can be divided into B cell, T cell, and NK cell lymphomas
according to the lymphocyte type. While 90% of early-stage HL
patients and more than 50% of NHL patients respond to first-line
conventional treatment, the remaining ones and those with
relapsed disease, are still challenging to treat (4, 5).

With the deepening in the understanding of tumor
pathogenesis, it has become clear that the occurrence and
development of tumors is not only related to gene mutations
and deletions but also to the imbalance of epigenetic regulation.
In the past, it was believed that tumors were diseases driven by
the accumulation of gene mutations (6). In fact, epigenetic
alterations in tumors are much more frequent than the existing
identified genetic alterations. The epigenetic variations are not
only associated with classical signaling pathways such as those
for cell growth, proliferation and apoptosis but also lead to
changes of new signal transduction pathways such as those for
immune escape, energy metabolism disorders, activation of
cellular phenotype transition, and promotion of tumor
inflammation (6–10).

The core of epigenetic changes is the covalent modification
of histones and nucleic acids to determine the chromatin
configuration and unique transcription spectrum in cells
(11). Chromatin is formed by a DNA measuring about 2
meters in length, wound around the nucleosome composed
of four histones. The total chromatin is packed into 23 pairs of
chromosomes by forming a quaternary structure, which is
stored in about 7 mm in the nucleus of cells (7). The most
common epigenetic modifications are histone modifications
and DNA methylation at the fifth carbon atom of cytosines.
DNA methylation and histone deacetylation result in a dense
chromatin conformation, leading to gene transcriptional
silencing. On the contrary, DNA demethylation and histone
acetylation lead to a loose chromatin conformation and active
gene transcription. In addition to covalent modification of
histones and nucleic acids, epigenetic regulation also includes
dynamic spatio-temporal positioning of nucleosomes,
regulation of chromatin three-dimensional conformation
and nuclear topology, regulation of non-coding RNA,
microRNA and enhancer RNA (12, 13). In conclusion, the
action of multiple epigenetic factors influence chromatin
conformation, resulting in an anomalous interaction between
DNA and transcription factors, abnormal regulation of gene
transcription and signaling pathways. Abnormal inactivation
of signaling pathways and tumor suppressor gene pathways
may lead to tumorigenesis that may provide the possibility of
using existing epigenetic regulators to restore normal
gene expression.
2 EPIGENETIC TARGETS IN LYMPHOMA

2.1 DNA Methylation
2.1.1 DNMT
DNA methylation is an important epigenetic mechanism in
normal cells as well as tumor cells that can affect gene
expression by directly controlling the activity of DNA
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regulatory elements, including cytosine-phosphate-guanine
(CpG) islands in the promoter region (14). DNA methylation
occurring at the 5-carbon of cytosine residues in CpG
dinucleotides is the first characteristic of an epigenetic
modification of chromatin (15). 5-methylcytosine (5mC) is
produced by the transfer of methyl groups to 5-cytosine using
S-adenosyl methionine (SAM) as a methyl donor under the
catalysis of DNA methyltransferase (DNMTs). DNMTs are
multi-domain proteins in which two functional parts can be
distinguished, a large N-terminal regulatory part and a smaller
C-terminal part (16, 17). The C-terminal domains of DNMTs
contain 10 conserved amino acid motifs that are characteristic
for specific DNA-(cytosine-C5)-MTases. They are involved in
DNA recognition and binding, target base flipping and catalysis,
so they are called target recognition domains (TRD) (18). The N-
terminal part of DNMTs includes several regulatory domains
that guide the nuclear localization of enzymes, mediate their
interaction with other proteins, regulatory nucleic acids (such as
non-coding RNA) and chromatin, and perform post
translational modification (PTM) (15, 19). They are classified
into DNMT1, DNMT3A and DNMT3B according to the N-
terminal regions. DNMT1 catalyzes DNA methylation retention
that maintains the genetic stability of methylation sites during
replication; DNMT3A and DNMT3B catalyze the de novo
methylation of DNA (20, 21). The expression of DNMT1 is up
regulated in mantle cell lymphoma (MCL) (22) and can be
inhibited by DNMT inhibitor decitabine (23). DNMT1 and
DNMT3B show MYC-dependent overexpression in Burkitt’s
lymphoma (BL). MYC directly binds to DNMT1 and
DNMT3B promoters, resulting in an increase in their
transcription in the human BL model (24). All three DNMTs
are overexpressed in diffuse large B-cell lymphoma (DLBCL), which
is significantly correlated with advanced clinical stage and adverse
reactions to chemotherapy and/or radiotherapy (25). For example,
DNMT3A is overexpressed in 30% of angioimmunoblastic T-cell
lymphoma (AITL) and 40% of DLBCL and is associated with
reduced overall survival (OS) and event-free survival (EFS) in
DLBCL patients (26). Mutations in DNMT3A are more common
in patients with T-cell lymphoma (27–29).

2.1.2 TET
Unlike the DNMT family, which catalyzes and maintains DNA
methylation, the ten–eleven translocation (TET) family of a-
ketoglutarate (a-KG)-dependent dioxygenases indirectly drives
DNA demethylation through 5mC oxidation catalysis (30).
TET1, TET2, and TET3 in the TET family can gradually oxidize
5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine
(5fC), and 5-carboxycytosine (5caC) (13). There are two main
mechanisms by which TET protein promotes DNA
demethylation: a passive (replication-dependent) DNA
demethylation and an active DNA demethylation. All three
oxidized methylcytosines (oxi-MC) are DNA demethylation
intermediates. During DNA replication, if oxi-MC exists on the
template chain, unmethylated cytosine on the newly synthesized
chain will not be effectively recognized or methylated by DNMT1
complex, resulting in loss of DNAmethylation during cell division
(31). This passive (replication-dependent) DNA demethylation is
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the main demethylation mechanism in most cells. Active DNA
demethylation means that 5fC and 5caC can be removed from
properly base-paired 5fC:G and 5caC:G base pairs by thymine
DNA glycosylase, which normally excises T:G mismatches; then
the base excision repair system replaces oxi-MC with unmodified
cytosine (32). Among the three TET genes, TET2 has repeated
inactivation mutations in a wide range of bone marrow and
lymphoid malignant tumors (33). TET2 mutations include
deletion, missense, nonsense, and frameshift mutations.
Numerous studies have shown that most patients with AITL
and peripheral T-cell lymphoma, not otherwise specified (PTCL-
NOS) carry TET2 mutations (28, 32, 34–36) and decreased OS of
patients (37). Most AITL and some PTCL-NOS may come from
follicular helper T (Tfh) cells, the T cells that facilitate B cell
antibody responses by interacting with B cells in the germinal
center (38). In AITL multistep tumor model, TET2 and/or
DNMT3A mutations occurred first, followed by specification
into the Tfh lineage guided by expression of the RHOAG17V

mutant and enhanced by hyper activation of the T-cell receptor
signaling pathway (39). The expansion and/or dysfunction of Tfh
can induce the production of cytokines, which play an important
role in the early stage of lymphoma progression and the rich
inflammatory components of AITL tumor lesions (39, 40).
Similarly, TET2 mutations are common in B-cell lymphomas,
especially in DLBCL (34).

2.3 IDH
As mentioned earlier, TET enzyme depends on the metabolic
cofactor a-KG. However, in case isocitrate dehydrogenase (IDH)
is mutated, a-KG might be converted into D-2-hydroxyglutarate
(D-2-HG) which blocks TET2 function. A frequent mutation in
the IDH family is IDH2R172. The IDH2 mutation often occurs in
AITL and the D-2-HG, produced by the mutated enzyme, is a
tumor metabolite (28, 41). IDH2 mutation also affects histone
lysine methylation. In AITL patients, in which the disease was
caused by an IDH2R172 mutation, the level of trimethylated H3 at
lysine 27 (H3K27me3) increased significantly (29, 42).

2.1.2 Histone Methylation
Histone methylation is catalyzed by histone methyltransferase
(HMT) and occurs at different lysine and arginine of histone,
which may involve monobasic, dimethyl and trimethylation at
the same residue. In addition, the dimethylation of arginine can
be symmetric (me2s) or asymmetric (me2a) (43). Depending on
the target residue, methylation level and symmetry, methylation
corresponds to different gene expression and function, which
affects the level of gene transcription and leads to gene
transcriptional activation or inhibition. For example,
trimethylated H3 at lysine 4(H3K4me3) and dimethylated H3
at lysine 79 (H3K79me2) are beneficial to transcription, while
H3K27me3 and trimethylated H3 at lysine 9(H3K9me3) inhibit
transcription (43, 44).

2.1.2.1 KMT2, DOT1L
Histone-lysine N-methyltransferase 2 (KMT2), which was
initially named the mixed-lineage leukaemia (MLL) family, on
Frontiers in Oncology | www.frontiersin.org 3
the one hand, can directly H3K4me3 (45), on the other hand, it
can change the chromatin state and DNA accessibility by
recruiting demethylases to reduce H3K27me3. The KMT2
family includes KMT2A, KMT2B, KMT2C, KMT2D, KMT2F,
and KMT2G. Nonsense or frameshift mutations frequently occur
in DLBCL and follicular lymphoma (FL), resulting in down-
regulation of KMT2D protein expression (46, 47). Zhang et al.
demonstrated that FL and DLBCL-associated KMT2Dmutations
impair KMT2D enzyme activity, resulting in reduced global
H3K4 methylation in germinal center (GC) B cells and DLBCL
cells (48). Thus KMT2D is considered a tumor suppressor gene
whose early deletion promotes lymphoma formation by
remodeling the epigenetic landscape of cancer precursor cells.
In MCL and Extra nodal NK/T-cell lymphoma, nasal type
(ENKTL-NT), KMT2D mutation indicates a poor prognosis
(49). KMT2D deficiency can lead to changes in a variety of
genes, including TNFAIP3 (A20), SOCS3, SGK1, TRAF3,
TNFRSF14 (HVEM) and ARID1A, which in turn affect CD40,
JAK-STAT, toll like receptor and the B-cell receptor pathway
(47). Disruptor of telomeric silencing 1-like (DOT1L) is the only
member of the KMT4 family. DOT1L can H3K79me2 and
promote acetylation of H4, which in turn regulates the binding
of bromodomain-containing protein 4 (BRD4) to chromatin
(50). A potent and selective amino-nucleoside inhibitor of
DOT1L histone methyltransferase activity, EPZ-5676, inhibited
H3K79 methylation and MLL fusion target gene expression in
cellular studies and showed selective and effective cell killing of
acute leukemia lines carrying MLL translocations (51).

2.1.2.2 EZH2
The function of Enhancer of Zeste Homolog 2 (EZH2) is
opposite to that of KMT2. EZH2 is a HMT of 746 amino acids
and is a catalytic subunit of Polycomb Repression Complex 2
(PRC2) that can inhibit gene transcription by catalytic formation
of H3K27me3, can also recruit histone deacetylase (HDAC) 1/2
and DNMTs to further inhibit transcription through its cofactor
embryonic ectoderm development (EED) (52, 53). EZH2 is
highly expressed in GC B cells and targeted by somatic
mutations in B-cell lymphomas (54). In particular, activating
mutations in EZH2 are frequently found in FL and germinal
center DLBCL (GC-DLBCL) (55–57). MYC related EZH2
overexpression has been found in BL and double hit
lymphoma (58). In DLBCL and FL, EZH2 catalyzes somatic
heterozygous mutations of Y641 and A677 residues in the set
domain (44, 59), thereby promoting transcriptional inhibition
and tumorigenesis by increasing the level of H3K27me3 (60).
Many experiments have confirmed that Ezh2Y641 mutation and
Myc synergistically promote the formation of lymphoma which
has been shown in transgenic mouse models (61, 62). Similar to a
Y641 mutant cell line, a EZH2A677 mutant cell line showed
abnormal increase of H3K27me3 and decrease of
monomethylated H3K27 (H3K27me1) and dimethylated
H3K27 (H3K27me2) (63). For T-cell lymphoma, it is reported
that in 67.5% PTCL-NOS, 50% natural killer/T-cell lymphoma
(NKTCL), in 73.3% anaplastic large-cell lymphoma (ALCL), and
in 60% AITL cases EZH2 was strongly expressed, these patients
with peripheral T-cell lymphoma (PTCL) overexpression were
April 2022 | Volume 12 | Article 874645
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often accompanied by more complications and displayed lower
survival rates (64).

2.1.2.3 SETDB1
SET Domain, Bifurcated 1 (SETDB1) catalyzes the
trimethylation of histone H3K9 (H3K9me3) and thereby
promotes transcriptional silencing (65), the N-terminal of
SETDB1 interacts directly with the plant homeodomain of
DNMT3A and localizes to a silent promoter in cancer cells
(66). A recent study showed that simultaneous inhibition of G9a
(another methyltransferase of H3K9) and DNMTs with the dual
inhibitor CM-272 enhanced antitumor immunity alone or in
combination with anti-PD1 (67).

2.1.2.4 LSD1
Histone methylation is a dynamic equilibrium process and is a
reversible histone modification. Lysine-specific demethylase 1
(LSD1/KDM1A) is a flavin adenine dinucleotide (FAD)-
dependen t demethy la s e tha t spec ifica l l y r emoves
monomethylated and dimethylated groups from H3K4 and
H3K9 (H3K4me1, H3K4me2, H3K9me1, and H3K9me2) (68).
In a mouse model, B-cell lymphoma 6 (Bcl6) was found to
directly bind and recruit LSD1, and conditional deletion of Lsd1
suppressed GC proliferation induced by constitutive expression
of Bcl6 and significantly delayed Bcl6-driven lymphangiogenesis.
This suggests that LSD1 plays a key role in lymphangiogenesis as
an important BCL6 cofactor, as this classical lymphoma
oncogene requires LSD1 to induce malignant transformation
(69). LSD1 is overexpressed in human DLBCL tissues and
negatively correlates with the OS of DLBCL patients (70).
LSD1 was found to be upregulated and positively correlated
with Ki67 in MCL patients, while H3K4me1 and H3K4me2 were
downregulated (71).

2.1.2.5 PRMT
Arginine methylation is catalyzed by protein arginine
methyltransferase (PRMT), that can be sub classified into type
I and type II enzymes that are responsible for the formation of
asymmetric and symmetric dimethylarginines, respectively.
PRMT5 is the major type II enzyme that catalyzes the
symmetrical dimethylarginine of histones and induces gene
silencing by generating repressive histone tags, including the
arginine asymmetric dimethylation of histones H2AR3, H3R8,
and H4R3 (H2AR3me2s, H3R8me2s, and H4R3me2s) (72). In
the cytoplasm, PRMT5 is involved in the formation of the 20S
protein arginine methyltransferase complex, which forms the
“methylome”. The complex consists of the shedder Sm protein,
PRMT5, pICln, and WD repeat protein (MEP50/WD45).
PRMT5 methylates the Sm protein, which in turn regulates
shedder activity and downstream gene expression (73). In Eµ-
myc transgenic mice, MYC directly upregulates transcription of
core small nuclear ribonucleoprotein particle assembly genes,
including Prmt5, as a way to ensure splicing fidelity of exons with
weak 5’ donor sites-an important step in lymphomagenesis (74).
PRMT5 is overexpressed in MCL, GC-DLBCL, and activated B
cell-like DLBCL (ABC-DLBCL) cell lines and clinical samples as
well as in mouse primary lymphoma cells. PRMT5 upregulates
PRC2 expression by epigenetically silencing RBL2 and indirectly
Frontiers in Oncology | www.frontiersin.org 4
causing RB1 inactivation through phosphorylation (75, 76).
PRMT5 knockdown reactivates the RB1/RBL2-E2F tumor
suppressor pathway and antagonizes cyclin D1-CDK4/6
signaling, which in turn leads to lymphoma cell death. Another
study found that PRMT5 directly silenced the expression of axin-
related protein (AXIN2) and WNT inhibitory factor 1 (WIF1).
This lead to a stimulation of WNT/b-catenin signaling and
indirectly activated the AKT/GSK3b pathway, leading to an
inhibition of the overexpression that induced lymphoma cell
death (41).

2.1.3 RNA Methylation
According to the data analysis of the RNA modification database
MODOMICS as of 2017, 163 different chemical RNA
modifications have been identified in all organisms (77).
Among them, N6-methyladenosine (m6A) is considered to be
the most common, rich and conservative internal PTM in
eukaryotic messenger RNAs (mRNAs), microRNAs (miRNAs),
and long non-coding RNAs (lncRNAs). M6A usually occurs in
adenine of the common sequence RRACH (R=A/G,H=A/C/U)
(78), is enriched near the stop codon and the 3′ untranslated
terminal region (UTR) and translated near the 5′ UTR in a cap-
independent manner (79).

M6A-RNA methylation modification is a reversible biological
process participated by methyltransferases (writers),
demethyltransferases (erasers) and methylation readers
(readers), which affects RNA transcription, processing,
translation and metabolism. Writers include methyltransferase-
like 3 (METTL3) (80), METTL14 (81, 82), Wilms tumor 1-
associated protein (WTAP) (83), RNA-binding motif protein 15/
15B (RBM15/15B) (84), KIAA1429 (85), and zinc finger CCCH-
type containing 13(ZC3H13) (86); readers comprise e.g. YT521-
B homologue (YTH) protein family (87), insulin-like growth
factor 2 mRNA-binding proteins (IGF2BP1/2/3) (88), eukaryotic
initiation factor (eIF) 3 and heterogeneous nuclear
ribonucleoprotein (hnRNP) family (86); whereas erasers
include fat mass and obesity-associated protein (FTO) (89) and
alkB homologue 5 (ALKBH5) (86, 90, 91).

METTL3 has a SAM-binding domain which can catalyze the
transfer of methyl groups in SAM to adenine bases in RNA to
produce S-adenosine homocysteine (SAH), while METTL14 is
mainly used to stabilize the structure of the methyltransferase
complex (MTC) and to determine a specific RNA sequence
(“RRACH”) as a catalytic substrate (92). Both of them were
co-located in nuclear speckles and formed a stable complex at a
ratio of 1:1 (81). WTAP, RBM15/15B, and KIAA1429 don’t have
a catalytic function. WTAP is responsible for recruiting
METTL3-METTL14 heterodimers, which form the m6A
methyltransferase tricomplex (METTL3–METTL14–WTAP);
RBM15/15B binds METTL3 and WTAP and directs these two
proteins to specific RNA sites for m6A modification, which play
important roles in cell growth and apoptosis, especially in blood
cells, by regulating various signaling pathways such as Notch and
Wnt; KIAA1429 recruits MTC and mediates methylation of
adenine bases near the 3’UTR and stop codon regions in
mRNA (83, 84, 86, 93). Through the interaction between
ZC3H13 and WTAP, its low-complexity (LC) domain is
April 2022 | Volume 12 | Article 874645
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retained in nuclear speckles, thus improving its catalytic
function (94).

FTO and ALKBH5 belong to the 2-oxoglutarate-dependent
nucleic acid oxygenase (NAOX) family and catalyze the
demethylation of m6A in a Fe2+ and a-KG-dependent manner.
The FTO in the nucleus mediates the demethylation of m6A,
whereas the FTO in the cytoplasm mediates the N6 and the
dimethyladenosine (m6Am) and m6A in the cytoplasm. In
addition, FTO can also combine with transfer RNA (tRNA) to
mediate the demethylation of N1-methyladenosine (m1A) in
tRNA (95, 96). ALKBH5 colocalizes with nuclear speckles and
influences mRNA processing factors’ assembly/modification and
regulates mRNA export and RNA metabolism (97).

Writers play a positive catalytic role in RNA methylation
modification, which can be reversed by erasers. However, in this
process, different readers need to identify the modified residues
and transmit information to complete the downstream biological
function and establish an efficient and orderly m6A regulatory
network. The YT521-B homology (YTH) domain family includes
YTH domain family protein 1(YTHDF1), YTH domain family
protein 2 (YTHDF2), YTH domain family protein 3 (YTHDF3),
YTH domain containing 1(YTHDC1), and YTH domain
containing 2 (YTHDC2) (98). YTHDF1/2/3 are located in the
cytoplasm. The C-terminal region of YTHDF2 can identify
specific m6A sites, and its N-terminal region binds to the SH
domain of CCR4-NOT transcription complex subunit 1
(CNOT1), thereby recruiting the CCR4-NOT deadenylase
complex. After this series of processes, RNA is finally
transported to the processing body (P-body) to accelerate RNA
degradation. YTHDF1 interacts with eukaryotic translation
initiation factor 3 (eIF3), eIF4E, and eIF4G to improve the
translation efficiency of m6A modified mRNA (86, 99);
YTHDF3 promotes the translation of related mRNA through
direct interaction with YTHDF2. YTHDC1 binds pre-mRNA
and interacts with mRNA splicing factor, specifically recruiting
serine- and arginine-rich splicing factor 3 (SRSF3) or
antagonizing serine- and arginine-rich splicing factor 10
(SRSF10). Thereby promoting exon inclusion, splicing, as well
as mRNA export from the nucleus to the cytoplasm (100).
YTHDC2 selectively binds m6A at its consensus motif,
enhances the translation efficiency of its targets and also
decreases their mRNA abundance (101). The YTH family is
the most important type of m6A readers, however, additional
proteins are involved in this processing cascade. For example,
IGF2BP1/2/3 rely on their K homology (KH) domains to
recognize consensus GG (m6A) C sequences, promote the
stability and storage of their target mRNAs in an m6A-
depedent manner under normal and stress conditions and thus
affect gene expression output (88). HNRNPA2B1 can bind to
m6A-bearing sites in the transcriptome and positively regulates
primary miRNA transcript (pri-miRNA) processing in a similar
manner as METTL3 (102).

In lymphoma, m6A in DLBCL was studied the most. In
DLBCL tissues and cell lines, the expression of METTL3 is up-
regulated, which leads to the increase of the m6A level of pigment
epithelium-derived factor (PEDF) expression and transcription,
Frontiers in Oncology | www.frontiersin.org 5
and finally resulting in the activation of the Wnt pathway which
accelerates cell proliferation. Down-regulation of METTL3
expression can inhibit the proliferation of DLBCL cells (103).
Both knockdown and overexpression of METTL3 protein will
lead to the upregulation of WTAP protein. The level of METTL3
is closely related to the homeostasis of WTAP, and in the absence
of METTL3, the upregulation of WTAP is not enough to
promote cell proliferation (104). Therefore, we speculate that
WTAP plays a carcinogenic role in DLBCL and may be closely
related to m6A-RNA methylation co-participated by METTL3.
WTAP forms a complex with heat shock protein 90 (HSP90) and
BCL6 to maintain its stability, thus promoting the proliferation
of DLBCL cells and improving the ability to resist apoptosis.
After the use of the antineoplastic drug etoposide in a DLBCL
cell line, the expression of WTAP decreased and the apoptosis
rate of tumor cells increased significantly (105). Another study
showed that WTAP enhances the hexokinase 2 (HK2) m6A level
by enhancing the expression of theHK2 gene, a process regulated
by PIWI-interacting RNAs (piRNAs)-30473 (106, 107). HK2 is
the rate limiting enzyme of the glycolysis pathway which can
enhance aerobic glycolysis and promote tumor cell proliferation.
Previous studies have confirmed that HK2 is the key metabolic
driver of the DLBCL phenotype (108). In addition, WTAP was
obviously upregulated in human NKTCL cell lines (YTS and
SNK-6 cells), compared with normal NK cells. More
importantly, intervention of WTAP evidently prohibited
NKTCL cell chemotherapy resistance to cisplatin (109).

Wu et al. found that MYC activates the expression of
ALKBH5 and YTHDF3, reducing m6A levels in the mRNA of
the selected MYC-repressed genes (MRG) SPI1 and PHF12. By
inhibiting ALKBH5, or overexpression of SPI1 or PHF12,
effectively suppresses the growth of MYC-deregulated B-cell
lymphomas, both in vitro and in vivo (110). In addition,
whole-exome sequencing (WES) showed deletions and
mutations of YTHDF2 in PTCL (29). It was shown that Ki-67-
related IGF2BP3 is the most strongly upregulated mRNA in
MCL cases, and its high expression is closely related to the
proliferation ability of tumor cell (111). In Zhang’s study, 10
m6A modulators were classified according to the risk ratio to
predict the survival rate of patients with MCL (38).

2.1.4 Histone Acetylation
Chromatin histone acetylation and deacetylation are also key
steps in epigenetic regulation. These two reversible processes are
jointly regulated by histone acetyltransferase (HAT) and HDAC
and are in dynamic equilibrium under normal physiological
conditions (43).

2.1.4.1 HAT
HATs use acetyl coenzyme A as a cofactor and catalyze the
transfer of acetyl groups to the ϵ-amino group of the lysine side
chain. This leads to the neutralization of the positive lysine
charge and thus potentially weakens the electrostatic interaction
between the histone and the negatively charged DNA, which
finally results in a more “open” chromatin conformation (112).
HATs are classified into type A and B. Type A HATs are located
April 2022 | Volume 12 | Article 874645
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in the nucleus and are capable of modifying histones adulterated
in chromatin. They are a very diverse family of enzymes that can
be divided into three separate families: GNAT, MYST, and
CREBBP/EP300 family (113). All of them not only modify
multiple sites in the N-terminal tail of histones, but also
acetylate the globular histone core (112). By establishing a
mouse model, Crebbp and Ep300 were found to be frequently
mutated in B-cell lymphomas, mainly in DLBCL and FL (114).
CREBBPmutations were found in 15-30% of DLBCL and 40% of
FL, while EP300 mutations were found in approximately 5% to
10% of DLBC and FL (115, 116). Mutations in HATs occur in a
single allele and this mutation leads to inactivation of the HAT
coding domain, which in turn affects on the one hand the
acetylation of histones and non-histones, and on the other
hand activates BCL6 and the tumor suppressor P53 involved in
the development of B-cell lymphoma (117–119). CREBBP
mutations were also found in 26% of patients with Sézary
syndrome (SS) and primary cutaneous diffuse large B-cell
lymphoma-leg type (PCLBCL-LT) (120, 121). Type B HATs
are highly conserved and mainly acetylate free histones in the
cytoplasm, but not acetylated and nucleosomal histones. Type B
HATs rapidly acetylates newly synthesized histones H3 and H4,
and this acetylation pattern is important for histone deposition.
Moreover these modifications are removed during chromatin
maturation (122).

2.1.4.2 HDAC
HDACs counteract the action of HATs and reverse lysine
acetylation, restoring the positive charge of lysine which may
facilitate the stabilization of local chromatin structure. In
humans, there are 18 HDACs that can be divided into four
classes: class I Rpd3-like proteins (HDAC1/2/3 and HDAC8),
class II Hda1-like proteins (HDAC4-7, HDAC9, and HDAC10),
class III Sir2-like proteins (SIRT1-7), and class IV protein
(HDAC11) (123). Classes I, II, and IV HDACs are zinc
dependent, while class III ones are sirtuins using NAD+ as a
reactant to deacetylate the acetyl lysine residue of the protein
substrate to form nicotinamide, the deacetylation product and
the metabolite 2’-O-acetyl-ADP-ribose (123, 124). The
deacetylation of HDACs not only alters transcription but also
other PTM such as methylation, ubiquitination and sumoylation.
55.8% PTCL-NOS, 57.1% NKTCL, 86.7% ALCL, and 50% AITL
strongly expressed HDAC1; 58.1% PTCL-NOS, 57.1% NKTCL,
53.3% ALCL, and 60% AITL strongly expressed HDAC2 (64). As
mentioned previously, CREBBP mutations disable acetylation
and simultaneously enhance deacetylation of the HDAC3
complex, which may be the mechanism of GC lymphoma
development (117). HDAC6 is either weakly expressed or
undetectable in 96% of DLBCL cases (125) and HDAC6 may
be an important prognostic marker associated with a good
outcome in DLBCL or a more aggressive course in PTCL,
respectively (126). HDAC7 has anti-cancer effects and
expression is downregulated in BL (127). Increased HDAC9
copy number was found in 50% of DLBCL cases and further
genetic mouse models suggest that HDAC9 may contribute to
lymphoma development by altering pathways related to growth
Frontiers in Oncology | www.frontiersin.org 6
and survival as well as regulating BCL6 activity and P53 tumor
suppressor function (128).

2.1.4.3 BET
Bromodomain and extra terminal motif (BET) family is a reader
used to detect acetylated lysine residues on histones and non-
histone proteins. The BET family consists of BRD2, BRD3 and
BRD4, which are widely expressed in tissues, and bromodomain
testis-specific protein, which is mainly found in the testis (129).
The BET protein consists of two amino-terminal bromodomains
that bind to acetylated lysine residues of histones and other
proteins, and an extra-terminal domain, which mediates further
protein-protein interactions (130). BET acts as a chromatin
“reader”, transforming the chromatin state into a chromosome
state by recruiting transcriptional regulatory complexes to their
binding sites. In DLBCL, BL, and MCL, this action is always
mediated by MYC (131). For example, BRD4 interacts with and
activates positive transcription elongation factor-b (P-TEFb),
which stimulates RNA Pol II into active elongation and
activates transcription initiation and elongation (13, 131, 132).

2.2 Epigenetic Therapy
In the context of this complex epigenetic regulation of gene
expression in tumors, the use of epigenetic therapies to reverse
this aberrant gene expression can be effective in treating tumors.
The development and testing of anti-tumor drugs targeting
epigenetic factors is flourishing internationally, and a number
of epigenetic drugs have been approved as drugs by the US Food
and Drug Administration (FDA) in lymphoma (Figure 1).

2.2.1 DNMT Inhibitors
2.2.1.1 Decitabine
DNA demethylating agents, such as decitabine and azacitidine,
have been approved by the U.S. Food and Drug Administration
for the clinical treatment of myelodysplastic syndrome (MDS)
and acute myeloid leukemia (AML). Decitabine is a
deoxyribonucleoside that can be incorporated into DNA and
occupy DNMTs to induce DNA hypomethylation. It displays
cytotoxicity at high concentrations, whereas low doses can
minimize toxicity and may improve the targeting effect of
DNA hypomethylation through a re-expression of tumor
suppressor genes during tumor therapy (133). A phase 4
clinical trial investigated the efficacy of a combination of
decitabine together with a modified regimen of cisplatin,
cytarabine, and dexamethasone (DHAP) in relapsed/refractory
DLBCL (r/r DLBCL) (134). The results showed that overall
response rate (ORR) reached 50% and complete response rate
(CRR) reached 35%. Five patients (25%) showed a stable disease
(SD) with a disease control rate (DCR) of 75% and the median
progression-free survival (PFS) was 7 months. A randomized
phase 2 study of anti-PD-1 camrelizumab plus decitabine in
relapsed/refractory HL (r/r HL) achieved 79% ORR and
prolonged the median PFS to 35.0 months (135). Many clinical
trials are currently exploring the therapeutic efficacy of
decitabine in combination with the HDAC inhibitor
cidabendiamide in HL (NCT04514081, NCT04233294). The
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effectiveness of camrelizumab in combination with decitabine in
HL (NCT04510610) and NHL (NCT04337606) is also being
evaluated. There has also been an explosion in the combination
of novel CAR-T therapies with the traditional epigenetic drug
decitabine. For example, decitabine-primed tandem CD19/CD20
CAR-T cells treatment in relapsed/refractory B-cell NHL (r/r B-
cell NHL) (NCT04697940), sequential low-dose decitabine with
PD-1/CD28, CD19 CAR-T in relapsed/refractory B-cell
lymphoma (r/r B-cell lymphoma) (NCT04850560). Completed
or all ongoing trials are listed in Table 1. From these trials we can
look forward to DNA demethylating agents that show potential
in the field of lymphoma therapy, such as in combination with
immune checkpoint agents might being regimens that can
improve ORR.

2.2.1.2 Azacitidine
Azacitidine is an analog of cytidine, which can replace
nucleosides in DNA and RNA and covalently bind to DNMT
Frontiers in Oncology | www.frontiersin.org 7
to inhibit DNA methylation. The efficacy of azacitidine in the
treatment of myelodysplasia is well known. A phase 1/2 study of
azacitidine in combination with vorinostat in patients with r/r
DLBCL resulted in a 6.7% ORR (NCT01120834). The regimen of
azacitidine in combination with cyclophosphamide,
doxorubicin, vincristine, and prednisone (CHOP) for PTCL-
Tfh was presented at the 2021 Annual Meeting of the American
Society of Hematology (ASH). Patients in the study received 300
mg azacitidine orally for 7 days before circle 1 and 14 days before
circle 2-6 for a total of 6 cycles. This combination therapy
achieved 88.2% CRR. In 17 Tfh patients, two-year OS and PFS
reached 75.6% and 69.2%, respectively. A common grade ≥3
adverse event (AE) was neutropenia (2021 ASH Oral No.138).
We also look forward to the performance of azacitidine in more
lymphoma treatment cases. In the treatment of PTCL, different
azacitidine combination therapy programs are in progress, such
as azacitidine, romidepsin, belinostat, pralatrexate and
emcitabine combined treatment protocols (NCT04747236),
A

B

D
E

C

FIGURE 1 | (A) DNA methylation modifications usually turn off gene expression and therefore result in a lack of expression of tumor suppressors. Therefore,
intervention with DNA methylesterase inhibitors can reduce the methylation level of the promoter region of the target gene, opening up the expression of these
tumour suppressors and thus acting as a tumour suppressor. DNA methylesterase inhibitors that have been successfully marketed include azacitidine and
decitabine, both of which are nucleoside analogues that cause genome-wide reductions in methylation levels and activate gene transcription. (B) IDH2 is the rate-
limiting enzyme of the tricarboxylic acid cycle involved in cellular energy metabolism. Under normal conditions, IDH2 catalyzes the oxidation of isocitrate to produce
a-KG. Mutant IDH2 loses its normal function and converts a-KG to D-2-HG. The accumulation of D-2-HG leads to histone hypermethylation. IDH2 inhibitors such as
Enasidenib target mutant IDH2 to reduce D-2-HG, thereby inducing histone demethylation and slowing tumour progression. (C) Histone methylation modifications
are highly site-specific and modifier-specific, and have very different effects on gene expression. EZH2 is the core component of PRC2, which acts as a histone
methyltransferase to catalyse H3K27me3, causing tight binding of histones to DNA and inhibiting transcription of target genes, EZH2 inhibitors such as tazemetostat,
GSK2816126, valemetostat, SHR2554, cPI-0209, PF-06821497 and MAK683 specifically act on EZH2, inhibiting its function and restoring transcription of
oncogenes. (D) Histone acetylation is regulated by HAT and HDAC. HAT catalyzes the transfer of acetyl groups to the lysine side chain of histones, which neutralizes
the positively charged lysine and weakens the affinity of histones for negatively charged DNA, loosening the structure of histones and facilitating the recruitment of
transcription factors and the transcription of related genes. The HDAC-catalyzed deacetylation restores the positive electrical properties of histones, resulting in a
stronger electrical interaction between histones and DNA, which acts as a repressor of gene expression. A number of HDAC inhibitors have been approved for
marketing, among which, vorinostat and belistat of the hydroxamic acid class were approved by the US FDA for the treatment of CTCL and PTCL in 2006 and 2014
respectively; romidepsin of the cyclic tetrapeptide class was approved by the US FDA for the treatment of CTCL and PTCL in 2009 and 2011 respectively; and
chidamycin of the benzylamine class was approved by the Chinese In addition, other HDAC inhibitors, such as panobinostat, abexinostat, entinostat, fimepinostat,
mocetinostat and givinostat, are also in active clinical trials. (E) The BET family of proteins is an important class of proto-oncoproteins that contains the
bromodomain, a histone acetylation recognition factor, and a member of the BET family, BRD4, which interacts with and activates positive transcription elongation
factor-b (P-TEFb) to stimulate RNA Pol II into active elongation, activating transcription initiation and elongation. The BET inhibitor competes with the acetylation
residues to bind to the bromine domain of BRD4, destabilizing the DNA repair machinery and inducing the accumulation of DNA changes until cell death.
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TABLE 1 | Clinical trials of DNA methyltransferase inhibitors.

Regimen Disease n Phases Status Clinical
Result

Survival Benefit NCT ID

Decitabine, Cisplatin, Cytarabin, Dexamethasone (134) r/r DLBCL 21 Phase 4 completed 50%
ORR,
25% SD

The median PFS was 7 months, one-
year OS rate was 59.0%, two- year
OS rate was 51.6%

NCT03579082

Decitabine, Camrelizumab (135) r/r HL 61 Phase 2 completed 79%
CRR

63% maintained a response at 24
months, the median PFS was 35.0
months

NCT02961101

Decitabine, Chidamide, Camrelizumab HL Phase 2 Recruiting NCT04514081
Decitabine, Camrelizumab HL Phase 2/3 Recruiting NCT04510610
Decitabine, Chidamide, Camrelizumab HL Phase 2 Recruiting NCT04233294
Decitabine, SHR-1210 HL Phase 2 Recruiting NCT03250962
Decitabine, Chidamide, Camrelizumab NHL Phase 1/2 Recruiting NCT04337606
Decitabine, Sintilimab ENTKL Phase 2 Recruiting NCT04279379
Decitabine, Durvalumab, Pralatrexate, Romidepsin T-Cell

Lymphoma,
Phase 1/2 Recruiting NCT03161223

Decitabine, Pembrolizumab, Pralatrexate PTCL,
CTCL

Phase 1 Not yet
recruiting

NCT03240211

Decitabine, Cyclophosphamide, Rituximab,
Doxorubicin, Vincristine, Prednisone, Ibrutinib,
Lenalidomide, Chidamide

DLBCL Phase 2 Recruiting NCT04025593

Decitabine, Rituximab, Cyclophosphamide,
Doxorubicin, Vincristine, Prednisone

DLBCL Phase 1/2 Active, not
recruiting

NCT02951728

Decitabine, CD19 PD-1/CD28 CAR-T r/r DLBCL Phase 1 Recruiting NCT04850560
Decitabine, CD19/20 CAR-T r/r B-cell

NHL
Phase 1/2 Recruiting NCT04697940

Decitabine, Chidamide, CD19/20 CAR-T r/r B-cell
NHL

Phase 1/2 Recruiting NCT04553393

Azacitidine, Vorinostat r/r DLBCL 18 Phase 1/2 completed 6.7%
ORR

NCT01120834

Azacitidine, CHOP (2021 ASH Oral No.138) PTCL 17 completed 88.2%
CRR

Two-year OS rate was 75.6%, two-
year PFS rate was 69.2%

Azacitidine, Duvelisib Lymphoma Phase 1 Recruiting NCT05065866
Azacitidine, Tucidinostat, CHOP T-cell

Lymphoma
Phase 3 Not yet

recruiting
NCT05075460

Azacitidine, Cyclophosphamide, Doxorubicin,
Vincristine, Prednisone, Etoposide, Duvelisib

T-cell
Lymphoma

Phase 2 Recruiting NCT04803201

Azacitidine, Durvalumab, Pralatrexate, Romidepsin T-cell
Lymphoma

Phase 1/2 Recruiting NCT03161223

Azacitidine, Romidepsin, Gemcitabine T-cell
Lymphoma

Phase 3 Active, not
recruiting

NCT03703375

Azacitidine, CHOP T-cell
Lymphoma

Phase 2 Active, not
recruiting

NCT03542266

Azacitidine, Duvelisib, Romidepsin, Doxorubicin T-cell
Lymphoma

Phase 1 Not yet
recruiting

NCT04639843

Azacitidine, Romidepsin, Bendamustine, Gemcitabine r/r T-cell
Lymphoma

Phase 3 Active, not
recruiting

NCT03593018

Azacitidine, Tislelizumab, Lenalidomide, Etoposide,
Pegaspargase

NKTCL-NT Not
Applicable

Recruiting NCT05058755

Azacitidine, Dexamethasone, Pegaspargase,
Tislelizumab

NKTCL Phase 2 Not yet
recruiting

NCT04899414

Azacitidine, Vorinostat ENTKL-NT Phase 1 Active, not
recruiting

NCT00336063

Azacitidine, Romidepsin, Belinostat, Pralatrexate,
Gemcitabine

PTCL Phase 2 Recruiting NCT04747236

Azacitidine, Chidamide PTCL Phase 2 Recruiting NCT04480125
Azacitidine, Sintilimab, Chidamide PTCL Phase 2 Not yet

recruiting
NCT04052659

Azacitidine, Romidepsin, Lenalidomide,
Dexamethasone

PTCL,
CTCL

Phase 1 Recruiting NCT04447027

Azacitidine, Bendamustine, Piamprizumab B-cell NHL Phase 1/2 Recruiting NCT04897477
Azacitidine, Cyclophosphamide, Doxorubicin
Hydrochloride, Prednisone, Rituximab, Vincristine
Sulfate

DLBCL Phase 2/3 Recruiting NCT04799275

(Continued)
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azacitidine and chidamide combined treatment (NCT04480125).
Relevant clinical trials have been listed in Table 1.

2.2.2 IDH2 Inhibitor
Enasidenib (AG-221) is an inhibitor of IDH2 mutations and has
been approved for the treatment of AML. There is a phase 1/2
clinical trial of orally administered enasidenib (AG-221) in adults
with AITL, displaying an IDH2 mutation (NCT02273739).
However, the experimental results are not satisfactory. All
AITL patients showed disease progression or died and had ≥ 1
treatment-emergent adverse event (TEAE).

2.2.3 EZH1/2 Inhibitors
2.2.3.1 Tazemetostat
On January 23, 2020, tazemetostat, the world’s first EZH2
inhibitor, was approved by the FDA to treat patients aged 16
and over with metastatic or locally advanced unresectable
epithelioid sarcoma. In a phase 1 trial, monotherapy with
tazemetostat showed anticancer activity and a favorable safety
profile in patients with relapsed/refractory NHL (r/r NHL) (136).
In this trial, 38% of the patients with B-cell NHL had an objective
response and the median duration of response (DOR) was 12.4
months. In another open-label, single-arm, multicenter, phase 2
trial, tazemetostat showed a good effect in treating patients with
relapsed/refractory FL (r/r FL) (137). Patients were categorised
by their EZH2 status: mutant (EZH2mut) or wild type (EZH2WT).
The ORR was 69% (31 of 45 patients) in the EZH2mut cohort and
35% (19 of 54 patients) in the EZH2WT cohort and the median
PFS was 13.8 months and 11.1 months, respectively. Secondary
results of another phase 1 study showed that the ORR was only
15.4% of 13 subjects with B-cell lymphoma treated with
tazemetostat which may be due to excessive (69.2%) missing
data (NCT03028103). Tazemetostat monotherapy has shown
satisfying results so far, but we hope to see effects of
tazemetostat in combination with other therapies in the
treatment of lymphoma as well. Many clinical trials, as listed
in Table 2, are exploring the effect of tazemetostat combined
with monoclonal antibodies, such as ublituximab, umbralisib
(NCT05152459) or rituximab (NCT04224493) in r/r FL patients.

2.2.3.2 GSK2816126
GSK2816126 is a potent, highly selective, SAM-competitive,
small-molecule inhibitor of EZH2 methyltransferase that
decreases global H3K27me3 levels and reactivates silenced
Frontiers in Oncology | www.frontiersin.org 9
PRC2 target genes. In the proliferation assay using a group of
B-cell lymphoma lines, those DLBCL origins with Ezh2
activation mutations were the most sensitive to GSK2816126
(59). The ORR in a dose-escalation phase 1 study with
tazemetostat was 38% in patients with B-cell lymphomas. One
of these patients with germinal centre B-cell like DLBCL (GCB-
DLBCL) treated with 1,800 mg dose had a partial response
lasting 91 days, and 6 patients achieved SD (5 DLBCL and 1
FL) (138).

2.2.3.3 Valemetostat
Kagiyama et al. assessed the effect of a novel EZH1/2 dual
inhibitor, named OR‐S1, a close analog of valemetostat, also
known as DS‐3201 or (R)‐OR‐S2, on MCL tumor growth (139).
In the mouse model, oral OR-S1 inhibited ibrutinib‐resistant
MCL tumor growth in patient‐derived xenograft (PDX). Cyclin
Dependent Kinase Inhibitor 1C (CDKN1C, also known as p57,
KIP2) is a direct target of EZH1/2. OR-S1, through upregulation
of CDKN1C, sharply inhibited cell proliferation which was
accompanied by cell cycle arrest and B‐cell differentiation.
Valemetostat is being evaluated for its effectiveness in human
lymphoma. Two phase 2 trials are evaluating valemetostat
monotherapy in T-cell lymphoma (NCT04703192) and B-cell
lymphoma (NCT04842877) (Table 2).

2.2.3.4 SHR2554, cPI-0209, PF-06821497, and MAK683
The therapeutic effect of other EZH2 inhibitors on lymphoma is still
under further exploration. As shown inTable 2, a phase 1/2 study of
SHR2554 in combination with SHR1701 in patients with B-cell
lymphomas (NCT04407741), a study of cPI-0209 in patients with
lymphoma (NCT04104776), PF-06821497 treatment of FL
(NCT03460977), a study evaluating CPI-1205 in patients suffering
from B-cell lymphoma (NCT02395601). A trial to evaluate the
safety and efficacy of the EZH2 cofactor EED inhibitor MAK683 in
DLBCL is also being recruited (NCT02900651).

2.2.4 HDAC Inhibitors
HDAC inhibitors can be classified into four categories based on
their chemical structure: hydroxamate, short-chain fatty acid
(carboxylate), benzamide, and cyclic peptide. Among them,
hydroxamate acid-based vorinostat (SAHA) and belistat were
approved by the FDA for the treatment of cutaneous T-cell
lymphoma (CTCL) and PTCL in 2006 and 2014, respectively;
cyclic tetra peptide-based romidepsin was approved by the FDA
TABLE 1 | Continued

Regimen Disease n Phases Status Clinical
Result

Survival Benefit NCT ID

Azacitidine, Lenalidomide, Obinutuzumab r/r B-cell
Lymphoma

Phase 1 Recruiting NCT04578600

Azacitidine, Venetoclax, Obinutuzumab FL Phase 1/2 Recruiting NCT04722601
Azacitidine, R-GDP DLBCL, r/r

NHL
Phase 2 Not yet

recruiting
NCT03719989

Azacitidine, R-ICE DLBCL Phase 1 Active, not
recruiting

NCT03450343
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for the treatment of CTCL and PTCL in 2009 and
2011, respectively.

2.2.4.1 Vorinostat
Vorinostat is a pan-HDAC inhibitor that has been shown to cause
growth arrest and cystein-dependent apoptosis as well as cystein-
independent autophagic cell death with an ORR of 29.7% in a
phase 2B study of 74 patients with refractory CTCL (140). This led
to FDA approval of vorinostat for CTCL in 2006. Compared to
total skin electron beam therapy (TSEBT) monotherapy, the
combination therapy of vorinostat together with TSEBT showed
a dramatically better effect (100% ORR) in mycosis fungoide
(NCT01187446). Vorinostat monotherapy has also been used to
treat relapsed/refractory indolent B-cell NHL and MCL. In this
phase 2 trial, 56 patients were recruited and 50 were available for
ORR assessment with an ORR of 44% and a median PFS of 18
Frontiers in Oncology | www.frontiersin.org 10
months. In 39 FL patients, the ORR reached 49% and the median
PFS was 20months. The primary toxicities were manageable grade
3/4 thrombocytopenia and neutropenia (141). More clinical trials
have focused on the effects demonstrated by vorinostat in
combination with other drugs in the treatment of lymphoma.
Vorinostat combined with aurora kinase A inhibitor alisertib
(MLN8237) in relapsed/refractory lymphoid malignancy showed
that of the 34 patients included, two patients with DLBCL
achieved durable complete response (CR) and two patients with
HL achieved partial response (PR) (142). In a trail of vorinostat
combined with gemcitabine, busulfan, and melphalan with
autologous stem cell transplantation in patients with refractory
lymphomas, the ORR among 28 patients with DLBCL and
measurable disease was 96% (143). Treatment of patients
suffering from indolent NHL with a combination of vorinostat
together with rituximab, demonstrated a 46% ORR and a PFS of
TABLE 2 | Clinical trials of EZH1/2 inhibitors.

Regimen Disease n Phases Status Clinical
results

Survival benefit NCT ID

Tazemetostat (136) B-cell NHL 21 Phase 1/2 Completed 38% ORR The median DOR was 12.4
months

NCT01897571

Tazemetostat (137) r/r FL 99 Phase 2 Completed EZH2mut: 69%
ORR;
EZH2WT: 35%
ORR

EZH2mut: the median PFS was
13.8 months; EZH2WT: the
median PFS was 11.1 months

NCT01897571

Tazemetostat, Fluconazole, Omeprazole, Repaglinide B-cell
Lymphoma

Phase 1 NCT03028103

Tazemetostat, Ublituximab, Umbralisib r/r FL Phase 1/2 Not yet
recruiting

NCT05152459

Tazemetostat FL Phase 2 Recruiting NCT04762160
Tazemetostat, Placebo, Lenalidomide, Rituximab r/r FL Phase 3 Recruiting NCT04224493
Tazemetostat, CC-99282, Rituximab, Obinutuzumab,
Tafasitamab,

NHL Phase 1 Recruiting NCT03930953

Tazemetostat r/r B-cell
NHL

Phase 2 Active, not
recruiting

NCT03456726

Tazemetostat NHL Phase 2 Active, not
recruiting

NCT03213665

Tazemetostat, Ensartinib, Erdafitinib, Larotrectinib,
Olaparib, Palbociclib, Samotolisib, Selpercatinib,
Selumetinib, Sulfate, Tipifarnib, Ulixertinib, Vemurafenib

NHL Phase 2 Recruiting NCT03155620

Tazemetostat, Rituximab, Cyclophosphamide,
Vincristine, Doxorubicin, Prednisolone

DLBCL, FL Phase 1/2 Recruiting NCT02889523

Tazemetostat DLBCL, FL Phase 2 Active, not
recruiting

NCT02875548

GSK2816126 (138) DLBCL,
FL, MZL

20 Phase 1 completed 38% ORR NCT02082977

Valemetostat B-cell
Lymphoma

Phase 2 Recruiting NCT04842877

Valemetostat T-cell
Lymphoma

Phase 2 Recruiting NCT04703192

Valemetostat T-cell
Lymphoma

Phase 2 Active, not
recruiting

NCT04102150

SHR2554, SHR1701 Lymphoma Phase 1/2 Recruiting NCT04407741
CPI-0209, Irinotecan DLBCL, T-

cell
Lymphoma

Phase 1/2 Recruiting NCT04104776

PF-06821497 FL Phase 1 Recruiting NCT03460977
CPI-1205 B-Cell

Lymphoma
Phase 1 Completed NCT02395601

MAK683 DLBCL Phase 1/2 Recruiting NCT02900651
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29.2 months (144). In a phase 2 study of vorinostat for the
treatment of FL, marginal zone lymphoma (MZL) or MCL, the
ORR was 29%. The median PFS was 15.6 months for patients with
FL, 5.9 months for MCL, and 18.8 months for MZL (145).
Vorinostat, cladribine, and rituximab were used for treating
patients with MCL, relapsed chronic lymphocytic leukemia
(CLL), or relapsed B-cell NHL resulted in a 79% ORR and the
median PFS for relapsed NHL and previously untreated MCL was
19.5 months and 84 months, respectively (146). Vorinostat
monotherapy of DLBCL was not effective with only one patient
that displayed a prolonged SD of 18 evaluable patients (147).
Similarly, the effect of azacitidine combined with vorinostat for the
treatment of DLBCL, was not satisfactory, with only 1 out of 15
patients achieving objective response (NCT01120834). In a trial of
vorinostat in combination with cyclophosphamide, etoposide,
prednisone, and rituximab for elderly patients with relapsed
DLBCL, the results were reasonably good with the ORR
reaching 32% (NCT00667615).

The trials currently being recruited are all combination
therapies of vorinostat. A phase 2 trial is exploring the role of
vorinostat, gemcitabine, clofarabine, busulfan combination
therapy in the treatment of NHL (NCT04220008). A phase 1
trial is investigating the effectiveness of a combination therapy of
vorinostat, other chemotherapy and biological drugs in lymphoma
(NCT03259503, NCT00972478, and NCT01193842). A
combination azacitidine and vorinostat therapy for ENKTL is
also being recruited (NCT00336063). Given the role of vorinostat
monotherapy in CTCL, we believe that additional clinical trials
will reveal the effectiveness of vorinostat combination therapy in
other types of lymphoma. All the clinical trials mentioned above
are shown in Table 3

2.2.4.2 Belinostat
Belinostat is an isohydroxamic acid-derived pan-HDAC
inhibitor that broadly inhibits all zinc-dependent HDAC
enzymes (171). In a 2015 phase 2 study of relapsed/refractory
PTCL (r/r PTCL), belinostat monotherapy demonstrated a
completely durable response and manageable toxicity, showing
an ORR in the 120 evaluable patients of 25.8% and a median PFS
of 1.6 months (148). Based on this trial, belinostat monotherapy
was approved by the FDA for the treatment of r/r PTCL patients
in 2014. In a phase 2 trial for the treatment of r/r PTCL or
relapsed/refractory CTCL (r/r CTCL), the ORR reached 25% in
PTCL and 14% in CTCL (149). In a recent study, in patients with
newly diagnosed PTCL, treatment with belinostat in
combination with a standard cyclophosphamide, doxorubicin,
vincristine, and prednisone (Bel-CHOP) regimen, resulted in an
ORR of 86% (150). In addition, a randomized, phase 2B,
multicentre, belinostat combination therapy trial for patients
with r/r PTCL is recruiting (NCT04747236). The effect of
belinostat in the treatment of B-cell lymphoma seems to be
unsatisfactory. Among the 22 BL and DLBCL patients included,
no patient achieved CR or PR (NCT00303953). The role of
belinostat monotherapy or combination therapy in the treatment
of B-cell lymphoma remains to be discussed. There is a phase 2
trial of belinostat as consolidation therapy with zidovudine for
Frontiers in Oncology | www.frontiersin.org 11
adult T-Cell leukemia-lymphoma (NCT02737046). Overall, the
role of belinostat in the treatment of T-cell lymphoma is well
established and its effectiveness in the treatment of B-cell
lymphoma or other lymphoma needs to be further explored.
Relevant clinical trials on belinostat are mentioned in Table 3.

2.2.4.3 Romidepsin
Romidepsin is a potent and selective inhibitor of HDAC, arrests
the cell cycle, induces apoptosis and inhibits angiogenesis by
enhancing acetylation, both of histones and non-histones (172).
In a phase 2 trial, 96 patients with CTCL were included who had
received at least one or more systemic therapies. Of these 71%
had an advanced disease (≥ 2B) (151). The primary endpoint
ORR was 34%, including 6 patients with CR. 26 of 68 patients
(38%) with advanced disease achieved remission, including 5 CR.
The median response time was 2 months and the median DOR
was 15 months. In addition, a clinically meaningful
improvement in pruritus was observed in the trial with a
median duration of pruritus reduction of 6 months. In a phase
2 study in patients suffering from CTCL, romidepsin treatment
resulted in a clinically meaningful reduction in pruritus (CMRP).
The clinical benefit was evaluated by using a patient-assessed
visual analog scale. A total of 44 of 96 patients (46%) achieved a
significant clinical benefit, including objective response and/or
defined CMRP, and 43% of 73 patients with moderate-to-severe
pruritus experienced CMRP. The median time to CMRP was 1.8
months and the median duration of CMRP was 5.6 months
(173). Based on these two phase 2 trials, romidepsin was
approved by the FDA in November 2009 for the treatment of
r/r CTCL patients. Foss et al. studied the efficacy and safety of
romidepsin in patients with r/r CTCL with tumor stage and
folliculotropic mycosis fungoides, where patients received 14 mg/
m2 of romidepsin on days 1, 8, and 15 of a 28-day cycle. The
ORR to romidepsin treatment was found to be 45% (n = 20) in
patients with skin tumors and 60% (n = 10) in patients with
follicular disease involvement (149).

Two phase 2 studies examined the efficacy and safety of
romidepsin in patients with PTCL. Of the 45 patients with
PTCL included in the response analysis of the first study, 8
patients experienced CR and another 9 patients experienced PR
with an ORR of 38% (152). The second phase 2 trial reported a
25% ORR, 15% CR/CR unconfirmed (CRu), a median of 1.8
months time to time to response (TTR), 17 months DOR (153).
With a median PFS of 29 months, patients who achieved CR/
CRu for ≥ 12 months had significantly longer survival versus
those with CR/CRu for <12 months or <CR/CRu. For all
patients, median PFS and OS were 4 months and 11.3 months,
respectively (154). Based largely on these results, in 2011 the
FDA accelerated approval of romidepsin for patients with ≥1
prior PTCL treatment. In a Japanese study of romidepsin in
patients with r/r PTCL, the ORR was 43%, including 25% CR,
with a median PFS of 5.6 months and a median DOR of 11.1
months (155). In a phase 3 trial comparing alisertib, gemcitabine,
pralatrexate and romidepsin in patients with r/r PTCL, the ORRs
were 33%, 35%, 43% and 43%, respectively, the median PFS were
115 days, 57 days, 101 days and 242 days, respectively (156).
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TABLE 3 | Clinical trials of HDAC inhibitors.

Regimen Disease n Phases Status Clinical results Survival benefit NCT ID

Vorinostat (140) CTCL 74 Phase 2 Completed 29.7% ORR NCT00091559
Vorinostat, Total skin electron beam
therapy (TSEBT)

CTCL 28 Phase 1/2 Terminated 100% ORR Duration of clinical benefit was 28
months

NCT01187446

Vorinostat (141) Lymphoma 50 Phase 2 Completed 44% ORR The median PFS was 18 months NCT00875056
Vorinostat, Alisertib (142) Lymphoma 34 Phase 1 Completed 12% ORR NCT01567709
Vorinostat, Gemcitabine, Busulfan,
Melphalan (143)

Lymphoma 78 Phase 1 Completed DLBCL: the EFS rate was 61.5%, the
OS rate was 73%; HL: the EFS rate was
40%, the OS rate was 80%

NCT01421173

Vorinostat, Rituximab (144) NHL 30 Phase 2 Completed 46% ORR The median PFS was 29.2 months NCT00720876
Vorinostat (145) FL, MZL,

MCL
35 Phase 2 Completed 29% ORR FL: the median PFS was 15.6 months;

MCL: the median PFS was 5.9 months;
MZL: the median PFS was 18.8 months

NCT00253630

Vorinostat, Cladribine, Rituximab (146) relapsed
B-cell NHL

57 Phase 2 Completed 79% ORR The median PFS was 19.5 months NCT00764517

Vorinostat, Azacitidine DLBCL 15 Phase 1/2 Completed 6.7% ORR NCT01120834
Vorinostat, Cyclophosphamide,
Etoposide, Prednisone, Rituximab

r/r DLBCL 30 Phase 1/2 Completed 32% ORR NCT00667615

Vorinostat, Gemcitabine, Clofarabine,
Busulfan

NHL Phase 2 Not yet
recruiting

NCT04220008

Vorinostat, Busulfan, Gemcitabine,
Melphalan, Olaparib, Rituximab

r/r
Lymphoma

Phase 1 Recruiting NCT03259503

Vorinostat, Pembrolizumab r/r NHL Phase 1 Recruiting NCT03150329
Vorinostat, Cyclophosphamide,
Doxorubicin Hydrochloride, Etoposide,
Prednisone, Rituximab, Vincristine
Sulfate

B-cell
Lymphoma

Phase 1/2 Active, not
recruiting

NCT01193842

Vorinostat, Cyclophosphamide,
Doxorubicin Hydrochloride,
Prednisone, Rituximab, Vincristine
Sulfate

DLBCL Phase 1/2 Active, not
recruiting

NCT00972478

Vorinostat, Azacitidine ENKTL-NT Phase 1 Active, not
recruiting

NCT00336063

Belinostat (148) r/r PTCL 120 Phase 2 Completed 25.8% ORR The median PFS was 1.6 months, OS
was 7.9 months,

NCT00865969

Belinostat (149) r/r CTCL,
r/r PTCL

53 Phase 2 Terminated PTCL: 25% (6/24)
ORR; CTCL: 14% (4/
29) ORR

NCT00274651

Belinostat, CHOP (150) PTCL 23 Phase 1 Completed 86% ORR NCT01839097
Belinostat DLBCL,

BL
22 Phase 2 Completed NCT00303953

Belinostat, Azacitidine, Romidepsin,
Pralatrexate, Gemcitabine

PTCL Phase 2 NCT04747236

Romidepsin (151) CTCL 96 Phase 2 Completed 34% ORR The median time to response was 2
months; the median DOR was 15
months

NCT00106431

Romidepsin (151) CTCL 30 Phase 2 Completed Tumor stage: 45%
ORR; folliculotropic
mycosis fungoides:
60% ORR

Tumor stage: the median TTR was 1.9
months; folliculotropic mycosis
fungoides: the median TTR was 2.1
months

NCT00106431

Romidepsin (152) PTCL 45 Phase 2 Completed 38% ORR The median DOR was 8.9 months NCT00007345
Romidepsin (153, 154) PTCL 130 Phase 2 Completed 25% ORR The median PFS was 4 months; OS

was 11.3 months
NCT00426764

Romidepsin (155) PTCL 40 Phase 2 Completed 43% ORR The median PFS was 5.6 months; the
median DOR was 11.1 months

NCT01456039

Romidepsin (156) PTCL 18 Phase 3 Completed 43% ORR The median PFS was 242 days NCT01482962
Romidepsin, Azacitidine (157) PTCL 25 Phase 2 Completed 61% ORR The median PFS was 8.0 month; the

median DOR was 20.3 months
NCT01998035

Romidepsin, Gemcitabine (158) PTCL 20 Phase 2 Completed 30% ORR Two-year OS rate was 50%, two-year
PFS rate was 11.2%

NCT01822886

Romidepsin, Chidamide AITL Phase 2 Not yet
recruiting

NCT04831710

Romidepsin, Azacitidine,
Bendamustine, Gemcitabine

r/r AITL Phase 3 Active, not
recruiting

NCT03593018
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TABLE 3 | Continued

Regimen Disease n Phases Status Clinical results Survival benefit NCT ID

Romidepsin PTCL Recruiting NCT03742921
Romidepsin, Azacitidine, Belinostat,
Pralatrexate, Gemcitabine

PTCL Phase 2 Recruiting NCT04747236

Romidepsin, Ixazomib PTCL Phase 1/2 Active, not
recruiting

NCT03547700

Romidepsin, Pembrolizumab r/r PTCL Phase 1/2 Recruiting NCT03278782
Romidepsin, Carfilzomib r/r PTCL Phase 1/2 Active, not

recruiting
NCT03141203

Romidepsin, Lenalidomide PTCL Phase 2 Active, not
recruiting

NCT02232516

Romidepsin, CHOEP PTCL Phase 1/2 Active, not
recruiting

NCT02223208

Romidepsin, CHOP PTCL Phase 3 Active, not
recruiting

NCT01796002

Romidepsin, Bortezomib, Duvelisib r/r CTCL Phase 1 Recruiting NCT02783625
Romidepsin, Brentuximab vedotin CTCL Phase 1 Recruiting NCT02616965
Romidepsin, Parsaclisib r/r T-cell

Lymphoma
Phase 1 Recruiting NCT04774068

Romidepsin, Azacitidine, Duvelisib,
Doxorubicin

T-cell
Lymphoma

Phase 1 Not yet
recruiting

NCT04639843

Romidepsin, Lenalidomide, Azacitidine,
Dexamethasone

r/r T-cell
Lymphoma

Phase 1 Recruiting NCT04447027

Romidepsin, Azacitidine, Gemcitabine T-cell
Lymphoma

Phase 3 Active, not
recruiting

NCT03703375

Romidepsin, Venetoclax r/r T-cell
Lymphoma

Phase 2 Recruiting NCT03534180

Romidepsin, Carfilzomib, Lenalidomide r/r T-cell
Lymphoma

Phase 1/2 Active, not
recruiting

NCT02341014

Romidepsin T-cell NHL Phase 2 Active, not
recruiting

NCT01908777

Romidepsin, Lenalidomide NHL Phase 1/2 Active, not
recruiting

NCT01755975

Panobinostat, Lenalidomide (159) r/r HL 24 Phase 2 Completed 16.7% ORR The median PFS was 3.8 months, the
median OS was16.4 months

NCT01460940

Panobinostat, Ifosfamide, Carboplatin,
Etoposide,

HL 40 Phase 1/2 Completed 85% ORR 65% Failure Free Survival NCT01169636

Panobinostat, Everolimus Lymphoma 61 Phase 1/2 Completed 33% ORR 20 mg panobinostat: the median PFS
were 3.7 months; 30/40 mg
panobinostat: the median PFS was 4.2
months

NCT00918333

Panobinostat, Rituximab DLBCL 18 Phase 2 Terminated 11% ORR The median PFS was 6 months NCT01282476
Panobinostat, Rituximab (160) DLBCL 40 Phase 2 Unknown

status
28% ORR NCT01238692

Panobinostat, Bortezomib (161) PTCL 23 Phase 2 Completed 43% ORR The median PFS was 2.59 months NCT00901147
Panobinostat, Bexarotene (162) CTCL 139 Phase 2 Completed 17.3% ORR Bexarotene-exposed: the median PFS

was 4.2 months; bexarotene-naïve: the
median PFS was 3.7 months

NCT00425555

Panobinostat r/r NHL 39 Phase 2 Active, not
recruiting

21% ORR The median PFS was 3.1 months, the
median OS was 14.9 months

NCT01261247

Chidamide (163) PTCL 79 Phase 2 completed 28% ORR The median PFS was 2.1 months, the
median OS was 21.4 months

Chidamide, R-CHOP (164) DLBCL 49 Phase 2 completed 94% ORR Two-year PFS rate was 68%, two-year
OS rate was 83%

NCT02753647

Chidamide (2021 ICML.Abstract
No.209)

r/r PTCL 46 Phase 2 completed 46% ORR The median PFS was 6 months, the
medain OS was 23 months

Chidamide, Cladribine, Gemcitabine,
Busulfan (165)

r/r NHL 105 Phase 2 completed Four-year PFS rate was 80.6%, four-
year OS rate was 86.1%

NCT03151876

Chidamide, Sintilimab (2021 ASH Oral
No.137)

ENKTL 30 Phase 2 completed 58% ORR, 47% CRR The median PFS, OS, and DOR were
16.5, 28.5, and 20.6 months,
respectively.

Chidamide, Tislelizumab, Lenalidomid,
Etoposide

r/r ENKTL 8 Phase 4 completed 87.5% ORR, 62.5%
CRR

NCT04038411
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TABLE 3 | Continued

Regimen Disease n Phases Status Clinical results Survival benefit NCT ID

Chidamide, Azacitidine AITL Phase 2 Not yet
recruiting

NCT05179213

Chidamide DLBCL Phase 2 Recruiting NCT04661943
Chidamide, Cyclophosphamide,
Rituximab, Doxorubicin, Vincristine,
Prednisone, Ibrutinib, Lenalidomide,
Decitabine

DLBCL Phase 2 Recruiting NCT04025593

Chidamide, Rituximab, Gemcitabine,
Oxaliplatin

r/r DLBCL Phase 2 Recruiting NCT04022005

Chidamide, Anti-PD-1 Antibody,
Rituximab

r/r DLBCL Phase 2 Not yet
recruiting

NCT05115409

Chidamide r/r B-cell
NHL

Phase 2 Recruiting NCT03245905

Chidamide, Decitabine, CD19/20
CAR-T cells

r/r B-cell
NHL

Phase 1/2 Recruiting NCT04553393

Chidamide, Cyclophosphamide,
Doxorubicin, Vincristine, Prednisone

AITL Phase 2 Recruiting NCT03853044

Chidamide, Sintilimab r/r AITL Phase 2 Not yet
recruiting

NCT04831710

Chidamide, Sintilimab, Azacitidine, L-
DEP

ENKTL Phase 2 Not yet
recruiting

NCT05008666

Chidamide, Sintilimab ENKTL Phase 2 Not yet
recruiting

NCT04994210

Chidamide ENKTL-NT Not
Applicable

Recruiting NCT04511351

Chidamide, Sintilimab ENKTL Phase 1/2 Recruiting NCT03820596
Chidamide, Etoposide NKTCL Phase 4 Recruiting NCT04490590
Chidamide, PD-1 Antibody,
Lenalidomide, Etoposide

NKTCL Phase 4 Recruiting NCT04038411

Chidamide, PD-1 antibody, Peg-
Asparaginase

NKTCL Phase 2 Recruiting NCT04414969

Chidamide, Sintilimab r/r CTCL Phase 2 Recruiting NCT04296786
Chidamide, Cyclophosphamide,
Doxorubicin, Vincristine, Etoposide,
Prednisone

PTCL Phase 2 Recruiting NCT03617432

Chidamide, Azacitidine, CHOP PTCL Phase 3 Not yet
recruiting

NCT05075460

Chidamide, Cyclophosphamide,
Epirubicin, Vindesine, Etoposide,
Prednisone

PTCL Phase 1/2 Recruiting NCT02987244

Chidamide, Azacitidine PTCL Phase 2 Recruiting NCT04480125
Chidamide, PD-1 antibody PTCL Phase 2 Recruiting NCT04512534
Chidamide, CHOP PTCL Phase 2 Recruiting NCT04480099
Chidamide, Sintilimab, Azacitidine r/r PTCL Phase 2 Not yet

recruiting
NCT04052659

Chidamide, Lenalidomide r/r PTCL Phase 2 Recruiting NCT04329130
Chidamide, Parsaclisib r/r PTCL Phase 1/2 Not yet

recruiting
NCT05083208

Chidamide, Mitoxantrone
Hydrochloride Liposome Injection

r/r PTCL Phase 3 Not yet
recruiting

NCT04668690

Chidamide Lymphoma Phase 2 Active, not
recruiting

NCT03629873

Chidamide, Camrelizumab, Decitabine HL Phase 2 Recruiting NCT04233294
Chidamide, Decitabine, Camrelizumab,
Decitabine, Camrelizumab

HL Phase 2 Recruiting NCT04514081

Chidamide, Decitabine, Camrelizumab NHL Phase 1/2 Recruiting NCT04337606
Chidamide, Chiauranib r/r NHL Phase 1/2 Recruiting NCT03974243
Chidamide, APG-1252 r/r NHL Phase 1/2 Not yet

recruiting
NCT05186012

Abexinostat FL, MCL 30 Phase 1/2 Completed FL: 56.3% (9/16) ORR;
MCL: 21.4% (3/14)
ORR

NCT00724984

Abexinostat NHL Phase 1/2 Recruiting NCT04024696
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More studies are currently focusing on the combined use of
romidepsin. Combined oral azacitidine and a Tfh phenotype
showed a higher ORR (80%) and CRR (67%) (157). In a phase 2
study on the role of gemcitabine plus romidepsin (GEMRO
regimen) in the treatment of r/r PTCL patients, the ORR was
30% with 15% CRR, the two-year OS rate was 50% and the two-
year PFS rate was 11.2% (158). Another important finding is that
a pretreatment regimen of romidepsin combined with busulfan
and fludarabine reduces the risk of relapse after allo-SCT in
patients with aggressive T-cell tumors(2021 ASH Oral No.553).

At present, most clinical trials are still concerned with the role
of romidepsin in T-cell lymphoma. For AITL patients, there have
been clinical trials with romidepsin in combination with
chidamide (NCT03593018) and also with romidepsin in
combination with azacitidine, bendamustine, gemcitabine
(NCT03593018). More types of combination drug regimens
are being explored in patients with PTCL, such as romidepsin
in combination with azacitidine, belinostat, pralatrexate, and
gemcitabine (NCT04747236), romidepsin in combination with
ixazomib (NCT03547700), and romidepsin in combination with
pembrolizumab (NCT03278782) etc. The treatment options
being tried in CTCL patients are romidepsin united
brentuximab vedotin (NCT02616965) and romidepsin united
bortezomib and duvelisib (NCT02783625). The performance of
romidepsin in B-cell lymphoma is still unknown and it is hoped
that more clinical trials in this area will be seen in the future.
Relevant clinical trials on romidepsin are mentioned in Table 3.

2.2.4.4 Panobinostat
On February 23, 2015, the FDA approved panobinostat for the
treatment of patients with multiple myeloma (MM). Panobinostat
is a pan-HDACi with maximum potency against class I, II and IV
Frontiers in Oncology | www.frontiersin.org 15
histone deacetylases (174). The combination of panobinostat and
the PI3K/mTOR inhibitor BEZ235 synergistically demonstrated
effective inhibition of tumor growth and a prolonged survival in a
mouse DLBCL xenograft model, demonstrating that PI3K
inhibition enhances histone acetylation and enhances AKT
dephosphorylation (175). In the trial of panobinostat and
everolimus in the treatment of lymphoma, the combination
treatment resulted in an ORR of 33% and the median PFS were
3.7months and 4.2months for patients treated with 20mg and 30/
40 mg panobinostat, respectively (NCT00918333). Panobinostat
obtained a 21% ORR in NHL patients with a median PFS of 3.1
months (NCT01261247). In a phase 2 trial of panobinostat in
combination with lenalidomide for the treatment of r/r HL, the
ORR amounted up to 16.7%, which was lower than the ORR with
either drug alone. The median PFS and OS were 3.8 and 16.4
months, respectively (159). In all 24 patients, grade 3 to 4 toxicities
consisted of neutropenia (58%), throm-bocytopenia (42%),
lymphopenia (25%), and febrile neutropenia (25%).These
treatment results and adverse effects limited the further
evaluation of this combination therapy. However, in a trial of
panobinostat plus ifosfamide, carboplatin, and etoposide (ICE)
against relapsed HL, the combination therapy demonstrated better
results with an 85% ORR compared to ICE alone (75% ORR)
(NCT01169636). Two clinical trials tested the efficacy of
panobinostat in combination with rituximab in DLBCL. One of
the trials was terminated due to slow accrual, and the results also
showed that the combination therapy resulted in grade 3/4
thrombocytopenia in 44% of the patients (NCT01282476). The
results of another trial were also unsatisfactory, with an overall
remission rate of 29% for panobinostat and 26% for panobinostat
plus rituximab. Moreover there appears to be a lacking benefit in
adding rituximab to panobinostat (160).
TABLE 3 | Continued

Regimen Disease n Phases Status Clinical results Survival benefit NCT ID

Abexinostat, Ibrutinib DLBCL,
ML

Phase 1/2 Recruiting NCT03939182

Abexinostat r/r DLBCL Phase 2 Recruiting NCT03936153
Abexinostat r/r FL Phase 2 Recruiting NCT03934567
Abexinostat r/r FL Phase 2 Active, not

recruiting
NCT03600441

Entinostat (166) r/r HL 49 Phase 2 Terminated 12% ORR, 24% DCR The median PFS was 5.5 months, the
medain OS was 25.1 months

NCT00866333

Entinostat, Pembrolizumab r/r
Lymphoma

Phase 2 Recruiting NCT03179930

Entinostat, ZEN-3694 Lymphoma Phase 1/2 Not yet
recruiting

NCT05053971

Fimepinostat (167) Lymphoma 33 Phase 1 Completed 24% ORR, 57% DCR NCT01742988
Fimepinostat, Rituximab (168) DLBCL 30 Phase 1 Completed 37% ORR The medain DOR was 11.1 months, the

median PFS was 2.9 months
NCT01742988

Fimepinostat (169) r/r DLBCL
and HGBL

66 Phase2 Completed 12% ORR, 30% DCR The median PFS was 1.4 months

Mocetinostat (170) HL 51 Phase 2 Terminated 27% ORR NCT00358982
Mocetinostat, Brentuximab Vedotin r/r HL Phase 1/2 Active, not

recruiting
NCT02429375

Mocetinostat r/r DLBCL,
r/r FL

Phase 1/2 Active, not
recruiting

NCT02282358

ITF2357, Mechlorethamine HL 24 Phase 1/2 Completed NCT00792467
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In the treatment of T-cell lymphoma, panobinostat in
combination with bortezomib performed well in the treatment
of PTCL, reaching a 43% ORR (161). The greatest response was
seen in patients with AITL, with 4 of 8 patients (50%)
responding. Common treatment-related grade 3/4 AE continue
to include thrombocytopenia (68%), and neutropenia (40%). In a
CTCL setting, the benefit of a panobinostat with bexaroten
combination therapy was greater than with panobinostat alone
(20% ORR vs 15% ORR) (162). Clinical trials of panobinostat
were stored in Table 3.

2.2.4.5 Chidamide
Chidamide, an original anti-cancer drug with Chinese
intellectual property rights, was approved for global marketing
as a benzylamine histone deacetylase inhibitor, designed to block
the catalytic pocket of class I HDACs and to inhibit the activity of
HDAC1, 2, 3, and 10, which results in growth arrest and
apoptosis. In a phase 2 study of r/r PTCL, 79 patients were
treated with chidamide monotherapy (163). The results were
significant, with an ORR of 28%, of these, 14% had CR/CRu.
Patients with AITL tend to have a higher ORR (50%) and CR/
CRu rates (40%), as well as longer lasting responses to chidamide
therapy. The median PFS and OS were 2.1 and 21.4 months,
respectively. The majority of AE were of grade 1/2 and those that
occurred in ≥10% of the patients were of grade ≥3:
thrombocytopenia (22%), leukopenia (13%), and neutropenia
(11%). In 2017, Shi et al. published a paper describing chidamide
in the treatment of r/r PTCL: a multicenter real-world study in
China (176). For the 256 patients receiving chidamide
monotherapy, the ORR and DCR were 39.06% and 64.45%,
respectively, with a median PFS of 129 days. In 127 patients
receiving chidamide in combination with chemotherapy, the
ORR and DCR were 51.18% and 74.02%, respectively, with a
median PFS of 152 days. In a phase 2 study of chidamide in
combination with rituximab plus cyclophosphamide,
doxorubicin, vincristine, and prednisone (R-CHOP) in 49
elderly patients with no reported grade 4 non-hematologic
toxicity, suffering from newly diagnosed DLBCL, the CRR was
86%, ORR was 94%, and 2-year PFS and OS rates were 68% and
83%, respectively (164). These results suggest that chidamide in
combination with R-CHOP is effective and safe in elderly
patients with newly diagnosed DLBCL. A Japanese phase 2
clinical study demonstrates the effectiveness of chidamide
monotherapy for r/r PTCL. The ORR was 46% in 46 evaluable
patients and up to 88% in AITL patients. The median PFS and
OS were 6 months and 23 months, respectively (2021
ICML.Abstract No.209). A new conditioning regimen with
chidamide, cladribine, gemcitabine and busulfan (ChiCGB),
significantly improved the outcome of high-risk or relapsed/
refractory NHL (r/r NHL) (165). All 105 patients with high-risk,
relapsed/refractory lymphoma who received ChiCGB as a
conditioning therapy after transplantation of autologous
peripheral stem cells, achieved complete hematopoietic
recovery. At a median follow-up of 35.4 months, 80.6% of the
patients were free of tumor progression with a high PFS rate and
OS rate of 80.6% and 86.1%, respectively, with 94.5% of patients
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with B-cell NHL and 75.4% of patients with NKTCL surviving.
Huang et al. initiated a clinical trial of sintilimab in combination
with chidamide (SC) for the treatment of ENKTL. All patients
first received 2-3 cycles of sintilimab (200 mg) in combination
with chidamide (30 mg twice weekly). For early stage (stage I-II)
patients, 2 cycles of SC combined with sequential 2-4 cycles of
pegaspargase plus gemcitabine and oxaliplatin (P-Gemox)
followed by involved field radiotherapy (IFRT) were given; for
late stage (stage III-IV) patients, 3 cycles of SC followed by
sequential 3-6 cycles of P-Gemox treatment were used. Of the 30
patients whose efficacy could be evaluated, the ORR reached
58%, with a CRR of 47%. The median PFS, OS and DOR were
16.5 months, 28.5 months, and 20.6 months, respectively. The
incidence of AE was 56%, mainly from sintilimab or chidamide
alone, and recovered by dose reduction or discontinuation, with
the SC regimen demonstrating promising efficacy and high safety
in patients with ENKTL (2021 ASH Oral No.137). Another
regimen used to treat relapsed/refractory ENKTL (r/r ENKTL)
is tislelizumab combined with chidamide, lenalidomid and
etoposide. In 8 evaluable patients, 87.5% ORR and 62.5% CRR
were achieved (NCT04038411).

A very large number of clinical trials have been conducted to
explore the therapeutic effects of chidamide in different types of
lymphoma. In patients with DLBCL, clinical trials are currently
underway with chidamide monotherapy (NCT04661943),
chidamide in combination with R-CHOP and placebo
(NCT04231448), and chidamide in combination with rituximab,
gemcitabine, and oxaliplatin (NCT04022005). In patients with
AITL, the treatment options being tried are chidamide in
combination with cyclophosphamide, doxorubicin, vincristine,
and prednisone (NCT03853044), chidamide in combination with
azacitidine (NCT05179213), and chidamide in combination with
sintilimab (NCT04831710). Chidamide in combination with
sintilimab has also been used in ENKTL patients (NCT05008666,
NCT04994210). In contrast, in patients with NKTCL, more clinical
trials have opted for a combination regimen with PD-1 antibodies
(NCT04038411, NCT04414969). There are also many studies on
howwell chidamide works in patients with PTCL. These include not
only combinations with traditional chemotherapy regimens such as
CHOP (NCT05075460, NCT04480099), but also with other
epigenetic drugs such as azacidine (NCT04480125), and with
targeted drugs such as sintilimab (NCT04052659) and PD-1
antibodies (NCT04512534). In HL patients, the drugs of choice in
most clinical trials are chidamide, decitabine and camrelizumab
(NCT04233294, NCT04514081). Chidamide, an emerging HDAC
inhibitor, has achieved good results in the treatment of certain types
of lymphoma, and we need to further explore its efficacy for more
types of lymphoma in the future. The trials mentioned above and
other chidamide related trials are shown in Table 3.

2.2.4.6 Abexinostat
Abexinostat (CRA-024781) is a broad-spectrum isohydroxamic
acid-based HDAC inhibitor that demonstrated promising
antitumor activity in a phase 1 clinical trial evaluating cancer
(177). As shown in Table 3, the primary results reported in their
phase 2 trial showed 56.3% ORR in FL and 21.4% ORR in MCL
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(NCT00724984). As there are fewer evaluations of the efficacy of
abexinostat, more clinical trials are still focusing on the efficacy
of abexinostat alone in the treatment of DLBCL (NCT03936153)
and FL (NCT03934567, NCT03600441).

2.2.4.7 Entinostat
Entinostat is a selective inhibitor of HDAC 1, 2, 3, and 11 (178).
In vitro tests have shown that entinostat produces strong anti-
proliferative and immunomodulatory signals through
modulation of cytokine and chemokine levels, and displays
synergistic effects when combined with immune checkpoint
therapies (179, 180). In a phase 2 trial of entinostat against r/r
HL, the ORR was 12% while the DCR was 24%, with a median
PFS and OS of 5.5 and 25.1 months (166). Entinostat
demonstrated good tolerability with significant clinical activity
in a large number of pretreated HL patients. Based on these
entinostat properties, combination applications with other drugs
might be more promising in future trails. Clinical trials enrolling
entinostat in combination with pembrolizumab (NCT03179930)
or entinostat in combination with ZEN-3694 for lymphoma
(NCT05053971). Relevant clinical trials mentioned are shown
in Table 3.

2.2.4.8 Fimepinostat
Recent evidence suggests that both the PI3K-Akt-mTOR
signaling pathway and HDAC are effective targets in blood
cancers. Dual targeting can overcome primary resistance and
block secondary resistance due to compensatory/feedback
mechanisms in cancer cells. Fimepinostat (CUDC-907) is also
a dual inhibitor of HDAC (class I and II) and PI3K (class I a, b,
and d). In a phase 1 trial evaluating CUDC-907, single agent use
reached 24% ORR. Of the 9 DLBCL patients, 2 patients achieved
CR and 3 patients achieved PR, and SD was observed in 19 (57%)
out of 37 patients evaluable for response (167). In its phase 1
expansion trial, 30 DLBCL patients were evaluated for CUDC-
907 alone or in combination with rituximab (168). The results
shown that the ORR of the evaluable patient cohort was 37%,
with 9 of 19 (47%) reporting objective remission with
monotherapy and 2 of 11 (18%) reporting objective response
with combination therapy. The median PFS for all DLBCL
patients in the study was 2.9 months, with a median PFS of 5.7
months in patients treated with monotherapy and 1.3 months in
patients treated with combination therapy. In the phase 2 study
that included 66 r/r DLBCL and high-grade B-cell lymphoma
(HGBL) patients, CUDC-907 monotherapy amounted up to 12%
ORR and the PFS was 1.4 months (169). However, monotherapy
in patients with r/r DLBCL and HGBL in the presence of MYC
alterations achieved an extended duration of reflection, and
combination therapies or biomarker-based patient selection
strategies may lead to higher response rates in future clinical
trials. The tests mentioned above are listed in Table 3.

2.2.4.9 Mocetinostat and Givinostat
Mocetinostat (MGCD0103) is an oral isotype-selective non-
hydroxamic acid HDAC inhibitor targeting isotypes HDAC 1, 2,
3, and 11. It induces histone hyperacetylation, selectively induces
apoptosis, and causes cell cycle arrest in a dose-dependent manner
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in various human cancer cell lines (181). In the phase 2 trial
enrolling 51 patients with HL, the ORR for mocetinostat
monotherapy was 27%, and 34 of 42 patients (81%) who
completed at least 2 treatment cycles had decreases in tumor
measurements (170). Another HDAC inhibitor against HL,
givinostat (ITF2357), is also subject to clinical trials. These trails
showed that ITF2357 in combination with mechlorethamine could
achieve a 25% ORR and 28.66 months of PFS (NCT00792467). The
above two drugs seem to have limited effect in the treatment of HL
and hopefully in the future more epigenetic drugs will be available
for the treatment of HL. There is now a clinical trial evaluating
mocetinostat in combination with brentuximab vedotin in patients
with HL (NCT02429375), and another study exploring
mocetinostat alone in DLBCL and FL (NCT02282358). Relevant
clinical trials mentioned are shown in Table 3.

2.2.5 BET Inhibitors
As readers of histone acetylation, BET proteins can bind to
acetylated lysine residues in the histone tail, thereby carrying the
extended complex to the promoter region and activating
transcription in that region. Histone acetylation is prevalent in
super enhancers of oncogene expression, therefore inhibiting the
binding of BET proteins to chromatin has a significant impact on
transcription, which in turn resulted in the studies of many
bromodomain inhibitors. The BET inhibitor RVX2135 has been
shown in mouse models to inhibit lymphoma proliferation and to
induce apoptosis. Moreover, it sensitizes Myc overexpressing
lymphocytes by inducing HDAC silencing genes that synergize
with HDAC inhibitors to kill lymphocytes (182). The small
molecule inhibitor OTX015 (MK-8628) specifically binds to the
bromodomain motif BRD2, BRD3, and BRD4 of BET proteins
and keeps them bound to acetylated histones and this binding
occurs preferentially in the oncogene super enhancer region. Based
on a phase 1 trial evaluating the safety and pharmacokinetics of
OTX015, the recommended once-daily dose of oral single-agent
oral OTX015 in lymphoma patients was 80 mg, with an additional
9.1% ORR observed in 33 lymphoma patients (183).

2.3 Discussions
There is no doubt that the therapeutic effect of epigenetic drugs
in lymphoma is remarkable. In the future, on the one hand we
are interested in the appropriate dosing regimen in the treatment
of lymphoma. Combining laboratory data with clinical
experience provides the most beneficial recommendations for
patients. Combining epigenetic therapies with other currently
prevailing therapies, such as with immunotherapy, to combat
refractory or relapsed lymphomas in a common face. On the
other hand, the development of drugs for epigenetic
interventions is undoubtedly promising and challenging, as
systematic functional genomic and molecular mechanistic
studies will provide new pathways and targets for “synthetic
lethal strategies”; the development of computer-aided tools,
animal models and other technologies will also create better
conditions for lead compounds to enter clinical studies.
Increased investment in research and development and larger
screening scales will also accelerate the process of new drug
April 2022 | Volume 12 | Article 874645
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development. We have every reason to believe that epigenetic
therapies will fundamentally change the management of
lymphoma patients and become an integral part of
lymphoma treatment.
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