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Objective: Preoperative identification of lymphovascular invasion (LVI) in patients with
invasive breast cancer is challenging due to absence of reliable biomarkers or tools in
clinical settings. We aimed to establish and validate multiparametric magnetic resonance
imaging (MRI)-based radiomic models to predict the risk of lymphovascular invasion (LVI)
in patients with invasive breast cancer.

Methods: This retrospective study included a total of 175 patients with confirmed invasive
breast cancer who had known LVI status and preoperative MRI from two tertiary centers.
The patients from center 1 was randomly divided into a training set (n=99) and a validation
set (n = 26), while the patients from center 2 was used as a test set (n=50). A total of 1409
radiomic features were extracted from the T2-weighted imaging (T2WI), dynamic
contrast-enhanced (DCE) imaging, diffusion-weighted imaging (DWI), and apparent
diffusion coefficient (ADC), respectively. A three-step feature selection including
SelectKBest, interclass correlation coefficients (ICC), and least absolute shrinkage and
selection operator (LASSO) was performed to identify the features most associated with
LVI. Subsequently, a Support Vector Machine (SVM) classifier was trained to develop
single-layer radiomic models and fusion radiomic models. Model performance was
evaluated and compared by the area under the curve (AUC), sensitivity, and specificity.

Results: Based on one feature of wavelet-HLH_gldm_GrayLevelVariance, the ADC
radiomic model achieved an AUC of 0.87 (95% confidence interval [CI]: 0.80–0.94) in
the training set, 0.87 (0.70-1.00) in the validation set, and 0.77 (95%CI: 0.64-0.86) in the
test set. However, the combination of radiomic features derived from other MR sequences
failed to yield incremental value.

Conclusions: ADC-based radiomic model demonstrated a favorable performance in
predicting LVI prior to surgery in patients with invasive breast cancer. Such model holds
the potential for improving clinical decision-making regarding treatment for breast cancer.

Keywords: breast cancer, lymphovascular invasion, magnetic resonance imaging (MRI), machine
learning, radiomics
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INTRODUCTION

According to the 2018 global cancer statistics, breast cancer
ranks second in the incidence of new cancers (approximately
11.6%) and fifth in cancer-related mortality (approximately
6.6%) (1). Breast cancer has an incidence rate of 24.2% and a
mortality rate of 15%, making it the most malignant cancer
among women and a veritable “killer of women” (1). The
number of new cases of breast cancer has been increasing
annually (2). Recent studies have shown that lymphovascular
invasion (LVI) by tumors is a crucial prognostic factor affecting
patient outcomes and clinical treatment options (3–5). The main
causes of death among patients with breast cancer are cancer
recurrence and metastasis. Lymphovascular metastasis is the
most common form of metastasis in breast cancer and consists
in the invasion of regional lymph nodes, allowing cancer cells to
reach distant organs (6). In breast cancer, LVI can occur before
the appearance of lymph node metastasis and is an indicator of
poor prognosis (6). Thus, LVI is considered one of the major
criteria for tumor staging, prognostic prediction, and the
selection of treatment options (7–9). However, postoperative
pathology is currently the only available tool to confirm that
tumor vessels promote lymphatic and blood vessel growth and
invasion, with no effective method for non-invasively predicting
LVI status before surgery.

The emergence of radiomics brings new opportunities in this
regard to the field of oncology (10). Radiomics refers to the high-
throughput analysis of digitized quantitative and high-
dimensional imaging data and integrates histopathology,
machine learning, medical statistics, and computer science at
multiple levels and from multiple perspectives to yield high-
fidelity data for the comprehensive evaluation of various tumor
phenotypes (11). Three previous studies applied MRI-based
radiomics to predict LVI in patients with breast cancer (12–
14); however their results were controversial. Liu et al. built a
combined model incorporating dynamic contrast-enhanced
(DCE)-based radiomics signature and MRI-reported axillary
lymph node (ALN) status with an area under the curve (AUC)
of 0.763 (12). Kayadibi et al. identified the apparent diffusion
coefficient (ADC)-based radiomic signature as the best model,
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with an AUC of 0.732 (13). Zhang et al. found that fusion
radiomic model of the T2-weighted imaging (T2WI), contrast-
enhanced T1-weighted imaging (DCE), and ADCmaps achieved
better predictive efficacy for LVI status than either of them alone
(14). In this current study, we aimed to develop and validate
machine learning-based radiomic models using preoperative
MRI images as a non-invasive tool for the prediction of LVI
status in patients with invasive breast cancer.
MATERIALS AND METHODS

Patient Population
This study was conducted in accordance with the Declaration of
Helsinki (as revised in 2013). This retrospective cohort study was
approved by institutional ethics board and informed consent
was waived.

This study included a total of 175 consecutive patients with
pathologically confirmed invasive breast cancer who underwent
pretherapy contrast-enhanced MRI in two tertiary hospitals
between January 2019 and October 2020. All eligible patients
met the following inclusion criteria: i) patients with visible
primary breast lesions on MRI, ii) patients with newly
diagnosed invasive breast cancer by histopathological
evaluation of a surgical specimens, and iii) patients underwent
mastectomy or lumpectomy within two weeks after MRI scans.
The exclusion criteria were as follows: i) patients received biopsy
of the breast lesion before MRI scans, ii) patients received
neoadjuvant chemotherapy before surgery, and iii) patients
with low quality of MR images due to artifacts. The patient
inclusion flowchart is shown in Figure 1.

The clinical and radiological information were included as
follows: age, tumor location, tumor number, mass shape, tumor
diameter, TNM stage, pathological ALN-status, internal
enhancement pattern, background parenchymal enhancement,
fibroglandular tissue, chest wall invasion, and pectoralis major
muscle invasion. The assessment of radiological findings was in
accordance with the American College of Radiology Breast
Imaging Reporting and Data System (ACR BI-RADS) (15).
Histological analysis was performed on specimens obtained at
FIGURE 1 | Flowchart for selection of the study population.
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the surgery. Pathological ALN status was defined as positive if
macrometastases or micrometastases were identified in one or
more ALNs (12). LVI was assessed on hematoxylin and eosin-
stained sections, and was defined as carcinoma cells in a definite
endothelial-lined space in the peritumoral breast surrounding
the invasive carcinoma (12). The specimens were analyzed by
two pathologists with 5 and 16 years of experience in breast
cancer who were blinded to the MRI findings.

MRI Examination
All patients underwent conventional MRI, DCE-MRI, and
diffusion-weighted imaging (DWI). A Siemens Avanto 1.5T
superconducting magnetic resonance scanner, equipped with a
4-channel breast coil and a 6-channel body matrix coil, was used
for MRI examination. A GE Signa HDxt 3.0T MR scanner, with
an 8-channel phased-array breast coil, was used. Patients were
placed in the prone position in the scanner, with both breasts
hanging naturally in the coil. Axial and sagittal MR images were
obtained from the axilla to the inferior margin of the breast,
using the following imaging sequences and parameters: LAVA
DCE sequence (repetition time [TR], 5.68 ms; time to echo [TE],
2.20 ms; inversion time [TI], 16 ms; slice thickness, 2.0 mm; field
of view [FOV], 340 mm × 340 mm; and matrix, 348 × 348) and
STIR T2WI sequence (TR, 11000 ms; TI, 240 ms; TE, 60 ms; slice
thickness, 4.0 mm; slice interval, 0.4 mm; FOV, 340 mm ×
340 mm; matrix, 320 × 192). DWI was performed using a single-
shot SE-EPI sequence, with the following parameters: b, 800 s/
mm2; TR, 6600 ms; TE, 60 ms; slice thickness, 4.0 mm; slice
interval, 0.4 mm; FOV, 340 mm × 349 mm; and matrix, 130 × 96.
For enhanced imaging, a double-barreled high-pressure syringe
was used to inject the contrast agent, gadolinium-
diethylenediamine-pentaacetic acid (DPTA), at a flow rate of
2.5 mL/s and a dose of 0.1 mmol/kg. A repeat LAVA DCE was
obtained after administration of the contrast agent, using the
same parameters as for the plain sequence. Each phase of
imaging was 60s in duration, with eight phases completed, for
480s of imaging.

Imaging Preprocessing
Given that the MRI images were acquired from different
machines with different parameters, it is needed to eliminate
the internal dependence of radiomic features on voxel size. Thus,
we used the resampling method with linear interpolation
algorithm to normalize the voxel size.

Lesion Delineation and Segmentation
All patients’ T2WI, DCE, DWI, and ADC maps were exported
from the picture archiving and communication system into the
Radcloud (Huiying Medical Technology Co.,Ltd, Beijing, China)
software. Subsequently, the region of interest (ROI) was
manually and volumetrically segmented by a radiologist with 5
years of experience. All ROIs were then reviewed by a radiologist
with 10 years of experience.

ROI delineation rules were as follows: first, on the DCE
images, the phase I image with the highest intensity was
selected and an ROI was contoured along the margin of the
tumor. Second, on the T2WI image, the primary tumor was
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defined by contouring the margin of the tumor which had a
slightly higher signal. Third, the ROI on the DWI images was
draw to cover the entire high-signal-intensity area. Finally, the
ROI on DWI images was then transferred to ADC maps. The
ROI excluded any visible liquefaction, necrosis, and cystic
regions. Figure 2 shows the ROI delineation and pathological
image of a case with presence of LVI.

Feature Extraction
A total of 1409 radiomic features were extracted from the DCE,
T2WI, DWI, and ADC maps using the Pyradiomics function
package (https://pyradiomics.readthedocs.io/). These features
were divided into the following three categories: i) First-order
statistical features (n=19), such as peak value, mean, variance,
quantitatively describe the voxel intensity distribution of the
lesion area in MR images through common basic indicators; ii)
Shape-based features (n=16), describe the shape and size of the
lesion; iii) Texture features (n=72), including Gray Level Co-
occurrence Matrix (GLCM, n=24), Gray Level Dependence
Matrix (n=16), Gray Level Run Length Matrix (GLRLM,
n=16), and Gray Level Size Zone Matrix (GLSZM, n=16); and
iv) and (iv) filter-derived features (n=1302): filter ‘wavelet’: n =
744; other filter (‘lbp’, ‘square’,’squareroot’, ‘logarithm’,
‘exponential’, ‘gradient’): n = 93 ×6 = 558. The detailed
calculation formula for each radiomic feature is provided on
the official website (https://pyradiomics.readthedocs.io).

Feature Selection and Radiomic Model
Construction
Before the selection of radiomic feature, the normalization
processing of all extracted features was performed. To verify
the credibility of the manual segmentation between the two
radiologists, the MRI scans of 30 patients were randomly
selected and segmented by the two radiologists for double-
blind interpretation. Interclass correlation coefficients (ICC),
which can be used to assess the interobserver reproducibility of
ROIs delineated, is obtained from the following equation:

ICC =
MSR −MSEð Þ

MSR +
MSC−MSE

n

� �
MSR: mean square for rows; MSC: mean square for columns;

MSE: mean square for error; n: number of subjects.
After feature extraction, 80% of the dataset was randomly

assigned to training set and for all cases, features were
normalized to the normal distribution by mean and variance
scaling. The Support Vector Machine (SVM) classifier was used
to develop radiomic models based on single sequence and
their combinations.

Since some of the extracted features can be invalid for the
specific target task, it is necessary to identify features related to a
specific task to achieve the optimal predictive performance. First,
SelectKBest was applied to select the most significantly relevant
feature set with threshold of 0.05. The least absolute shrinkage
and selection operator (LASSO) is a regression analysis method
that can perform both variable selection and regularization to
improve the identification accuracy and interpretability of the
June 2022 | Volume 12 | Article 876624
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model. For example, it has a tuning parameter to control the
penalty of the linear model, which guarantees the minimum
penalty when obtaining a model with a smaller number of
features, where the penalty is mean square error (MSE). In
addition, another parameter controls the correlation of
features, making the selected features less relevant. L1
regularization was used as the cost function, the error value of
cross validation was 5, and the maximum number of iterations
was 1000. The optimization goal of LASSO is:

y =
1

2 ∗ nsamples

 !
∗ y − Xwk k2+alpha ∗ wk k

where X is the radioactivity characteristic matrix, y is the sample
vector marker, n is the sample number, w is the coefficient vector
regression model, alpha∗∥w∥ is the LASSO punishment. A
Frontiers in Oncology | www.frontiersin.org 4
radiomic score for each patient was then computed using a
linear combination of the key features weighted by their
LASSO coefficients.

The SVM classifier was built to predict LVI based on final
reduced radiomic features. The performance of the models was
estimated by the receiver operating characteristic (ROC) curve
and confusion matrix analysis with indicators of area under the
curve (AUC), accuracy, sensitivity, and specificity.

Statistical Analysis
Descriptive statistics and continuous variables were expressed as
numbers (percentages) and mean (standard deviation, SD).
Statistical analysis was performed using the Python 3.6
(https://www.python.org/). The univariate and multivariate
logistic regression analysis was used to identify the
independent clinical predictors of LVI status. The packages of
A B

D

E

C

FIGURE 2 | MRI and pathological images of a 46-year-old patient with invasive ductal carcinoma and LVI. Manual delineation of the region of interest on the
T2WI (A), DCE (B), DWI (C), and ADC (D), respectively. (E) displays the presence of LVI.
June 2022 | Volume 12 | Article 876624
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“pyradiomics” (https://pyradiomics.readthedocs. io/) ,
“scikitlearn” (https://scikit-learn.org/), and “matplotlib”
(https://matplotlib. org/) were used for feature selection, model
building, and plotting, respectively. A P-value <0.05 was
considered statistically significant.
RESULTS

Patient Characteristics and Clinical Model
Construction
Table 1 illustrates the clinical characteristics of patients in all
datasets. The proportion of positive LVI was 32% (56/175). The
patients from center 1 was randomly divided into a training set
(n=99) and a validation set (n = 26), while the patients from
center 2 was used as a test set (n=50).
Frontiers in Oncology | www.frontiersin.org 5
The univariate logistic regression analysis showed that
background parenchymal enhancement (P = 0.043), chest wall
invasion (P = 0.022),axillary lymph node metastasis (P = 0.014),
and pectoralis major muscle invasion (P = 0.021) remained as
potential predictors of LVI status, however, they were
nonsignificant (all P values >0.05) in the multivariate logistic
regression analysis. The clinical model yielded an AUC of 0.74
(95%CI: 0.65–082), 0.61 (95%CI: 0.42–0.81), and 0.50 (95%CI:
0.40-0.66) in the training, validation, and test sets, respectively.

Feature Extraction, Selection and
Radiomic Signature Construction
Of all the radiomic features extracted, median ICC was 0.887,
871 (62%) features were robust, with ICC > 0.75. After using
SelectKbest method and LASSO algorithm, 11, 2, 1, and 1
features were identified to develop the DCE, T2WI, DWI, and
ADC based single-layered radiomic models (Table 2). Table 3
TABLE 1 | Demographic and clinical characteristics of patients.

Characteristics Training dataset (n=99) Validation dataset (n=26) Test dataset (n=50)

Mean age (years) 45.8 ± 10.8 48.3 ± 9.3 53.4 ± 10.7
Tumor location
Left 45 (45.5) 15 (57.7) 27 (54)
Right 54 (54.5) 11 (42.3) 23 (46)
Background parenchymal enhancement
Minimal 19 (19.2) 7 (26.9) 21 (42)
Mild 32 (32.3) 8 (30.8) 16 (32)
Moderate 43 (43.4) 8 (30.8) 13 (26)
Marked 5 (5.1) 3 (11.5) 0
Fibroglandular tissue
Almost entirely fat 6 (6.1) 3 (11.5) 1 (2)
Scattered fibroglandular tissue 33 (32.3) 11 (42.3) 5 (10)
Heterogeneous fibroglandular tissue 49 (49.5) 9 (34.7) 44 (88)
Extreme fibroglandular tissue 11 (11.1) 3 (11.5) 0
Chest wall invasion
Yes 20 (20.2) 2 (7.8) 0
No 79 (79.8) 24 (92.2) 50 (100)
Pectoralis major muscle invasion
Yes 11 (11.1) 2 (7.8) 1 (2)
No 88 (88.9) 24 (92.2) 49 (98)
Tumor diameter (mm) 34.9 ± 19.8 30.0 ± 11.4 23.7 ± 9.5
Mass shape
Oval 2 (2) 0 14 (28)
Round 14 (14.1) 2 (7.8) 3 (6)
Irregular 83 (83.9) 24 (92.2) 33 (66)
Internal enhancement pattern
Homogeneous 37 (37.4) 7 (26.9) 4 (8)
Heterogeneous 50 (50.5) 16 (61.5) 44 (88)
Rim enhancement 7 (7.1) 1 (3.8) 2 (4)
Dark internal septations 5 (5) 2 (7.8) 0
Tumor number
Solitary 71 (71.7) 17 (65.4) 39 (78)
≥2 28 (28.3) 9 (34.6) 11 (22)
TNM stage
I 14 (14.1) 3 (11.5) 14 (28)
II 51 (51.5) 16 (61.5) 28 (56)
III 26 (26.3) 6 (23.2) 7 (14)
IV 8 (8.1) 1 (3.8) 1 (2)
Pathological ALN status
Absence 51 (51.5) 16 (61.5) 28 (56)
Single 5 (5) 3 (11.5) 5 (10)
≥2 43 (43.5) 7 (27) 17 (34)
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TABLE 2 | Radiomic features of the single-layered and fusion radiomic models.

Models Features Number

DCE original_shape_Maximum2DDiameterColumn
original_glcm_Idmn
logarithm_glszm_HighGrayLevelZoneEmphasis
wavelet-LHL_glcm_Imc2
wavelet-LHH_glcm_MaximumProbability
wavelet-LLH_glszm_GrayLevelVariance
wavelet-LLH_glszm_LowGrayLevelZoneEmphasis
wavelet-LLH_glszm_ZoneEntropy
wavelet-HLH_glszm_GrayLevelNonUniformityNormalized
wavelet-HHL_glrlm_HighGrayLevelRunEmphasis
wavelet-LLL_glszm_SmallAreaHighGrayLevelEmphasis

11

T2WI wavelet-HHH_glszm_SmallAreaLowGrayLevelEmphasis
wavelet-HLH_glrlm_ShortRunEmphasis

2

DWI wavelet-HHL_glszm_SmallAreaLowGrayLevelEmphasis 1
ADC wavelet-HLH_gldm_GrayLevelVariance 1
DCE+T2WI DCE_original_shape_Maximum2DDiameterColumn

DCE_exponential_glszm_GrayLevelNonUniformity
DCE_gradient_glszm_ZoneEntropy
DCE_wavelet-LHH_glcm_JointEnergy
DCE_wavelet-HLH_glszm_GrayLevelNonUniformityNormalized
T2_wavelet-LHH_glszm_SizeZoneNonUniformityNormalized
T2_wavelet-LLH_glszm_GrayLevelVariance
T2_wavelet-LLH_glszm_SmallAreaEmphasis
T2_wavelet-HLH_glrlm_ShortRunHighGrayLevelEmphasis
T2_wavelet-HLH_glszm_GrayLevelVariance
T2_wavelet-HHH_glszm_SmallAreaLowGrayLevelEmphasis
T2_wavelet-LLL_ngtdm_Strength

12

DCE+DWI DWI_wavelet-HHL_glszm_SizeZoneNonUniformityNormalized
DWI_wavelet-HHL_glszm_SmallAreaLowGrayLevelEmphasis

2

DCE+ADC DCE_original_shape_Maximum2DDiameterColumn
DCE_wavelet-HLL_glrlm_LongRunLowGrayLevelEmphasis
DCE_wavelet-HLH_glszm_GrayLevelNonUniformityNormalized
ADC_exponential_gldm_DependenceEntropy
ADC_wavelet-LHL_firstorder_Maximum
ADC_wavelet-LHL_firstorder_RootMeanSquared
ADC_wavelet-LLH_glrlm_ShortRunEmphasis

7

T2WI+DWI DWI_wavelet-LLH_gldm_DependenceVariance
DWI_wavelet-HHL_glszm_SizeZoneNonUniformityNormalized
T2_wavelet-LHH_glszm_SizeZoneNonUniformityNormalized
T2_wavelet-LLH_glszm_SmallAreaEmphasis
T2_wavelet-HHH_glrlm_LowGrayLevelRunEmphasis
T2_wavelet-HHH_glszm_SmallAreaLowGrayLevelEmphasis
T2_wavelet-LLL_glrlm_ShortRunLowGrayLevelEmphasis
T2_wavelet-LLL_glrlm_LongRunLowGrayLevelEmphasis

8

T2WI+ADC T2_wavelet-LLH_glszm_SmallAreaHighGrayLevelEmphasis
T2_wavelet-LLH_glszm_SmallAreaEmphasis
ADC_wavelet-HHH_glrlm_ShortRunEmphasis

3

DWI+ADC ADC_wavelet-LLH_glrlm_ShortRunEmphasis 1
DCE+T2WI+DWI DCE_wavelet-HHH_glszm_ZoneEntropy

DWI_wavelet-HHL_glszm_SmallAreaLowGrayLevelEmphasis
T2_wavelet-LLH_glszm_SmallAreaEmphasis

3

DCE+T2WI+ADC T2_wavelet-LHL_firstorder_Skewness
T2_wavelet-LLH_glszm_SmallAreaEmphasis
T2_wavelet-HHH_glrlm_LowGrayLevelRunEmphasis
T2_wavelet-HHH_glszm_HighGrayLevelZoneEmphasis
ADC_exponential_gldm_DependenceEntropy
ADC_wavelet-LHL_firstorder_Maximum
ADC_wavelet-LHL_firstorder_RootMeanSquared
ADC_wavelet-HLL_firstorder_Maximum
DCE_original_shape_Maximum2DDiameterColumn
DCE_wavelet-HLL_glrlm_LongRunLowGrayLevelEmphasis
DCE_wavelet-LLH_glszm_GrayLevelVariance
DCE_wavelet-HLH_glszm_GrayLevelNonUniformityNormalized

12

(Continued)
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shows the predictive performance of single-layered radiomic
models and the fusion radiomic models. The results showed
that ADC-based radiomic model achieved the optimal
performance, with an AUC of 0.87 (95%CI: 0.80-0.94) in the
training set and 0.87 (95%CI: 0.70-1.00) in the validation set.
When validated in the test set, the ADC-based yielded an AUC of
0.77 (95%CI: 0.64-0.86).
DISCUSSION

Breast cancer with LVI is the pathological manifestation of
tumor emboli in the lymphatic and blood vessels in the
vicinity of invasive breast cancer. The presence of LVI
increases the risk of axillary lymph node metastasis and distant
metastasis and is associated with a poor prognosis (5). Currently,
LVI can only be confirmed via the pathological assessment of
specimens after resection. The building of radiomic model allows
Frontiers in Oncology | www.frontiersin.org 7
preoperative evaluation of LVI status. It is of great clinical
significance as the presence or absence of LVI is a crucial
criterion for treatment planning.

MRI has been used as one of the preferred imaging methods
for early screening of breast cancer, assessment of malignancy,
and determination of efficacy and prognosis. Previous studies
suggested that some MRI features were significantly associated
with LVI status, such as background parenchymal enhancement,
peritumoral edema, adjacent vessel sign, enhancement types, and
MRI-reported axillary lymph node metastasis (14, 16–18).
However, these features were somewhat subjective and could
be affected by sample size of a study. In this current study, we
observed no any clinical variables included were independent
risk factors of LVI, possibly due to small sample size of our
training set. More objective and reliable markers are desirable to
identification of LVI status in patients with breast cancer.

Radiomics uses high-throughput extraction of high-level
quantitative features to describe tumor phenotypes objectively
and quantitatively. These features are extracted from medical
TABLE 2 | Continued

Models Features Number

DCE+DWI+ADC ADC_wavelet-LLH_glrlm_ShortRunEmphasis 1
T2WI+DWI+ADC ADC_wavelet-LLH_glrlm_ShortRunEmphasis 1
DCE+T2WI+DWI+ADC ADC_wavelet-LLH_glrlm_ShortRunEmphasis 1
June 2022 | Volume 12 | Articl
TABLE 3 | Predictive performance of single-layered and fusion radiomic models.

Models Sensitivity Specificity AUC (95%CI)

Training set Validation set Test set Training set Validation set Test set Training set Validation set Test set

ADC 0.83 0.63 0.63
0.13

0.85 1.00 0.73
0.91

0.87 (0.80-0.94) 0.87 (0.7–1.00) 0.77 (0.64-0.86)
0.82 (0.64,1.00)

DWI 0.77 0.64 0.60
0.25

0.53 0.60 0.64
0.91

0.68 (0.59-0.76) 0.64 (0.42-0.83) 0.58 (0.47-0.70)
0.74 (0.51-0.92)

T2WI 0.67 0.75 0.60
0.25

1.00 0.73 0.63
0.91

0.89 (082-0.95) 0.64 (0.42-0.83) 0.58 (0.50-0.71)
0.70 (0.48,0.89)

DCE 0.88 0.64 0.75
0.50

0.76 0.63 0.69
0.73

0.88 (0.82-0.93) 0.68 (0.50-0.86) 0.64 (0.51-0.80)
0.65 (0.41-0.87)

DCE+T2WI 0.93 0.64 0.65
0.50

0.74 0.74 0.74
0.91

0.90 (0.84-0.95) 0.68 (0.48-0.88) 0.62 (0.49-0.76)
0.58 (0.35-0.83)

DCE+DWI 0.83 0.88 0.60
0.12

0.61 0.65 0.67 0.76 (0.66-0.85) 0.64 (0.40-0.87) 0.61 (0.48-0.80)
0.68 (0.44-0.89)

DCE+ADC 0.71 0.63 0.60
0.38

0,85 0.93 0.71
0.55

0.85 (0.78-0.90) 0.70 (0.50-0.88) 0.62 (0.52-0.75)
0.53 (0.30-0.77)

T2WI+DWI 1.00 0.65 0.75 0.98 0.93 0.61
0.45

0.99 (0.97-1.00) 0.70 (0.48-0.88) 0.59 (0.51-0.70)
0.70 (0.48-0.91)

T2WI+ADC 0.63 0.64 0.70
0.38

0.76 0.67 0.65
0.82

0.74 (0.66-0.82) 0.65 (0.46-0.83) 0.60 (0.46-0.76)
0.56 (0.28-0.81)

DWI+ADC 0.60 0.63 0.65
0.50

0.76 0.67 0.66
0.55

0.66 (0.57-0.75) 0.70 (0.51-0.88) 0.65 (0.53-0.80)
0.53 (0.29-0.77)

DCE+T2WI+DWI 0.93 0.82 0.63
0.88
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0.45
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0.64 (0.40-0.87)

DCE+T2WI+ADC 0.90 0.62 0.75
0.13
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0.93 (0.89-0.97) 0.64 (0.44-0.82) 0.58 (0.45-0.75)
0.66 (0.39-0.90)

DCE+DWI+ADC 0.68 0.63 0.75
0.50

0.78 0.70 0.68
0.73

0.78 (0.70-0.86) 0.62 (0.42-0.81) 0.53 (0.44-0.67)
0.56 (0.30-0.81)

T2WI+DWI+ADC 0.60 0.67 0.63
0.38

0.76 0.68 0.73
0.82

0.66 (0.57-0.75) 0.70 (0.51-0.88) 0.69 (0.47-0.89)
0.73 (0.50-0.93)

DCE+T2WI+DWI+ADC 0.68 0.65 0.63
0.25

0.78 0.73 0.67
0.91

0.78(0.70-0.86) 0.62 (0.42-0.81) 0.66 (0.43-0.90)
0.68 (0.44-0.89)
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imaging data using advanced mathematical algorithms, revealing
tumor features that may not be discernible with the naked eye
(19). Radiomics may have great potential in capturing important
phenotypic data on tumors, such as intratumoral heterogeneity
(20, 21), thus providing valuable information for individualized
clinical treatment. The use of radiomic approach to determine
the prognostic factors of breast cancer is almost completely
dominated by DCE-MRI, which provides not only abundant
radiomic data but also functional information reflecting the DCE
parameter characteristics of the tumor. Kinetic enhancement
curve was identified as a predictor of LVI (22). Liu et al. showed
that DCE-based radiomics signature in combination with MRI
ALN status was effective in predicting the LVI status, with an
AUC of 0.763 (12); however, this study was limited due to lack of
external validation and comparison with other MRI sequences.
T2WI allows clear delineation of the lesions, high contrast of the
surrounding soft tissue, clear depiction of the size and shape of
the lesion, and greater sensitivity to cystic changes and necrosis
within the lesion. Adding radiomic features extracted from
T2WI images may improve the diagnostic performance of
other MRI sequences (14). DWI is a functional imaging
method that reflects the Brownian motion of water molecules
in the body. ADC value is a quantitative indicator associated with
the diffusion of water molecules and microcirculatory perfusion.
Previous studies have demonstrated that tumor and peritumoral
ADC values were significantly correlated with LVI status
(23, 24). The quantitative ADC obtained from DWI has been
increasingly used to improve the diagnostic accuracy of contrast-
enhanced MRI in breast cancer (14). The results of this present
study were consistent with a recent study by Kayadibi et al. (13).
in which the ADC-based radiomic model could predict LVI
status with satisfying performance. Zhang et al. (14) found that
the fusion radiomic signature of the T2WI, cT1WI, and ADC
maps achieved a better predictive efficacy for LVI than either of
them alone, which was inconsistent with our study that reported
the combination of multiparametric MRI-derived radiomic
features failed to achieve a complementary effect in the
prediction of LVI status. Thus, the role of fusion radiomic
model needs to be tested in larger datasets.

The limitations of our study need to be acknowledged. First,
this was a retrospective study with small sample size, a
multicenter study with a larger sample size is warranted.
Second, LVI status was only classified as positive or negative in
this study. Uematsu et al. (25), divided into four grades according
to the number of lymphovascular structures invaded. Further
studies should evaluate the association between radiomic
features with different grades of LVI. Third, the influence of
MRI parameters on the radiomic features was not analyzed due
Frontiers in Oncology | www.frontiersin.org 8
to the small sample size. Finally, only radiomic features derived
from the first postcontrast images of DCE-MRI were analyzed
due to its crucial role in the diagnostic performance of breast
MRI. The precontrast, other DCE-MRI series deserve to be
investigated in further studies.
CONCLUSION

Our results showed that radiomic features based on ADC map
could be used to effectively predict LVI status in invasive breast
cancer, potentially improving preoperative diagnosis and
patient-specific treatment planning. However, the findings of
this preliminary study needs to be validated in larger datasets.
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