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Objectives: Standard magnetic resonance imaging (MRI) techniques are different to
distinguish minimal fat angiomyolipoma (mf-AML) with minimal fat from renal cell
carcinoma (RCC). Here we aimed to evaluate the diagnostic performance of MRI-based
radiomics in the differentiation of fat-poor AMLs from other renal neoplasms.

Methods: A total of 69 patients with solid renal tumors without macroscopic fat and with a
pathologic diagnosis of RCC (n=50) or mf-AML (n=19) who underwent conventional MRI
and intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) were included.
Clinical data including age, sex, tumor location, urine creatinine, and urea nitrogen were
collected from medical records. The apparent diffusion coefficient (ADC), pure diffusion
coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) were measured
from renal tumors. We used the ITK-SNAP software to manually delineate the regions of
interest on T2-weighted imaging (T2WI) and IVIM-DWI from the largest cross-sectional
area of the tumor. We extracted 396 radiomics features by the Analysis Kit software for
each MR sequence. The hand-crafted features were selected by using the Pearson
correlation analysis and least absolute shrinkage and selection operator (LASSO).
Diagnostic models were built by logistic regression analysis. Receiver operating
characteristic curve analysis was performed using five-fold cross-validation and the
mean area under the curve (AUC) values were calculated and compared between the
models to obtain the optimal model for the differentiation of mf-AML and RCC. Decision
curve analysis (DCA) was used to evaluate the clinical utility of the models.

Results: Clinical model based on urine creatinine achieved an AUC of 0.802 (95%CI:
0.761-0.843). IVIM-based model based on f value achieved an AUC of 0.692 (95%CI:
0.627-0.757). T2WI-radiomics model achieved an AUC of 0.883 (95%CI: 0.852-0.914).
IVIM-radiomics model achieved an AUC of 0.874 (95%CI: 0.841-0.907). Combined
radiomics model achieved an AUC of 0.919 (95%CI: 0.894-0.944). Clinical-radiomics
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model yielded the best performance, with an AUC of 0.931 (95%CI: 0.907-0.955). The
calibration curve and DCA confirmed that the clinical-radiomics model had a good
consistency and clinical usefulness.

Conclusion: The clinical-radiomics model may be served as a noninvasive diagnostic tool
to differentiate mf-AMLwith RCC, which might facilitate the clinical decision-making process.
Keywords: minimal fat angiomyolipoma, renal cell carcinoma, radiomics, nomogram, diagnosis
INTRODUCTION

Angiomyolipoma (AML) is the most common benign solid renal
tumor with an estimated prevalence of 0.1% of men and 0.22% of
women without tuberous sclerosis (1). In most cases, classic
AMLs can be visually interpreted by identifying the intratumoral
macroscopic fat component on computed tomography (CT) or
magnetic resonance imaging (MRI) scans. However, around
4.5% of this type of tumors are classified as minimal fat AML
(mf-AML) due to no microscopically detectable fat or the
intratumoral fat is too small to be observed by radiologists; as
a result, misinterpretation of mf-AMLs as renal cell carcinomas
(RCCs) results in unnecessary surgery in some patients (2–6).
Thus, preoperative differentiation between mf-AML and RCC is
of great importance for clinical decision-making, however,
accurate, reliable, and non-invasive assessment tools are lacking.

Research on the differential diagnosis of mf-AML is difficult
to accumulate cases, because its frequency is significantly lower
than that of other common renal tumors. Prior studies have
shown several imaging findings (mainly from CT) may be
helpful for diagnosis of mf-AML, such as an oval shape
without capsule (7), homogeneous hypointensity on T2-
weighted MR images (8), higher attenuation than renal
parenchyma (9), tumor-to-cortex enhancement ratio (10), and
prolonged enhancement pattern (9). The diagnostic accuracy of
standard MRI with opposed-phase and in-phase gradient-echo
(GRE) sequences for the differentiation of mf-AML and RCC was
poor (11). Accordingly, some functional MRI techniques have
been investigated, including diffusion-weighted imaging (DWI)
(11–16), chemical-shift MRI (17, 18), diffusion kurtosis imaging
(19). However, differentiation of mf-AML from RCC remains
challenging due to limitations of low inter-observer agreement
and unsatisfactory diagnostic accuracy and specificity.

With advances in computational hardware and mathematical
algorithms, there is an increasing trend in acquiring quantitative
information from daily medical images and correlating it with
outcomes (20). Although deep learning is currently the
mainstream of diagnostic imaging method, it should be noted
that the other techniques such as radiomics, can be useful for
diseases that are difficult to accumulate cases. Radiomics refers to
an emerging technology of high-throughput extraction of a large
number of quantitative descriptors from standard-of-care
medical images, and it then translates image data into high-
dimensional and mineable data via a variety of computer-aided
algorithms, such as machine learning (21). A growing body of
evidence has shown the potential of quantitative radiomics
2

features in uncovering tumor characteristics that fail to be
appreciated by the naked eye (22). To date, radiomics has been
widely applied in precision diagnosis, treatment response
evaluation, and prognosis prediction across many types of
cancer (23–25).

The purpose of our study, therefore, was to prospectively
evaluate the diagnostic performance of MRI-based radiomics in
the differentiation of AML with minimal fat from other renal
neoplasms by using pathologic reports as the reference standard.
MATERIALS AND METHODS

Patients
This retrospective study was approved by our institutional review
board; written informed consent was waived. An initial search of
our institutional pathology database yielded the records of patients
who underwent surgery for a renal mass between January 2013
and May 2021. After that, we identified the patients who met the
following inclusion criteria: (1) pathologically confirmed RCC or
AML; (2) single tumor ≥1 cm; (3) available MRI data, including
conventional MRI and intravoxel incoherent motion (IVIM) DWI
data before surgery; (4) no macroscopic fat component within the
renal tumor identified on conventional MRI images, which were
independently reviewed by two radiologists with more than 10
years of experience in genitourinary radiology; and (5) patients
were not treated with chemotherapy or radiotherapy prior to
surgery. 807 patients were excluded for the following reasons: (1)
the maximum diameter of the tumor was <1.0 cm (n=18); (2)
other types of renal tumors except for RCC and AML, such as
sarcoma, cystic renal cell carcinoma (n=48); (3) AML with
intratumoral macroscopic fat (n=30); (4) no preoperative MRI
or IVIM-DWI images available (n=701); (5) inadequate image
quality for analysis due to motion artifacts (n=10). Finally, a total
of 69 patients with solid renal tumors without macroscopic fat and
with a pathologic diagnosis of RCC (n=50) or mf-AML (n=19)
were finally included. The RCCs consisted of seven papillary RCC,
one chromophobe RCC, and 42 clear cell RCC (ccRCC). Clinical
characteristics including age, sex, tumor location, urine creatinine,
and urea nitrogen were collected from medical records.

MRI Image Acquisitions
All MR images were acquired using a 1.5T MRI unit (Optima
MR360, GE Healthcare, Waukesha, WI, USA). The conventional
MRI protocols were listed as follows: (1) axial T1-weighted dual-
echo in-phase and out-of-phase sequences: time of repetition/time
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of echo (TR/TE) = 205/4.2 ms; slice thickness = 4 mm; interslice gap
= 1 mm; field of view (FOV) = 380 × 342 mm; matrix = 256 × 160;
number of excitations (NEX) = 1. (2) axial T2-weighted fast spin-
echo (FSE) images with fat suppression: TR/TE = 6000/86.4 ms;
slice thickness = 4 mm; interslice gap = 1 mm; FOV = 380 ×
342 mm; matrix = 320 × 192; NEX = 2. (3) axial and coronal
contrast-enhanced T1-weighted fast spoiled gradient echo (FSPGR)
with fat suppression: TR/TE = 165/2.3 ms; slice thickness = 4 mm;
interslice gap = 1 mm; FOV = 400 × 400 mm; matrix = 384 × 192;
NEX = 2. The contrast medium Gadodiamide (Omniscan®, GE
Healthcare) was administered intravenously at a dose of 0.1 mmol/
kg of body weight. IVIM-DWI scan was performed using a single-
shot diffusion-weighted spin-echo echo-planar sequence. The DWI
images were obtained prior to the injection of contrast agent with
TR/TE of 6000/81.7 ms, slice thickness of 4 mm, interslice gap of
1 mm, FOV of 380 × 304 mm, matrix of 128 × 130, and NEX of 4.
Parallel imaging was used with an acceleration factor of 2. Twelve b
values (0, 20, 30, 50, 80, 100, 150, 200, 400, 600, 800, and 1000 s/
mm2) were used in three orthogonal diffusion directions. A lookup
table of gradient direction was modified to allow multiple b-value
measurements in one series.

IVIM-DWI Image Postprocessing
IVIM parameter values were calculated using the following
equation:

Sb=S0  =  f  exp   −bD*ð Þ  +   1  – fð Þ exp  −bDð Þ  (1)

Where Sb and S0 are the signal intensities without and at a
given b value, respectively. D is the true water molecule difusion
coefcient; D* is the perfusion coherence difusion coefcient, i.e.,
pseudodispersion, which can refect changes in blood perfusion.
f is the perfusion-related volume fraction, representing the
volume ratio of the difusion caused by the microcirculation
perfusion efect in the overall difusion efect of the voxel.

The IVIM sequence image raw data were transmitted to the
functool software and MADC postprocessing software of GE’s
ADW 4.5 workstation for image postprocessing and analysis,
and the IVIM parametric images were obtained (Figure 1). The
values of IVIM parameters were independently measured by two
Frontiers in Oncology | www.frontiersin.org 3
radiologists with 15 years and 20 years of diagnostic imaging
experience. The detailed method for ROI delineation has been
described in a previous study (26).

Tumor Segmentation, Feature Extraction,
and Feature Selection
Image segmentation: We used an open-source ITK-SNAP
software (version 3.6.0, www.itksnap.org) for manual
segmentation on T2-weighted and IVIM-DWI (b = 1000 s/m2)
MR images (Figure 2). Tumor segmentation was performed on
the largest cross-sectional area of the tumor by a radiologist (with
15-year experience) and subsequently reviewed by a board-
certified radiologist (20-year experience).

Feature extraction: The radiomics feature extraction was
performed by AK software (Artificial Intelligence Kit, GE life
Sciences, AA R&D team, Shanghai, China) equipped with
pyradiomics, which was consistent with the standards set by the
Image Biomarker Standardization Initiative. In total, 396 radiomics
features were extracted from each MRI sequence, including four
groups: 1) Histogram (n=42); 2) Gray-level co-occurrence matrix
(GLCM) (n=108); 3) Gray-level run length matrix (GLRLM)
(n=226); and 4) Shape (n=20). GLCM and GLRLM in four
directions (0°, 45°, 90°, 135°) and three displacements (1, 4, 7)
were calculated to describe patterns or the spatial distribution of
voxel intensities. The description of the extracted radiomics
features is shown in Supplementary Material.

Feature pre-processing and feature selection: Before feature
selection, two steps of feature pre-processing were done: step 1—
outliers were replaced by the median of the same feature; step 2—
Z-score normalization was conducted in the training cohort to
eliminate the difference in the value scale of extracted features
(14). First, intraclass correlation coefcient (ICC) was used to
quantify the stability of each radiomic feature. A feature was
considered stable if ICC was higher than 0.75. Second, Pearson
correction (PCC) analysis was then used to assess the correlation
between radiomics feature pairs; a PCC of 0.99 was usually used
to eliminate the redundancy. Finally, the least absolute shrinkage
and selection operator (LASSO) algorithm was used for further
radiomics feature selection.
FIGURE 1 | IVIM-DWI images of mf-AML and RCC. The tumors were displayed in DWI images. The D, D*, and f maps were obtained from IVIM of mf-AML in the
top low and RCC in the bottow row, respectively. Outlines indicate the tumor region.
May 2022 | Volume 12 | Article 876664
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Development of Multiple Diagnostic Models
The significant predictors of clinical and IVIM parameters were
identified by univariate and multivariate logistic regression
analyses (P<0.05). The clinical model, IVIM-based model,
T2WI-radiomics model, IVIM-radiomics model, combined
radiomics model, and clinical-radiomics model were
constructed by stepwise logistic regression. A nomogram was
built based on the results of clinical-radiomics model.
Considering the small sample size of the study, we didn’t split
the entire data into training and validation sets but applied 5-fold
cross-validation to avoid overfitting. The calibration curve and
Hosmer-Lemeshow statistic were done to evaluate the agreement
between the predicted probability and actual diagnosis. The
decision curve analysis (DCA) was performed to determine the
clinical usefulness of the nomogram by quantifying the net
benefits at different threshold probabilities (27).

Statistical Analysis
The statistical analyses were performed using R software (version
4.0.1; http://www.R-project.org) and Python software (version
3.7, http://www.python.org). As for continuous variables, data
were expressed as mean ± standard deviation (SD) or median
(interquartile range, IQR), while for categorical variables, data
were expressed as counts and percentages (n, %). Continuous
and categorical variables were compared by t-test, Mann-
Whitney U test, Chi-square, if appropriate. The diagnostic
performance of models was evaluated by the receiver operator
characteristic curve (ROC) analysis. DeLong’s test was used to
compare the AUCs of the two models. A two-tailed P<0.05
indicated statistical significance.
RESULTS

Patient Characteristics
Table 1 shows the characteristics of patients and tumors. There
were no significant differences in age, sex, laterality, and urea
nitrogen (all P values >0.05). The urine creatinine of RCC was
Frontiers in Oncology | www.frontiersin.org 4
significantly lower than that of mf-AML (87.5 ± 29.9 vs. 112.2 ±
12.4, P<0.001).

Comparison of the IVIM-DWI Parameters
Between Two Groups
No significant differences were observed in ADC, D, and D*
between two groups (P=0.296 0.439, and 0.185, respectively),
only f value was significantly different between mf-AML and
RCC (P=0.004) (Table 2).

Diagnostic Performance of the Various
Models
Among the clinical vriables, only urine creatinine was an
independent predictor of mf-AML (P=0.004). The clinical
model based on urine creatinine achieved an AUC of 0.802
(95%CI: 0.761-0.843), with a sensitivity of 60%, specificity of
100%, and accuracy of 71% (Table 3). The IVIM-based model
T
g

P

A
D
D
f

FIGURE 2 | Example of tumor segmented by the radiologist. The mf-AML and RCC were segmented on the T2-weighted image but the same segmentation has
been copied to IVIM-DWI (b = 1000 s/m2) image.
TABLE 1 | Characteristics of patients and tumors.

mf-AML (n=19) RCC (n=50) P-value

Age (years) 55.3 ± 11.8 51.4 ± 12.1 0.227
Sex 0.058
Male 15 (78.9) 27 (54.0)
Female 4 (21.1) 23 (46.0)

Laterality 0.558
Left kidney 8 (42.1) 25 (50.0)
Right kidney 11 (57.9) 25 (50.0)

Urine creatinine (mmol/L) 112.2 ± 12.4 87.5 ± 29.9 <0.001
Urea nitrogen (mmol/L) 6.6 ± 2.1 5.4 ± 2.1 0.032
May 2022 |
 Volume 12 | Article
ABLE 2 | Comparison of the IVIM-DWI parameters between mf-AML and RCC
roups.

arameters mf-AML (n=19) RCC (n=50) P-value

DC (× 10-3 mm2/s) 1.99 ± 0.43 2.21 ± 0.47 0.296
(× 10-3 mm2/s) 1.54 ± 0.31 1.63 ± 0.45 0.439
* (× 10-3 mm2/s) 12.63 ± 2.93 15.41 ± 8.81 0.185

0.49 ± 0.21 0.36 ± 0.15 0.004
876664
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achieved an AUC of 0.692 (95%CI: 0.627-0.757), with a
sensitivity of 66%, specificity of 63.2%, and accuracy of 65.2%
(Table 3 and Figure 3).

A total of 396 extracted radiomic features from each
sequence, 76.3% were stable. Finally, four and five features
were selected for T2WI-radiomics and IVIM-radiomics
models, respectively (Figure 4 and Table 4). T2WI-radiomics
and IVIM-radiomics model had an AUC of 0.883 (95%CI: 0.852-
0.914) and 0.874 (95%CI: 0.841-0.907), respectively (Table 3).
Radiomics model yielded a better performance (P<0.001), with
an AUC of 0.919 (95%CI: 0.894-0.944), sensitivity of 82%,
specificity of 100%, and accuracy of 87% (Table 3 and
Figure 3). Stepwise logistic regression of urine creatinine, f
value, and radiomics score showed that only urine creatinine
and radiomics score were retained as predictors. The clinical-
radiomics model yielded an AUC of 0.931 (95%CI: 0.907-0.955),
sensitivity of 88%, specificity of 95%, and accuracy of 90%
(Table 3 and Figure 3). The mean AUC of clinical-radiomics
model after 1000 five-fold corss-validations was 0.927 (95%CI:
0.891-0.964). Figure 5A displays the clinical-radiomics
nomogram for the evaluation of mf-AML probability.
Frontiers in Oncology | www.frontiersin.org 5
The Hosmer-Lemeshow test showed goodness of fit of the
clinical-radiomics nomogram (P=383). The prediction rule
showed good calibration between the observed and predicted
probabilities in the clinical-radiomics nomogram (Figure 5B). In
addition, the DCA graphically indicated that the clinical-
radiomics model provided a large net benefit than other
models over the relevant threshold range (Figure 5C).
DISCUSSION

To the best of our knowledge, this present study is the first to
distinguish mf-AML from RCC using a non-invasive MRI-based
radiomics approach. We extracted radiomics features from
conventional and functional MRI and compared their
diagnostic performance. The results showed that the accuracy
of the T2WI-radiomics was comparable to the IVIM-radiomics
and their combination could achieve significant improvement.
The addition of urine creatinine rather than IVIM parameters to
the combined radiomics model further improved the
diagnostic performance.

The mf-AML is often misdiagnosed as RCC prior to surgery
(7). Differentiating these two entities is especially crucial for
treatment planning and prognosis evaluation but challenging
(28). At present, histopathology is the gold standard in the
differential diagnosis of mf-AML and RCC. The mf-AML
shares overlapping imaging features with RCC, making the
differential diagnosis rather difficult by conventional imaging
modalities (29). Among morphologic features, low signal
intensity on T2WI favors mf-AML over RCC (8). Given the
limited information recognized by conventional MRI, most of
the previous studies used various DWI techniques to distinguish
renal neoplasms. Tordjman et al. conducted a meta-analysis and
the results showed that ADC of renal tumors excluding cystic
and necrotic areas, provides better discriminatory ability than
whole-lesion ADC to differentiate RCC from other renal lesions
(11). Li et al. demonstrated that whole-tumor quantitative ADC
histogram might be helpful for differentiation of mf-AML of
RCC (12). The mf-AML had significantly lower ADC values than
RCC (P<0.001). Li et al. found that water molecular diffusion
heterogeneity index (a) from a stretched exponential model and
true ADC (D) from a biexponential model resulted in improved
differentiation with higher sensitivity and specificity between mf-
AML and RCC compared with monoexponential ADC (15). In
this present study, we explored the incremental value of IVIM to
the T2WI in the discrimination between mf-AML and RCC.
TABLE 3 | The performance of various diagnostic models.

Models AUC (95%CI) Accuracy (%) Sensitivity (%) Specificity (%)

Clinical model 0.802 (0.761-0.843) 71.0 60.0 100
IVIM-based model 0.692 (0.627-0.757) 65.2 66.0 63.2
T2WI-radiomics model 0.883 (0.852-0.914) 84.1 82.0 89.5
IVIM-radiomics model 0.874 (0.841-0.907) 78.3 74.0 89.5
T2WI-IVIM-radiomics model 0.919 (0.894-0.944) 87.0 82.0 100
Clinical-radiomics model 0.931 (0.907-0.955) 89.9 88.0 94.7
May 2022 | Volume 12
FIGURE 3 | Receiver operating characteristic curves of the clinical model,
IVIM-based model, radiomics model, and clinical-radiomics model.
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The results demonstrated that the combination of radiomics
features derived from IVIM and T2WI enabled improvement in
the diagnostic performance.

In recent years, radiomics is a specific field of medical
research that has been used for the diagnosis, treatment
response, and survival prediction of renal tumors (30–32).
Radiomics analysis offers objective image information that
Frontiers in Oncology | www.frontiersin.org 6
could otherwise not be captured by radiologists’ subjective
radiological interpretation. Overall, a recent review reported
the superiority of radiomics over expert radiological
assessment (33). Radiomics applications may support
improved characterization of renal tumors. Radiomics is an
attractive approach that has the potential to improve the non-
invasive diagnostic accuracy of renal tumor imaging and the
prediction of its natural behaviour. A majority of studies focused
on the characterization of solid renal neoplasms (benign vs
malignant) using MRI-based quantitative radiomics analyses
(e.g., histogram and texture features) (34–36). However, only a
small portion of studies aimed to distinguish subtypes of benign
and malignant renal tumors, for instance, mf-AML and ccRCC
(37–41). These studies proposed a CT-based radiomics model for
preoperative differentiating mf-AML from homogeneous ccRCC
(37–41). Ma et al. observed that mini-peritumoral and perirenal
radiomics features contributed to the differentiation of mf-AML
from ccRCC (38). We chose MRI instead of CT because the
former provides multi-parametric sequences, which theoretically
provides information than simple attenuation differences
measured in Hounsfield units on CT (42). For the first time,
we extracted radiomics features from T2WI and IVIM images
A B

DC

FIGURE 4 | The selection of LASSO parameter for T2WI-radiomics and IVIM-radiomics models. (A) Select the optimal Log (l) = -2.427 for IVIM; (B) Coefficient map
of IVIM-derived radiomics features; (C) Select the optimal Log(l) = -2.022 for T2WI; (D) Coefficient map of T2WI-derived radiomics features.
TABLE 4 | Selected radiomics features for T2WI-radiomics and IVIM-radiomics
models.

Features Coefficient

T2WI-radiomics model
VoxelValueSum 0.202
ClusterShade_angle135_offset4 -0.131
Correlation_angle45_offset1 0.274
Compactness2 -0.383
SurfaceVolumeRatio 0.001

IVIM-radiomics models
GLCMEnergy_AllDirection_offset1 0.028
InverseDifferenceMoment_angle90_offset4 0.317
ShortRunHighGreyLevelEmphasis_AllDirection_offset7_SD -0.001
Maximum3DDiameter -0.222
May 2022 | Volume 12 | Article 876664
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and found that the diagnostic performance of both was similar,
their combination could produce better discrimination of mf-
AML and RCC. In contrast with radiomics, Xu et al. developed
and validated an MRI-based deep learning model to differentiate
benign from malignant renal tumors in clinic, and the model
based on the combination of T2WI and DWI yielded the optimal
performance (43). Xi et al. designed a deep learning model to
distinguish benign frommalignant renal lesions based on routine
MR imaging with comparable performance as compared to
experts and radiomics (42). However, the “black box” nature of
deep learning is difficult to be interpreted and accepted
by clinicians.
CONCLUSIONS

Our study also has some limitations. Firstly, the incidence of mf-
AML is significantly lower than that of RCC, which may induce a
sample unbalanced problem. To avoid overfitting, we performed
cross-validation. Secondly, we extracted two-dimensional (2D)
features that might provide less tumor information than three-
dimensional features. However, some previous studies showed
that the predictive performance of features extracted from the
maximum level of the tumor was higher than that of those features
extracted from the whole tumor (44, 45). 2D features may increase
the robustness of features compared with 3D features. Whether the
Frontiers in Oncology | www.frontiersin.org 7
sign of single layer can fully reflect the characteristics of kidney
needs further confirmed. Thirdly, this study was conducted in a
single-center with a small sample size, prospective multi-center
validation is needed in the future. Finally, we didn’t explore the
diagnostic value of the radiomics features extracted from IVIM
maps based on other lower b values. However, these preliminary
results may preclude further comparison.

In conclusion, the results of this study preliminarily showed
that noninvasive differential diagnosis of RCC and mf-AML
using radiomics has relatively high clinical significance based
on MRI Image, it is worth further exploration and improvement
in large cohorts to obtain a more mature differential diagnosis
system to improve the diagnostic coincidence rate.
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et al. Introduction to Radiomics. J Nucl Med (2020) 61:488–95. doi: 10.2967/
jnumed.118.222893

26. Li FP, Wang H, Hou J, Tang J, Lu Q, Wang LL, et al. Utility of Intravoxel
Incoherent Motion Diffusion-Weighted Imaging in Predicting Early Response
to Concurrent Chemoradiotherapy in Oesophageal Squamous Cell
Carcinoma. Clin Radiol (2018) 73:756.e17–756.e26.

27. Van Calster B, Wynants L, Verbeek JFM, Verbakel JY, Christodoulou E,
Vickers AJ, et al. Reporting and Interpreting Decision Curve Analysis: A
Guide for Investigators. Eur Urol (2018) 74:796–804. doi: 10.1016/
j.eururo.2018.08.038

28. Chen CL, Tang SH, Wu ST, Meng E, Tsao CW, Sun GH, et al. Calcified,
Minimally Fat-Contained Angiomyolipoma Clinically Indistinguishable From
a Renal Cell Carcinoma. BMC Nephrol (2013) 14:160. doi: 10.1186/1471-
2369-14-160
May 2022 | Volume 12 | Article 876664

https://www.frontiersin.org/articles/10.3389/fonc.2022.876664/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.876664/full#supplementary-material
https://doi.org/10.1016/j.asjsur.2019.12.008
https://doi.org/10.1016/j.ultrasmedbio.2012.07.014
https://doi.org/10.1371/journal.pone.0085522
https://doi.org/10.1016/j.crad.2014.10.001
https://doi.org/10.21037/qims-20-562
https://doi.org/10.1016/j.acra.2015.04.004
https://doi.org/10.12998/wjcc.v8.i12.2502
https://doi.org/10.2214/AJR.16.16102
https://doi.org/10.1177/0284185115618547
https://doi.org/10.3348/kjr.2015.16.2.334
https://doi.org/10.1007/s00330-020-06740-w
https://doi.org/10.1016/j.acra.2018.06.015
https://doi.org/10.1177/0284185118778884
https://doi.org/10.2214/AJR.17.19278
https://doi.org/10.1002/jmri.25524
https://doi.org/10.1002/jmri.25524
https://doi.org/10.1111/j.1442-2042.2011.02824.x
https://doi.org/10.1007/s00330-017-5141-0
https://doi.org/10.2214/AJR.14.13245
https://doi.org/10.2214/AJR.14.13245
https://doi.org/10.1186/s40644-020-00369-0
https://doi.org/10.3322/caac.21552
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1093/annonc/mdx034
https://doi.org/10.1093/annonc/mdx034
https://doi.org/10.1002/med.21846
https://doi.org/10.7150/thno.30309
https://doi.org/10.2967/jnumed.118.222893
https://doi.org/10.2967/jnumed.118.222893
https://doi.org/10.1016/j.eururo.2018.08.038
https://doi.org/10.1016/j.eururo.2018.08.038
https://doi.org/10.1186/1471-2369-14-160
https://doi.org/10.1186/1471-2369-14-160
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Jian et al. Radiomics for mf-AML Diagnosis
29. Hindman N, Ngo L, Genega EM, Melamed J, Wei J, Braza JM, et al.
Angiomyolipoma With Minimal Fat: can it be Differentiated From Clear
Cell Renal Cell Carcinoma by Using Standard MR Techniques? Radiology
(2012) 265:468–77. doi: 10.1148/radiol.12112087

30. Rallis KS, Kleeman SO, Grant M, Ordidge KL, Sahdev A, Powles T, et al.
Radiomics for Renal Cell Carcinoma: Predicting Outcomes From
Immunotherapy and Targeted Therapies-a Narrative Review. Eur Urol
Focus (2021) 7:717–21. doi: 10.1016/j.euf.2021.04.024

31. Mühlbauer J, Egen L, Kowalewski KF, Grilli M, Walach MT, Westhoff N, et al.
Radiomics in Renal Cell Carcinoma-A Systematic Review and Meta-Analysis.
Cancers (Basel) (2021) 2021. doi: 10.3390/cancers13061348

32. Bhandari A, Ibrahim M, Sharma C, Liong R, Gustafson S, Prior M, et al. CT-
Based Radiomics for Differentiating Renal Tumours: A Systematic Review.
Abdom Radiol (NY) (2021) 46:2052–63. doi: 10.1007/s00261-020-02832-9

33. Kuusk T, Neves JB, Tran M, Bex A. Radiomics to Better Characterize Small
Renal Masses. World J Urol (2021) 39:2861–8. doi: 10.1007/s00345-021-
03602-y

34. Wang W, Cao K, Jin S, Zhu X, Ding J, Peng W. Differentiation of Renal Cell
Carcinoma Subtypes Through MRI-based Radiomics Analysis. Eur Radiol
(2020) 30:5738–47. doi: 10.1007/s00330-020-06896-5

35. Said D, Hectors SJ, Wilck E, Rosen A, Stocker D, Bane O, et al.
Characterization of Solid Renal Neoplasms Using MRI-based Quantitative
Radiomics Features. Abdom Radiol (NY) (2020) 45:2840–50. doi: 10.1007/
s00261-020-02540-4

36. de Leon AD, Kapur P, Pedrosa I. Radiomics in Kidney Cancer: MR Imaging.
Magn Reson Imaging Clin N Am (2019) 27:1–13. doi: 10.1016/j.mric.
2018.08.005

37. Ma Y, Ma W, Xu X, Guan Z, Pang P. A Convention-Radiomics CT
Nomogram for Differentiating Fat-Poor Angiomyolipoma From Clear Cell
Renal Cell Carcinoma. Sci Rep (2021) 11:4644. doi: 10.1038/s41598-021-
84244-3

38. Ma Y, Xu X, Pang P, Wen Y. A CT-Based Tumoral and Mini-Peritumoral
Radiomics Approach: Differentiate Fat-Poor Angiomyolipoma From Clear
Cell Renal Cell Carcinoma. Cancer Manag Res (2021) 13:1417–25. doi:
10.2147/CMAR.S297094

39. Uhlig J, Leha A, Delonge LM, Haack AM, Shuch B, Kim HS, et al. Radiomic
Features and Machine Learning for the Discrimination of Renal Tumor
Histological Subtypes: A Pragmatic Study Using Clinical-Routine Computed
Tomography. Cancers (Basel) (2020) 2020. doi: 10.3390/cancers12103010

40. Ma Y, Cao F, Xu X, Ma W. Can Whole-Tumor Radiomics-Based CT Analysis
Better Differentiate Fat-Poor Angiomyolipoma From Clear Cell Renal Cell
Frontiers in Oncology | www.frontiersin.org 9
Caricinoma: Compared With Conventional CT Analysis? Abdom Radiol (NY)
(2020) 45:2500–7. doi: 10.1007/s00261-020-02414-9

41. Nie P, Yang G, Wang Z, Yan L, Miao W, Hao D, et al. A CT-based Radiomics
Nomogram for Differentiation of Renal AngiomyolipomaWithout Visible Fat
From Homogeneous Clear Cell Renal Cell Carcinoma. Eur Radiol (2020)
30:1274–84. doi: 10.1007/s00330-019-06427-x

42. Xi IL, Zhao Y, Wang R, Chang M, Purkayastha S, Chang K, et al. Deep
Learning to Distinguish Benign From Malignant Renal Lesions Based on
Routine Mr Imaging. Clin Cancer Res (2020) 26:1944–52. doi: 10.1158/1078-
0432.CCR-19-0374

43. Xu Q, Zhu Q, Liu H, Chang L, Duan S, DouW, et al. Differentiating Benign From
Malignant Renal Tumors Using T2- and Diffusion-Weighted Images: A
Comparison of Deep Learning and Radiomics Models Versus Assessment From
Radiologists. J Magn Reson Imaging (2022) 55:1251–9. doi: 10.1002/jmri.27900

44. Fang J, Zhang B, Wang S, Jin Y, Wang F, Ding Y, et al. Association of MRI-
derived Radiomic Biomarker With Disease-Free Survival in Patients With
Early-Stage Cervical Cancer. Theranostics (2020) 10:2284–92. doi: 10.7150/
thno.37429

45. Zhang L, Wu X, Liu J, Zhang B, Mo X, Chen Q, et al. Mri-Based Deep-
Learning Model for Distant Metastasis-Free Survival in Locoregionally
Advanced Nasopharyngeal Carcinoma. J Magn Reson Imaging (2021)
53:167–78. doi: 10.1002/jmri.27308

Conflict of Interest: Author HL was employed by the company GE Healthcare.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Jian, Liu, Xie, Jiang, Ye and Lin. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
May 2022 | Volume 12 | Article 876664

https://doi.org/10.1148/radiol.12112087
https://doi.org/10.1016/j.euf.2021.04.024
https://doi.org/10.3390/cancers13061348
https://doi.org/10.1007/s00261-020-02832-9
https://doi.org/10.1007/s00345-021-03602-y
https://doi.org/10.1007/s00345-021-03602-y
https://doi.org/10.1007/s00330-020-06896-5
https://doi.org/10.1007/s00261-020-02540-4
https://doi.org/10.1007/s00261-020-02540-4
https://doi.org/10.1016/j.mric.2018.08.005
https://doi.org/10.1016/j.mric.2018.08.005
https://doi.org/10.1038/s41598-021-84244-3
https://doi.org/10.1038/s41598-021-84244-3
https://doi.org/10.2147/CMAR.S297094
https://doi.org/10.3390/cancers12103010
https://doi.org/10.1007/s00261-020-02414-9
https://doi.org/10.1007/s00330-019-06427-x
https://doi.org/10.1158/1078-0432.CCR-19-0374
https://doi.org/10.1158/1078-0432.CCR-19-0374
https://doi.org/10.1002/jmri.27900
https://doi.org/10.7150/thno.37429
https://doi.org/10.7150/thno.37429
https://doi.org/10.1002/jmri.27308
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	MRI-Based Radiomics and Urine Creatinine for the Differentiation of Renal Angiomyolipoma With Minimal Fat From Renal Cell Carcinoma: A Preliminary Study
	Introduction
	Materials and Methods
	Patients
	MRI Image Acquisitions
	IVIM-DWI Image Postprocessing
	Tumor Segmentation, Feature Extraction, and Feature Selection
	Development of Multiple Diagnostic Models
	Statistical Analysis

	Results
	Patient Characteristics
	Comparison of the IVIM-DWI Parameters Between Two Groups
	Diagnostic Performance of the Various Models

	Discussion
	Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


