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Background: This is a pilot study of radiomics based on 68Ga-NOTA-PRGD2 [NOTA-
PEG4-E[c(RGDfK)]2)] and 18F-FDG PET/CT to (i) evaluate the diagnostic efficacy of
radiomics features of 68Ga-NOTA-PRGD2 PET in the differential diagnosis of benign
and malignant pulmonary space-occupying lesions and (ii) compare the diagnostic
efficacy of multi-modality and multi-probe images.

Methods: We utilized a dataset of 48 patients who participated in 68Ga-NOTA-PRGD2
PET/CT and 18F-FDG PET/CT clinical trials to extract image features and evaluate their
diagnostic efficacy in the differentiation of benign and malignant lesions by the Mann-
Whitney U test. After feature selection with sequential forward selection, random forest
models were developed with tenfold cross-validation. The diagnostic performance of
models based on different image features was visualized by receiver operating
characteristic (ROC) curves and compared by permutation tests.

Results: Fourteen of the 68Ga-NOTA-PRGD2 PET features between benign and
malignant pulmonary space-occupying lesions had significant differences (P<0.05,
Mann-Whitney U test). Eighteen of the 68Ga-NOTA-PRGD2 PET features demonstrated
higher AUC values than all CT features in the differential diagnosis of pulmonary lesions.
The AUC value (0.908) of the three-modal feature model was significantly higher (P<0.05,
permutation test) than those of the single- and dual-modal models.
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Conclusion: 68Ga-NOTA-PRGD2 PET features have better diagnostic capacity than CT
features for pulmonary space-occupying lesions. The combination of multi-modality and
multi-probe images can improve the diagnostic efficiency of models. Our preliminary clinical
hypothesis of using radiomics based on 68Ga-NOTA-PRGD2 PET images and multimodal
images as a diagnostic tool warrants further validation in a larger multicenter sample size.
Keywords: 18F-FDG, 68Ga-NOTA-PRGD2, positron emission tomography computed tomography, pulmonary space-
occupying lesions, radiomics
INTRODUCTION
18F-fluorodeoxyglucose (18F-FDG) positron emission
tomography/computed tomography (PET/CT), a technology
that integrates functional and anatomical imaging, has been
applied widely in the discovery, identification and prognostic
evaluation of pulmonary space-occupying lesions (1). Cells in
abnormal proliferation, infection and inflammation can
accumulate the glucose analogue 18F-FDG, and malignant
lesions usually showed higher 18F-FDG uptake than benign
lesions. Rise of glucose metabolism can be captured by 18F-
FDG PET and 18F-FDG PET/CT has been proved to be valuable
in the diagnosis and differentiation of pulmonary space-
occupying lesions (2).

However, 18F-FDG is not specific enough as an imaging
agent. For one thing, inflammatory cells can show 18F-FDG
uptake (3, 4), resulting in a high standardized uptake value
(SUV) and false positives (5, 6). For another, some malignant
tumors with a high degree of differentiation and low metabolism
can show low 18F-FDG uptake, resulting in false negatives (5, 7).

Integrin receptor imaging has been a promising nuclear
medicine imaging method for the diagnosis of lung cancer
from pulmonary space-occupying lesions (8). The integrin
family plays an important role in a variety of physiological and
pathological processes (9). Among them, the integrin receptor
avb3 is a key molecule involved in the process of tumor
angiogenesis, invasion and metastasis (10). Arginine-glycine-
aspartic acid (RGD) tripeptide sequences, as one kind of avb3
ligand, could reveal the presence of increased angiogenesis in the
tumor microenvironment of NSCLC in PET/CT imaging (11).
Zheng et al. found that SUVs of 68Ga-labeled RGD dimer 68Ga-
NOTA-PRGD2 PET/CT had better specificity but lower
sensitivity than 18F-FDG PET/CT in the differential diagnosis
of benign and malignant lesions (12).

Since the concept of ‘radiomics’ was proposed in 2012 (13),
radiomics analysis based on PET images has been applied to
identify lung-occupying lesions before treatment (14).Previous
studies have proved the value of radiomics methods based on CT
or 18F-FDG PET/CT images (15). However, the diagnostic value
of radiomics features of 68Ga-NOTA-PRGD2 PET images has
not been evaluated, and we are curious about how it compare to
radiomics methods based on CT or 18F-FDG PET/CT.
Furthermore, it would be rather valuable to investigate whether
multi-modality and multi-probe radiomics method can make a
difference in discriminating malignant from benign lesions.
2

This was the first study performed to extract and evaluate the
diagnostic efficacy of radiomics features of 68Ga-NOTA-PRGD2
comparing with that of CT or 18F-FDG PET/CT in
discriminating benign and malignant pulmonary space-
occupying lesions. And this is also pilot in establishing and
comparing the diagnostic efficacy of radiomics models based on
multi-modality and multi-probe images.
MATERIALS AND METHODS

Patients
The study was approved by the Peking Union Medical College
Hospital Medical Ethics Committee, and the requirement for
informed consent was waived. Forty-eight patients with
pulmonary space-occupying lesions in Peking Union Medical
College Hospital from 2011 to 2013 were enrolled, and all
participated in 68Ga-NOTA-PRGD2 PET/CT and 18F-FDG
PET/CT clinical trials. The pulmonary space-occupying lesions
of all included patients were confirmed by pathological diagnosis.

The inclusion criteria were as follows: (a) a single clearly
identifiable lung lesion with a volume > 3 cm3 on CT and PET
images; (b) good image quality; (c) confirmed by a clear
pathological diagnosis; and (d) did not receive radiation
therapy or chemotherapy prior to PET/CT scanning. The
exclusion criteria were as follows: image distortion, motion
artifacts, or metal artifacts.

Image Acquisition and Reconstruction
PET/CT scanning was performed with a Siemens Biograph 128
mCT X PET/CT. All patients were intravenously injected with
68Ga-NOTA-PRGD2 of approximately 111 MBq and then
underwent CT scanning (120 kV, 50 mAs, pitch 1:1, layer
thickness 3 mm, interval 3 mm, matrix 512×512). PET scanning
was performed 30 ± 10 minutes after injection (reconstruction
method using TrueX, the layer thickness was 3 mm, and the
matrix was 168×168). Standard routine 18F-FDG PET/CT
examinations were performed within 1 week. After fasting for at
least 6 hours, all patients received low-dose CT and PET scanning
1 hour after an injection of 7.4 MBq/kg 18F-FDG.

Image Segmentation and
Feature Extraction
Imaging data were imported into the LIFEx v5.10 (LIFExsoft)
platform (16), and an experienced physician manually drew the
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volume of interest (VOI) layer by layer along the contour of
lesions on the PET and CT images. The VOIs (see Figure 1) were
checked and confirmed by another experienced physician. Basic
features, shape features (roundness, density, volume, etc.), and
texture features (first-order texture features, gray-level co-
occurrence matrix (GLCM) features, gray-level run-length
matrix (GLRLM) features, neighborhood gray-level different
matrix (NGLMD) features, and gray-level zone length matrix
(GLZLM) features) of the VOIs of PET and CT images were
extracted (see Table 1). Among them, PET features were
extracted in the range of SUV values 0-20, and the interval was
64. CT features were extracted in the range of -1500~1000 HU
(Hounsfield unit), and the interval was 400. Filtering and
smoothing were not used in image processing.

Data Analysis and Model Establishment
R 3.5.1 was used to analyze all data. The analysis process was as
follows (see Figure 2) (1). Feature evaluation: The Mann-Whitney
U test was used to compare differences in features between the
Frontiers in Oncology | www.frontiersin.org 3
benign and malignant groups. Correlations were assessed between
18F-FDG PET features and 68Ga-NOTA-PRGD2 PET features. A
single-factor logistic model was established for all radiomics
features, and the AUC value of each model was calculated to
evaluate the diagnostic efficacy of each feature. (2) Data
preprocessing: To avoid some features overpowering others, each
feature was standardized (Z-score normalization). (3) Model
establishment: This study used the random forest algorithm for
modeling. CT features, 18F-FDG PET features, 68Ga-NOTA-
PRGD2 PET features, CT & 18F-FDG PET features, CT & 68Ga-
NOTA-PRGD2 PET features, 18F-FDG PET & 68Ga-NOTA-
PRGD2 PET features, and a combination of all features were used
to establish random forest models to predict benign and malignant
lesions. The sequence forward selection algorithm was used in the
feature selection process. The average AUC value, accuracy,
sensitivity, and specificity of the models were evaluated by 1000
times 10-fold cross-validation. The permutation test was used to
evaluate the significance of the difference in the mean AUCs of
different models.
A

B

C

FIGURE 1 | (A) Example of CT image segmentation (the green area is the VOI drawn, the same as below). (B) Example of 68Ga-NOTA-PRGD2 PET image
segmentation. (C) Example of feature map extracted (GLCM Dissimilarity).
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RESULTS

Patient Characteristics
A total of 48 patients were included in this study, of which 23
(47.9%) were men and 25 (52.1%) were women, with an average
age of 55.0 years (24~78 years). Among them, 36 cases (75%)
were malignant, and 12 cases (25%) were benign. The
pathological types were 22 cases of adenocarcinoma, 8 cases of
squamous cell carcinoma, 2 cases of malignant mesothelioma, 2
cases of lymphoma, 2 cases of metastasis, 9 cases of chronic
inflammation, 1 case of thymoma (AB type), 1 case of
hemangioma, and 1 case of epithelioid hemangioendothelioma
(see Table 2).
Frontiers in Oncology | www.frontiersin.org 4
Feature Evaluation
The predictive value (AUC values) of features for benign and
malignant lung lesions and the comparison of features between the
two groups are shown in Supplementary Table 1. Fourteen of the
68Ga-NOTA-PRGD2 PET features between benign and malignant
pulmonary space-occupying lesions had significant differences
(P<0.05, Mann-Whitney U test). The 18F-FDG PET feature with
the best predictive effect was GLZLM SZLGE with an AUC value
of 0.794, the 68Ga-NOTA-PRGD2 PET feature with the best
predictive effect was GLCM homogeneity with an AUC value of
0.788, and the CT feature with the best predictive effect was HUmax

with an AUC value of 0.660. Eighteen of the 68Ga-NOTA-PRGD2
PET features demonstrated higher AUC values than all CT
FIGURE 2 | Data analysis and model establishment process.
TABLE 1 | Image features extracted in our study.

Types Names of features

SUV conventional features (PET only) SUVmin, SUVmean, SUVstd, SUVmax, SUVQ1, SUVQ2, SUVQ3, SUVpeak sphere 0.5 mL, SUVpeak sphere 1 mL, TLG, STLG, MTV, SMTV
HU conventional features (CT only) HUmin, HUmean, HUstd, HUmax, HUQ1, HUQ2, HUQ3, HUpeak sphere 0.5 mL, HUpeak sphere 1 mL

Shape features Volume, Sphericity, Compacity
Textural features First-order texture features: HISTO Skewness, HISTO Kurtosis, HISTO Excess Kurtosis, HISTO Entropy log10, HISTO Energy

GLCM features: Homogeneity, Energy, Contrast, Correlation, Entropy log10, Dissimilarity
GLRLM features: SRE, LRE, LGRE, HGRE, SRLGE, SRHGE, LRLGE, LRHGE, GLNU, RLNU, RP
NGLDM features: Coarseness, Contrast, Busyness
GLZLM features: SZE, LZE, LGZE, HGZE, SZLGE, SZHGE, LZLGE, LZHGE, GLNU, ZLNU, ZP
SUV, standard uptake value; SUVmin, minimum SUV; SUVmean, mean SUV; SUVstd, Standard deviation SUV; SUVmax, maximum SUV; SUVQ1, the first quartile of SUV; SUVQ2, the
second quartile of SUV; SUVQ3, the third quartile; TLG, total lesion glycolysis; STLG, standard total lesion glycolysis; MTV, metabolic tumor volume; SMTV, standard metabolic tumor
volume; HU, hounsfield unit; HUmin, minimum HU; HUmean, mean HU; HUstd, Standard deviation HU; HUmax, maximum HU; HUQ1, the first quartile of HU; HUQ2, the second quartile of
HU; HUQ3, the third quartile of HU; HISTO, Histogram; SRE, Short-Run Emphasis; LRE, Long-Run Emphasis; LGRE, Low Gray-level Run Emphasis; HGRE, High Gray-level Run
Emphasis; SRLGE Short-Run Low Gray-level Emphasis; SRHGE, Short-Run High Gray-level Emphasis; LRLGE, Long-Run Low Gray-level Emphasis; RLNU, Run Length Non-
Uniformity; RP, Run Percentage; SZE, Short-Zone Emphasis; LZE, Long-Zone Emphasis; LGZE, Low Gray-level Zone Emphasis; HGZE, High Gray-level Zone Emphasis; SZLGE,
Short-Zone Low Gray-level Emphasis; SZHGE, Short-Zone High Gray-level Emphasis; LZLGE, Long-Zone Low Gray-level Emphasis; LZHGE, Long-Zone High Gray-level Emphasis;
ZLNU, Zone Length Non-Uniformity; ZP, Zone Percentage.
June 2022 | Volume 12 | Article 877501
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features in the differential diagnosis of pulmonary lesions. The
image feature correlation coefficient map (Figure 3) showed that
CT, 18F-FDG PET and 68Ga-NOTA-PRGD2 PET images had
Frontiers in Oncology | www.frontiersin.org 5
certain correlations, but these correlations were lower than the
correlations of features within certain modalities.

Comparison of the Models
for Differentiating Benign and
Malignant Lesions
The features included in each model and the AUC, accuracy,
sensitivity, specificity and significance test results of these models
are shown in Tables 3, 4. The AUC values of the benign and
malignant identification models constructed based on CT
features, 18F-FDG PET features, 68Ga-NOTA-PRGD2 PET
features, CT & 18F-FDG PET features, CT & 68Ga-NOTA-
PRGD2 PET features, 18F-FDG PET & 68Ga-NOTA-PRGD2
PET features, and the combination of all were 0.870, 0.895,
0.853, 0.903, 0.876, 0.892 and 0.908; the accuracy rates were
0.770, 0.787, 0.758, 0.805, 0.802, 0.811 and 0.828; the
sensitivities were 0.937, 0.932, 0.915, 0.902, 0.943, 0.924 and
0.948; and the specificities were 0.267, 0.351, 0.285, 0.519, 0.378,
0.473, 0.467, respectively. The three-modal image model had a
higher AUC than the dual-modal image models in all cases
(P<0.05), and the dual-modal image models had a higher AUC
than the single-modal image models as its component in most
TABLE 2 | Basic information and characteristics of the patients.

Demographic or Clinical Characteristics No. of Patients

No. of patients 48
Sex
Male 23 (47.9%)
Female 25 (52.1%)
Diagnosis
Malignant 36 (75.0%)

Adenocarcinoma 22 (45.8%)
Squamous cell carcinoma 8 (16.7%)
Malignant mesothelioma 2 (4.2%)
Lymphoma 2 (4.2%)
Metastasis 2 (4.2%)

Benign 12 (25.0%)
Chronic inflammation 9 (18.8%)
Thymoma (AB type) 1 (2.1%)
Hemangioma 1 (2.1%)
Epithelioid hemangioendothelioma 1 (2.1%)

Age (y) Mean (Range)
55.0 (24~78)
FIGURE 3 | Image feature correlation coefficient map of CT, 18F-FDG PET and 68Ga-NOTA-PRGD2 PET.
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cases (P<0.05). The 18F-FDG PET model had a higher AUC than
the 68Ga-NOTA-PRGD2 PET feature model (P<0.05). The
smoothed receiver operating characteristic (ROC) curves of all
models are shown in Figure 4.
DISCUSSION

Lung cancer is the most common type of malignant lung space-
occupying lesion and the main cause of cancer mortality (17).
The early diagnosis and treatment of lung cancer from all forms
of lung space-occupying lesions have been crucial for the success
of surgical resection and extension of survival time (18, 19).

At present, there have been a number of studies on 18F-FDG
PET/CT radiomics to assist in the differentiation of pulmonary
space-occupying lesions (20–25), indicating the excellent value of
radiomics in nuclear medicine imaging. It was generally considered
that the 18F-FDG PET & CT combined model performed better
than the PET feature model or CT feature model, and the PET
Frontiers in Oncology | www.frontiersin.org 6
feature model was better than the CT feature model (26). Zhang
et al. (27) showed that the AUC of the 18F-FDG PET & CT model
was higher than that of the CT model (P = 0.018), and the AUC of
the 18F-FDG PET model was higher than that of the CT model
(0.874 vs. 0.820) but without a statistically significant difierence.
Kang et al. reported that the AUC of the 18F-FDG PET model was
higher than that of the CT model (0.88 vs. 0.74) (22). 68Ga-NOTA-
PRGD2 PET/CT, an imaging method with dimeric RGD peptide-
binding integrin receptors, showed a similar sensitivity and higher
specificity than 18F-FDG PET/CT in the detection and
differentiation of lung lesions (12). However, to the best of our
knowledge, there have been no radiomics studies on integrin
receptor imaging in lung lesions.

In our study, a variety of intensity, shape and texture features
were extracted from the images of 48 patients who underwent
68Ga-NOTA-PRGD2 PET/CT and 18F-FDG PET/CT scans, and
these features were analyzed separately to predict benign and
malignant pulmonary lesions. The results showed that 68Ga-
NOTA-PRGD2 PET and 18F-FDG PET features have similar
diagnostic capacity for pulmonary space-occupying lesions.
68Ga-NOTA-PRGD2 PET image features have better diagnostic
capacity than CT, and 18 of the 68Ga-NOTA-PRGD2 PET features
TABLE 3 | Feature composition and evaluation results of models for the differentiation of benign and malignant lesions.

Modality Features included in the model AUC Accuracy Sensitivity Specificity

CT HUmax, GLRLM GLNU, HISTO Skewness, Compacity 0.870 ± 0.048 0.770 ± 0.028 0.937 ± 0.024 0.267 ± 0.091
18F-FDG PET GLZLM SZLGE, HISTO Entropy log10, GLZLM LGZE, Sphericity 0.895 ± 0.038 0.787 ± 0.021 0.932 ± 0.022 0.351 ± 0.058
68Ga-NOTA-PRGD2 PET GLCM Homogeneity, GLRLM LRE 0.853 ± 0.047 0.758 ± 0.024 0.915 ± 0.021 0.285 ± 0.076
CT & 18F-FDG PET 18F-FDG PET GLZLM SZLGE, CT HUmax,

18F-FDG PET GLZLM
LGZE

0.903 ± 0.040 0.805 ± 0.023 0.902 ± 0.019 0.519 ± 0.077

CT & 68Ga-NOTA-PRGD2
PET

68Ga-NOTA-PRGD2 PET GLCM Homogeneity, CT GLCM
Dissimilarity, CT HUmin, CT Sphericity

0.876 ± 0.044 0.802 ± 0.030 0.943 ± 0.030 0.378 ± 0.074

18F-FDG PET & 68Ga-
NOTA-PRGD2 PET

18F-FDG PET GLZLM SZLGE, 68Ga-NOTA-PRGD2 PET GLCM
Contrast, 18F-FDG PET SUVQ2, 18F-FDG PET Sphericity

0.892 ± 0.043 0.811 ± 0.021 0.924 ± 0.022 0.473 ± 0.061

CT & 18F-FDG PET &
68Ga-NOTA-PRGD2 PET

18F-FDG PET GLZLM SZLGE, 68Ga-NOTA-PRGD2 PET GLCM
Contrast, CT GLCM Dissimilarity, CT HUmin, CT SHAPE
Sphericity

0.908 ± 0.041 0.828 ± 0.019 0.948 ± 0.016 0.467 ± 0.070
June
 2022 | Volume 12
Data presented as means ± standard deviations.
TABLE 4 | Significance test of differences in AUC values of different models.

Modality 1 Modality 2 P values of AUC
between modality 1

and modality 2

CT, 18F-FDG PET & 68Ga-
NOTA-PRGD2 PET

CT <0.001***
18F-FDG PET <0.001***
68Ga-NOTA-PRGD2 PET <0.001***
CT & 18F-FDG PET 0.003***
CT & 68Ga-NOTA-
PRGD2 PET

<0.001***

18F-FDG PET & 68Ga-
NOTA-PRGD2 PET

<0.001***

CT & 18F-FDG PET CT <0.001***
18F-FDG PET <0.001***

CT & 68Ga-NOTA-PRGD2
PET

CT 0.003***
68Ga-NOTA-PRGD2 PET <0.001***

18F-FDG PET & 68Ga-
NOTA-PRGD2 PET

18F-FDG PET 0.108
68Ga-NOTA-PRGD2 PET <0.001***

18F-FDG PET 68Ga-NOTA-PRGD2 PET <0.001***
CT & 18F-FDG PET CT & 68Ga-NOTA-

PRGD2 PET
<0.001***
***, P<0.01.
FIGURE 4 | Smoothed ROC curves of all models.
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demonstrated higher AUC values and better diagnostic capacity
than all CT features in the differential diagnosis of pulmonary
lesions. The radiomics features of the three imaging methods had
certain potential predictive value for benign and malignant lung
lesions, but the AUC values did not exceed 0.80, which indicated
that these features had certain limitations as predictors of benign
and malignant lesions alone.

Among the 18F-FDG PET features, a total of 11 features had
significant differences (P<0.05) between the benign and
malignant groups. Among the 68Ga-NOTA-PRGD2 PET
features, a total of 14 features were significantly different
(P<0.05) between the two groups. There were no significant
differences (P<0.05) in CT features between the two groups. This
finding shows that the features of benign and malignant
pulmonary space-occupying lesions on 18F-FDG PET or 68Ga-
NOTA-PRGD2 PET images had certain differences. Since image
features are affected by multiple factors (28, 29), such as scanning
parameters, reconstruction methods and quantification methods,
this difference needs to be further verified. The image feature
correlation coefficient map showed that CT, 18F-FDG PET and
68Ga-NOTA-PRGD2 PET images had certain correlations, but
these correlations were lower than the correlations of features
within certain imaging methods, suggesting that the information
extracted from different sequences could be complementary.

This study further used the sequence forward selection
algorithm to select features, applied the random forest
algorithm to establish 7 classification models to distinguish
between benign and malignant lung lesions, and used 1000
times 10-fold cross-validation to evaluate the diagnostic
efficacy of the models. The established models were the CT
feature model, 18F-FDG PET feature model, 68Ga-NOTA-
PRGD2 PET feature model, CT & 18F-FDG PET feature
model, CT & 68Ga-NOTA-PRGD2 PET feature model, 18F-
FDG PET & 68Ga -NOTA-PRGD2 PET feature model, and the
model of combination of all features. The results showed that
the diagnostic efficacy of these seven models was good, and the
corresponding average AUC values were 0.870, 0.895, 0.853,
0.903, 0.876, 0.892, and 0.908. Considering the intuitive
difference in AUC values, if these models must be sorted, we
believe that the performance from high to low is as follows: the
model of combination of all features, CT & 18F-FDG PET feature
model, 18F-FDG PET feature model, 18F-FDG PET & 68Ga-
NOTA-PRGD2 PET feature model, CT & 68Ga-NOTA-PRGD2
PET feature model, CT feature model, and 68Ga-NOTA-PRGD2
PET feature model. Previous studies (27) generally believed that
CT & 18F-FDG PET feature models were better than 18F-FDG
PET feature models, and the 18F-FDG PET feature model was
better than the CT feature model. Our study also supported this
result. In the future, different modeling methods could be used to
try to develop a model with optimal prediction performance.

We also found that the AUC value of the three-modal image
feature model was better than those of the dual-modal image feature
models, and the AUC values of the dual-modal image feature
models were usually better than those of the single-modal image
feature models, which further extended the results of Zhang (27),
Teramoto (30), and Blemker (31). This may result from the
Frontiers in Oncology | www.frontiersin.org 7
combination of multi-modality and multi-probe images extracting
more lesion information than single-modality or single-probe image
features and improving the diagnostic efficiency of the models. The
multi-modality and multi-probe imaging method was certainly
better than the single-modality or single-probe imaging method
in the diagnosis of benign and malignant lung lesions, but in clinical
practice, considering the high penetration rate, low cost and high
sensitivity of CT, screening malignant lung lesions based on CT is
still a good choice under limited conditions.

We discussed the radiomics model based on a new imaging
method, 68Ga-NOTA-PRGD2 PET. The established model had an
AUC value of 0.853, which was significantly lower than that of the
18F-FDG PET feature model (AUC of 0.895, P<0.001), and its
sensitivity and specificity were both lower than the latter, which
may indicate that the 68Ga-NOTA-PRGD2 PET feature model
performed worse than the 18F-FDG PET feature model. The
possible reason, on the one hand, was related to the modeling
methods and deviation of VOI. On the other hand, the radiation
dose of 68Ga-NOTA-PRGD2 PET was lower than that of 18F-FDG
PET, which resulted in relatively poor imaging quality and less
information. After the addition of CT, the diagnostic efficiency of
both methods increased. The sensitivity of the CT & 68Ga-NOTA-
PRGD2 PET feature model was even higher than that of the CT &
18F-FDG PET feature model, though with a lower AUC value
(P<0.001). Besides, the addition of 68Ga-NOTA-PRGD2 PET
features to the CT & 18F-FDG PET feature model can
significantly improve the diagnostic efficiency of the model
(AUC: 0.908 vs. 0.903, P = 0.003 < 0.05), which indicated the
potential value of the multi-modality and multi-probe models and
warranted further validation in the future. Our study did not report
radiomics analysis on metastases detection of lung cancer based on
68Ga-NOTA-PRGD2 PET and it was our future direction.

Our study has some limitations as follows. (1) Our study was a
retrospective analysis that enrolled 48 patients with difierent
benign or malignant pulmonary space-occupying lesions. The
amount of data was small, and all came from a single center, so
we made efforts to eliminate the uncertainty and instability of the
features as much as possible, such as using cross-validation instead
of separating another validation set for the limited data and setting
segmentation standards for extracting features from images. (2) In
the differentiation of benign and malignant lesions, the number of
benign and malignant cases was slightly unbalanced, which needs
to be further considered in future studies.

In conclusion, this is a rather novel study to suggest that some
68Ga-NOTA-PRGD2 PET image features solely could have even
better diagnostic capacity than all CT features for pulmonary
space-occupying lesions. Apart from that, this is also a pilot
study to show that classification models developed based on
multi-modality and multi-probe images can extract more
information about lesions and improve the diagnostic
efficiency of radiomics models than single-modality and single-
probe image models. For future study, our preliminary clinical
hypothesis of using radiomics based on 68Ga-NOTA-PRGD2
PET images and multi-modality and multi-probe images as a
diagnostic tool warrants further validation in a larger multicenter
sample size.
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