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The ketogenic diet (KD) is a low-carbohydrate, high-fat diet regarded as a potential
intervention for cancers owing to its effects on tumor metabolism and behavior.
Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer, and its
management is worth investigating because of the high fatality rate. Additionally, as the
liver is the glucose and lipid metabolism center where ketone bodies are produced, the
application of KD to combat HCC is promising. Prior studies have reported that KD could
reduce the energy supply and affect the proliferation and differentiation of cancer cells by
lowering the blood glucose and insulin levels. Furthermore, KD can increase the
expression of hydroxymethylglutaryl-CoA synthase 2 (HMGCS2) in hepatocytes and
regulate lipid metabolism to inhibit the progression of HCC. In addition, b-
hydroxybutyrate can induce histone hyperacetylation and reduce the expression of
inflammatory factors to alleviate damage to hepatocytes. However, there are few
relevant studies at present, and the specific effects and safety of KD on HCC warrant
further research. Optimizing the composition of KD and combining it with other therapies
to enhance its anti-cancer effects warrant further exploration.
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INTRODUCTION

Liver cancer deaths account for the third-highest number of cancer-related fatalities worldwide and rank
sixth in the number of new cancer cases, thereby exerting a substantial impact on human health and the
economy (1). According to World Health Organization estimates, over one million individuals will die
from liver cancer in 2030 (2). Hepatocellular carcinoma (HCC) accounts for 75%–85% of all liver cancer
cases, and the risk factors vary from one region to another. In Asia, hepatitis B virus (HBV) and aflatoxin
exposure are the major causes, whereas the hepatitis C virus is the leading cause in Europe. In addition,
because of the differences in diet and lifestyle, non-alcoholic fatty liver disease (NAFLD) accounts for
10%–20% of the HCC cases in the United States (3). In past decades, therapies for HCC have witnessed
rapid progress, with the main options being surgical resection, orthotopic liver transplantation, radio-
frequency ablation, chemotherapy, radiotherapy, and systemic drugs such as sorafenib (2). However, the
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prognosis of patients with HCC remains poor, and more efficient
treatments with fewer side effects have yet to be proposed (4).
Cancer cells have different metabolic characteristics when compared
with normal cells. While the normal cells obtain energy through
glycolysis and the citric acid cycle (TCA/Krebs cycle), cancer cells
undergo increased glycolysis and usemost of the pyruvate generated
through this process for lactate production even when oxygen is
available (5). The Warburg effect is a characteristic metabolism in
tumor cells, in which cells shift the source of ATP production from
oxidative phosphorylation to rapid anaerobic glycolysis. Therefore,
Warburg effect promotes glucose uptake, reduces the amount of
ATP produced, but increases the rate of ATP production and
substances required for cell growth, and prevents apoptosis and
immune escape (6). The Warburg effect has encouraged many
scientists to determine whether tumor growth can interfere with
metabolic pathways. Accordingly, the ketogenic diet (KD), a low-
carbohydrate, high-fat diet proposed in 1920 to treat intractable
epilepsy was found to be capable of reducing glucose metabolism
and increasing lipid metabolism, thereby interfering with the
Warburg effect and preventing tumor cell growth. This diet was
later proven to have promising anti-cancer effects (7).

The anti-cancer effect of KD has been demonstrated in several
clinical studies conducted in many types of tumors, such as
glioblastoma, advanced malignant astrocytoma, invasive rectal
cancer, breast cancer, ovarian cancer, and endometrial cancer.
Additionally, KD application has led to improvements in
metabolic indicators, such as total cholesterol, low-density
lipoprotein (LDL), and insulin levels in patients with cancer (8).
KD has alleviated cachexia in patients and improved their quality of
life (9, 10). Notably, a clinical study has reported adverse effects of
hyperuricemia, but this effect was associated with low patient
compliance (11). Most clinical studies have not documented any
serious adverse events linked to KD. However, the effect of KD on
tumors is also influenced by the tumor type (12). For example,
unlike the anti-cancer effects observed in prior studies, a high-fat
ketogenic diet was found to promote tumor growth in a mouse
model of melanoma (13). As the main metabolic organ in the body,
the liver plays a crucial role in the metabolism of carbohydrates,
lipids, and proteins. Furthermore, the liver acts as the site of ketone
body (KB) production, and abnormalities in liver function in
patients with HCC can also have an impact on metabolism (14).
Hydroxymethylglutaryl-CoA synthase 2 (HMGCS2) is the key
enzyme in the ketogenic process, but is not expressed in fetal
liver. However, it is activated in adult liver. Studies have found
that low HMGCS2 expression is associated with advanced clinical
stage and poor prognosis in HCC (15). Therefore, it is especially
necessary to understand the potential therapeutic role of KD in
HCC treatment. A study by Healy et al. noted that KD reduced the
tumor load in HCC mice (16). However, according to Byrne’s
research, KD had no significant effect on the progression of HCC in
mice (17). In conclusion, the specific effects of KD on HCC are
unclear. Hence, in this review, we have summarized the metabolism
of KBs, the types of ketogenic diets, the possible mechanisms of
action of KD on HCC, and the data obtained from current pre-
clinical and clinical studies, with a hope of providing a strong
theoretical basis for subsequent studies.
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ANABOLIC AND CATABOLIC
METABOLISM OF KETONE BODIES

Liver mitochondria are the site of KB production; KB mainly
includes acetoacetate (AcAc), b-hydroxybutyrate (b-OHB), and
acetone (Ac). Under normal conditions, the blood ketone levels
range from 0.1–0.2 mM. KB production increases during
starvation, long-term exercise, or diabetes, and blood ketones
can reach a level as high as 1 mM after 24 hours of fasting (18).
First, fatty acids (FAs) are catabolized into acetyl-CoA through
b-oxidation, which then enter the citric acid cycle and release
energy. Nonetheless, in the low-glucose state, acetyl-CoA is used
for KB synthesis. Two molecules of acetyl-CoA are condensed to
form acetoacetyl-CoA (AcAc-CoA) by acetoacetyl-CoA thiolase
(ACAT1) and AcAc-CoA is used in the generation of b-hydroxy-
b-methylglutaryl-CoA (HMG-CoA) by HMG-CoA synthase
(HMGCS2), the rate-limiting enzyme in ketogenesis.
Subsequently, HMG-CoA lyase degrades HMG-CoA into
AcAc, which is further reduced to b-OHB under the action of
b-hydroxybutyrate dehydrogenase (BDH). The above two KBs
are the main forms used by the body. A fraction of the AcAc
spontaneously undergoes decarboxylation to form acetone,
which is excreted through urine or respiration, or is further
metabolized into pyruvate, lactic acid, and acetic acid (19).

The liver can not oxidize KBs. Therefore, the KBs produced in
the liver are transported through the bloodstream to be oxidized
and utilized in extrahepatic tissues such as the heart, kidney,
brain, and skeletal muscle. The b-OHB in the bloodstream is
taken up by the mitochondria through the monocarboxylate
transporter protein (MCT), and is then dehydrogenated to
produce AcAc in the presence of BDH1. The key enzyme 3-
oxoacid transferase 1 (OXCT1), also called succinyl CoA
transferase (SCOT), converts AcAc and succinyl CoA to AcAc-
CoA (20). AcAc-CoA is then converted to two molecules of
acetyl CoA by the action of ACAT1. Finally, acetyl CoA is either
oxidized and utilized via the TCA cycle or it is used for
cholesterol synthesis (21) (Figure 1).
KETOGENIC DIET

The classical KD consists of a 4:1 or 3:1 ratio of fat content to
carbohydrate plus protein, and requires all ingredients to be
calculated and weighed precisely in grams (22). The fatty acids
in the classical KD are long-chain triglycerides (LCT), which must
be converted in the body before absorption. Later, Huttenlocher et
al. proposed the medium-chain triglyceride ketogenic diet (MKD),
which is more easily digested and absorbed than LCT, as medium-
chain triglycerides (MCT) do not require emulsification, and can
be directly degraded into glycerol and water-soluble medium-
chain fatty acids (MCFA) (23). However, because the main
component of the classical KD and MKD is fat, patients often
experience some gastrointestinal disturbances, such as diarrhea
and vomiting; hence, compliance is poor (24). Therefore,
researchers have recommended a modified Atkins diet (MAD)
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and low glycemic index therapy (LGIT) ketogenic diet based on
the classical KD (25–31) (Table 1).
POTENTIAL EFFECTS OF KD ON
HEPATOCELLULAR CARCINOMA

Regulation of Glucose Metabolism
Tumor cells are characterized by rapid growth and high
metabolism, and glucose transport protein (GLUT) aids in the
entry of glucose into the cells for metabolism to enable cell
growth. It has been found that GLUT1 expression is enhanced in
HCC and exerts tumorigenic effects (32). Experiments on HCC
mice revealed that the tumor incidence was 3–5 times higher in
mice fed with a high-glucose diet when compared with those in
the normal diet group (33). These findings indicate that glucose
metabolism is significant for the development of HCC. In the
absence of glucose availability, normal cells synthesize KBs in the
mitochondria to supply energy for maintaining cell growth.
However, tumor cells cannot perform ketone metabolism
because of abnormalities in mitochondrial structure and
Frontiers in Oncology | www.frontiersin.org 3
function (34) (Figure 2). Moreover, the activities of SCOT and
ACAT1, key enzymes in ketone metabolism, were low or
undetectable in the tumor tissues, which confirmed the above
idea (35). KD is a low-carbohydrate diet that reduces the energy
supply to the cancer cells by lowering blood glucose levels in the
body to exert anti-cancer effects. Clinical trials have
demonstrated that insulin and insulin-like growth factor-1
(IGF-1) levels decreased with the consumption of KD for a
period of time, and were negatively correlated with serum b-
hydroxybutyric acid levels (36, 37). Indeed, insulin and IGF-1
play crucial regulatory roles in human growth and metabolism,
and epidemiological evidence demonstrates that they can
promote tumorigenesis and progression by augmenting tumor
cell proliferation, migration, and angiogenesis (38). In addition,
an HCC mouse trial showed a positive correlation between
tumor load and post-prandial serum insulin levels (16). The
phosphoinositide 3-kinase (PI3K) pathway is an intracellular
signal transduction pathway that promotes cell proliferation and
differentiation. Several inhibitors targeting this pathway are
presently being investigated for the inhibition of tumor growth.
However, clinical data allude that drugs targeting PI3K can cause
adverse effects, such as hyperglycemia, thereby reactivating the
FIGURE 1 | Metabolism of ketone bodies: During starvation and prolonged exercise, lipid hydrolysis is enhanced and fatty acid production increases. First, fatty
acids (FAs) are activated into acyl-CoA and then decomposed into acetyl-CoA through b-oxidation. Acetyl-CoA is converted into ketone bodies in mitochondria
within hepatocytes. Then, ketone bodies are transported by blood and utilized by extrahepatic tissues (heart, brain, kidney, and skeletal muscle) to regenerate acetyl-
CoA. Finally, acetyl-CoA is oxidized through the tricarboxylic acid cycle for energy supply. (CPT, carnitin-palmitoyl transferase; MCT, monocarboxylate transporter).
TABLE 1 | Types, characteristics and clinical research of ketogenic diet.

Types The classical ketogenic
diet

MKD MAD LGIT Ketogenic Diet

Components Mainly long-chain
triglycerides, 90% of calories
come from fat, 8% protein,
and only 2% carbohydrate.

Replace long-chain triglycerides with medium-chain
triglycerides.

Fat: carbohydrates and
proteins are close to 0.9:1,
and about 65% of calories
come from fat.

Carbohydrate intake is
limited to foods with less
blood glucose, such as
non-starchy vegetables.

Dietary
requirements

Strict. Strict. Stricter requirements for
carbohydrate intake, no
restrictions on fat and
protein.

Total carbohydrate intake is
less strict.

Patient
compliance

Poor. Poor. Better. Better.

Clinical
research and
the time for
KD therapy

Pancreas, Lung: 2 days
before chemotherapy and
radiation, last for 5.5 – 7
weeks (11).

Breast: Started at the same time as chemotherapy, last for
90 days (28, 29); HNC: Started at the same time as
chemotherapy, last for 39 days; Rectal: Started concurrently
with radiotherapy, last for 39 days (30).

Glioma: Started at the
same time as
chemotherapy and
radiotherapy, last for 6
week (31).
May 2022 |
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PI3K pathway and diminishing the therapeutic effect (39). To
address this issue, Hopkins et al. performed experiments on
mouse tumor models. They found that the use of PI3K inhibitors
in conjunction with a ketogenic diet inhibited the insulin
feedback-induced activation of the mTORC1 pathway by
lowering insulin levels, thereby enhancing the efficacy of PI3K
inhibitors, resulting in an anti-tumor effect (40). The above-
mentioned results suggest that KD can exert anti-cancer effects
by regulating the process of glucose metabolism to reduce the
energy supply of cells, thus inhibiting the growth of the
cancer cells.

Regulation of Lipid Metabolism
The liver is the site of lipid metabolism, and lipid metabolism
tends to affect liver function. Abnormalities in lipid metabolism
can cause NAFLD, which in turn can lead to the development of
HCC. Under a normal diet, acetyl-CoA produced by the TCA
cycle is converted into malonyl-CoA by ACC (the key enzyme in
fatty acid synthesis), and then finally converted into fatty acids
through a series of biosynthetic processes. Similarly, cholesterol
biosynthesis also begins with acetyl-CoA, and the rate-limiting
enzyme for its synthesis is HMGCS2 reductase (HMGCR).
However under the KD, insufficient energy metabolism and
low insulin inhibit the activity of ACC and HMGCR, leading
to reduced lipid synthesis (41). Restriction of carbohydrate
intake is adopted as a dietary intervention for patients with
obesity, and studies have found multiple benefits with regard to
NAFLD (42). Numerous clinical studies have established the
positive effects of KD on patients with obesity and NAFLD. In a
6-day intervention involving 10 patients with obesity,
Luukkonen et al. found that KD promoted hydrolysis of
intrahepatic triglycerides (IHTG), improved insulin resistance,
and decreased the serum insulin level in patients, resulting in
decreased IHTG and body weight (43). In addition, Browning et
al. performed a 2-week dietary intervention in patients with
NAFLD and noted that the low-carbohydrate diet was more
beneficial than the low-calorie diet in reducing hepatic
triglyceride (TG) levels (44). Yancy et al. conducted a dietary
Frontiers in Oncology | www.frontiersin.org 4
intervention on 120 overweight, hyperlipidemic volunteers for 6
months, and observed that when compared with the low-fat diet,
the low-carbohydrate diet was not only more effective in
reducing the serum TG levels, but also in significantly lowering
body weight and increasing the high-density lipoprotein
cholesterol (HDL-C) levels (45). Foster et al. conducted long-
term intervention in patients with obesity. While the results of
their short-term trials matched the findings of Yancy et al., their
results at 2 years found that only HDL-C levels were higher than
those in the low-fat diet group, with no apparent variations in
any other indicators (46). These results suggest that the effect of
low carbohydrates on patients is influenced by the duration of
the diet, and that prolonged intervention studies are needed to
further illustrate the follow-up impact. Of note, not all low-
carbohydrate diets are KD (47). The low-carbohydrate group in
the above studies strictly controlled their carbohydrate intake, all
of which were <20g/day. However, there were no strict
restrictions regarding fat and protein contents, which met the
requirements of MAD. It is worth noting that after feeding mice
on a very low-carbohydrate ketogenic diet for 12 weeks, Garbow
et al. found that the mice developed hepatic endoplasmic
reticulum stress, steatosis, and cellular damage, causing a
pattern of damage similar to the NAFLD phenotype, however,
the occurrence of this phenomenon might have been the result of
extreme KD (95.1% of calories from fat, 0.4% from carbohydrate,
and 4.5% from protein) (48). In addition to this, some studies
show that KD leads to systemic glucose intolerance and the
development of NAFLD (49, 50). One case reported a woman
who developed potential NAFLD after the KD with elevated liver
enzymes (51). From these findings, it could be inferred that KD
with various composition ratios can produce diverse or even
opposing results. Watanabe et al. analyzed the current articles on
KD and NAFLD, and found that a high-fat ketogenic diet
(HFKD) significantly affects liver fat reduction. Nevertheless,
this effect was evident in the short- and medium-term only, but
diminished with time. Additionally, very low-calorie KD
(VLCKD) can reduce body weight and improve hepatic
steatosis (47). The above studies illustrate that the regulation of
FIGURE 2 | Effect of ketogenic diet on glucose metabolism in cancer cell: Cancer cells are characterized by higher glycolysis due to defective mitochondrial
function, and the accumulated cytosolic pyruvate is used to produce lactate (Warburg effect) during normal diet. However, under ketogenic diet feeding, glucose
intake is reduced and the growth of cancer cells is inhibited by reduced energy supply. (GLUT, glucose transporter).
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lipid metabolism by KD is influenced by several factors. At
present, there are few articles about the KD as a risk factor for
NAFLD. In general, KD exerts a positive effect on NAFLD. Since
KD can regulate lipid metabolism and reduce body weight, it has
shown a positive effect on cardiovascular function, and studies
have also found that KD has a certain improvement in systolic
and diastolic blood pressure (52, 53).

Moreover, many key enzyme inhibitors in lipid metabolism
have demonstrated anti-cancer effects (54). HMGCS2 is an
important enzyme in fatty acid oxidation (55). A pre-clinical
study has demonstrated that HMGCS2 deficiency causes
ketogenic disorders, leading to extensive hepatocellular damage
and inflammation. Furthermore, the deficiency has been shown to
result in hepatic TCA circulatory disturbances and promote the
development of NAFLD (56). Through immunohistochemical
staining, Wang et al. noted that HMGCS2 was highly expressed
in healthy liver tissues. However, the expression was significantly
decreased in liver cirrhosis and in HCC tissues. Also, the
expression of HMGCS2 was negatively associated with the
pathological grade and clinical stage of HCC. Knock-down of
HMGCS2 promoted cell proliferation by enhancing the c-Myc/
cyclinD1 pathway and inhibiting the caspase-dependent apoptosis
pathway. The knockdown also up-regulated the epithelial–
mesenchymal transition signal to enhance cell migration and
promote tumorigenesis. Interestingly, supplementation of b-
OHB to cells in which HMGCS2 was knocked down revealed a
decrease in proliferation and migration of HCC cells. Mice fed
with KD also had lower subcutaneous tumor growth rates than
those on a standard diet (57). Furthermore, Wang et al.
investigated the xenograft mouse mode (58). They were
surprised to find that the tumors of KD-fed mice expressed
higher levels of the HMGCS2 protein than those on a normal
diet, and that the tumor size in the KD-fed mice group was
inversely associated with HMGCS2 protein expression. These
results demonstrate that KD can exert anti-HCC effects by
enhancing the expression of HMGCS2 (Figure 3).

Regulation of Inflammatory Response
When compared with normal cells, more reactive oxygen species
(ROS) are produced in tumor cells because of defective
mitochondrial oxidative phosphorylation, which causes cellular
oxidative damage (59). Studies have indicated that inflammation
has a promotional effect on tumorigenesis and development, and
many antagonists targeting inflammatory cytokines are being
developed and investigated to prevent and treat cancer (60, 61).
Viral hepatitis is a major cause of HCC, and it has been confirmed
that inflammation can promote HCC development in multiple
ways (62). Therefore, suppressing the inflammatory response of
hepatocytes is an essential mechanism to combat HCC. b-OHB,
the main component of KBs, has a butyrate-like structure, and is
an endogenous inhibitor of histone deacetylase. The effect of b-
OHB is dose-dependent. KD can augment serum b-OHB levels
and exert anti-inflammatory and anti-tumor effects by inducing
histone hyperacetylation (35). The anti-inflammatory effects of
KBs have also been confirmed by analyzing mouse microglia. b-
OHB may exert its anti-inflammatory effects by activating
GPR109A and by inhibiting the NF-kB pathway, which
Frontiers in Oncology | www.frontiersin.org 5
decreases the expression of inflammatory factors, such as COX-
2 (63). GPR109A is a protein receptor that inhibits tumor growth;
b-OHB is a physiological agonist of GPR109A that exerts its
tumor-suppressive effects by agonizing GPR109A (64). Moreover,
a study found that the ketogenic diet can also produce anti-
inflammatory effects by inhibiting the assembly of the NLRP3
inflammasome, a complex that can control the release of
cytokines, such as tumor necrosis factor-alpha (TNF-a). Besides,
TNF-a can interfere with insulin signaling, leading to insulin
resistance (65). Many reports have shown that b-OHB exerts
significant anti-inflammatory effects. By evaluating the effects of
different b-OHB levels on cow hepatocytes, it was found that b-
OHB induces activation of the NF-kB signaling pathway by up-
regulating oxidative markers and down-regulating antioxidant
markers, thereby causing inflammatory damage to the cells and
increasing the oxidative status index with increasing b-OHB levels
(66). Therefore, we speculate that the contradiction of the above
results may be related to the level of b-OHB and cell type, as well
as other factors. AcAc, another KB, was proven to promote
oxidative stress in cellular assays, leading to cellular damage
through the up-regulation of NADPH oxidase 4 (NOX4)
expression and NADPH oxidase activity. The effect of ROS was
stronger at 25 mM glucose than with KB alone (67). In response to
some controversies about ROS production by KB, Meroni et al.
separately examined cells with b-OHB and AcAc, and observed
that KB activates the transcription factor, Nrf2, by inducing
moderate oxidative stress, which further activates antioxidant
defense systems to prevent damage (68). Collectively, the
specific effect of KB on the inflammatory response remains
unclear, but the types of KB and cell appear to be factors that
influence its anti-inflammatory effect. More trials are necessary to
pursue a greater in-depth understanding.
PRE-CLINICAL AND CLINICAL TRIALS

Several pre-clinical trials have established KD as an effective anti-
cancer strategy to delay tumor growth and prolong survival time,
but the effect of KD on tumors is influenced by tumor type
(69, 70). Little research has been conducted regarding KD and
HCC. Huang et al. observed that serum glucose levels and body
weight were significantly reduced in mice fed with KD. However,
HCC cells under starvation can trigger the mTORC2-AKT-SP1
signaling, which promotes OXCT1 (a key ketolytic enzyme)
expression and inhibits AMPK-mediated autophagy, thus
protecting the cancer cells. The elevated KBs in vivo can
promote HCC cell growth (71). OXCT1 is not routinely
expressed in the adult liver (20). The above results may
indicate a metabolic adaptation of HCC cells in the presence of
nutritional deficiency. Most importantly, the above study reveals
a positive relationship between OXCT1 expression and the
clinical stage of HCC. Patients with high OXCT1 expression
have a short survival time, which signifies that OXCT1 holds
promise as a new biomarker for HCC. Moreover, studies have
shown that the effect of KD on HCC mice is also affected by the
intervention time. Diet interventions were started in the HCC
May 2022 | Volume 12 | Article 879205
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mouse model in the 6th week, and the tumor burden and
diversity of the mice in the KD-fed group were lower than
those in the high-glucose diet group (16). However, when
dietary intervention commenced at 40 weeks, KD did not have
a significant effect on HCC (17), suggesting that early
intervention with KD is beneficial in HCC. The above result is
consistent with findings of previous studies. A meta-analysis
showed that the timing of dietary intervention affects the
therapeutic effect of KD, and that prophylactic KD
intervention has a strong anti-cancer effect (72).

Clinical studies related to the impacts of KD on HCC are
limited, and there are only two case reports on liver tumors (73).
After applying KD monotherapy for 1 month, a patient’s blood
glucose level decreased to normal, and ultrasound showed that
the tumor had disappeared after 1 year of KD. The other patient
also demonstrated a significant improvement in clinical
performance. Furthermore, no serious side effects were
reported during the therapeutic period. However, the specifics
of this case report, such as the stage of the patient’s tumor and
the specific composition of the KD, were not described, all of
which can significantly impact treatment outcome. In addition,
the small number of participants is a shortcoming of the report.
Hence, the application of KD for treating HCC still lacks proper
evidence to support it, and more clinical studies are needed to
provide confirmation.
ADVERSE EFFECTS OF KD
IN TREATING CANCER

Although most studies have proved the safety of KD in the
treatment of cancer, some adverse effects related to KD have been
reported in the literature, namely, gastrointestinal reactions,
increased blood lipid levels, kidney stones, and fractures
(12, 74). For example, Mansoor et al. found that a low-
carbohydrate dietary intervention for more than 6 months in
healthy people increased their LDL-C levels (75). Similarly, a 60-
day KD intervention in rats resulted in several adverse effects,
such as anemia, metabolic acidosis, and decreased plasma
superoxide dismutase (SOD) levels (76). In addition, studies
Frontiers in Oncology | www.frontiersin.org 6
exploring carbon tetrachloride- and thioacetamide-induced liver
fibrosis mouse models revealed that KD leads to the development
of cirrhosis by increasing cholesterol content in the liver, which
subsequently enhances the hepatic inflammatory response and
decreases the antioxidant and detoxification capacity (77)
(50).Most of the above-mentioned adverse events are
important factors affecting HCC, which promote its occurrence
through glucose metabolism, inflammatory response, and
increased NAFLD mechanisms. Moreover, the ketogenic diet is
different from the traditional diet in that the patient needs to
prepare the meal correctly and cannot eat with friends and family
normally, which can make the patient feel socially isolated. In
addition, the cost of the patient’s diet due to the change in food
composition will also change. These can contribute to
psychosocial problems for the patient. Therefore, we should
pay attention to these adverse reactions in future studies to
ensure the safety and feasibility of KD.
POTENTIAL FUTURE RESEARCH
DIRECTIONS

There are increasing reports of combination therapies against
progression of various tumors, including HCC (78, 79).
Similarly, the ketogenic diet could be combined with a
secondary drug to enhance its therapeutic potential against
HCC. For example, inhibitors of the mevalonate pathway
could control the elevated cholesterol in the blood and liver
after KD. It is well established that the rate-limiting step in
cholesterol synthesis is the conversion of hydroxyl-methyl
glutaryl-coenzyme A (HMG-CoA) into mevalonate. In fact,
small molecule inhibitors of the mevalonate pathway increased
the cell death of liver carcinoma cells in several in vitro studies
(80–82). Statins are a classic inhibitor of mevalonate pathway,
which are clinically used to reduce hypercholesterolemia. Several
studies have found that statins can significantly reduce the risk of
HCC (83). Furthermore, Thrift et al. found that statins also
reduced mortality in HCC patients (84). Therefore, we suggest
the use of KD combined with the inhibitors of mevalonate
pathway such as statins for preclinical and clinical studies.
FIGURE 3 | Effect of ketogenic diet on lipid metabolism in cells: While on the ketogenic diet, carbohydrates intake is reduced and the activity of acetyl-CoA
carboxylase and b-hydroxy-b-methylglutaryl-CoA reductase are inhibited, which in turn reduces de novo lipid synthesis. Concurrently, increased fat mobilization and
ketone body production inhibit tumor growth. ACC, Acetyl-CoA carboxylase; HMGCR, b-hydroxy-b-methylglutaryl-CoA reductase; HMGCS2; HMG-CoA synthase.
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Recently, KD has been shown to be beneficial in treating many
diseases, but different KD compositions tend to show varying
effects. For example, in a 45-day randomized trial, significant
improvements in weight, blood pressure, and some metabolic
parameters were seen in three groups on a VLCKD containing
whey, vegetable, or animal proteins. However, whey and vegetable
proteins had a better safety profile than animal proteins, and whey
protein demonstrated the strongest effect in regulating the gut
microbiota and maintaining muscle performance (85). In
addition, some large prospective cohort studies have confirmed
the superiority of plant proteins, revealing that plant protein intake
is negatively related to all-cause mortality. The replacement of
animal proteins, especially processed and red meat proteins, with
plant proteins reduces cancer and cardiovascular disease-related
mortality (86, 87). These results could be attributed to the fact that
plant proteins can improve insulin sensitivity and lower blood
pressure and LDL levels. In the two pre-clinical trials on HCC
discussed above, the proteins included in the KD were animal
proteins. Therefore, the type of protein was not an influencing
factor in the different effects (16, 17). However, one cannot help but
wonder if KD containing plant proteins would yield more
surprising results if it was used to intervene in HCC mice. In
addition to the type of protein, the role played by the type of fat
ingested can vary. Both the classical KD and MKD showed
inhibitory effects on tumor growth when compared with the
standard diet. However, the MKD containing omega-3 and
medium-chain triglycerides had a more pronounced effect than
the classical KD (88). The findings from these pre-clinical studies
suggest that diet optimization shouldbeperformed in future studies
to achieve the optimal anti-cancer effect of KD.

Owing to the abnormal mitochondrial function, the
production of ROS is increased in tumor cells during
mitochondrial respiration. Simultaneously, KD limits the
regeneration of NADPH by converting sugar metabolism to
lipid metabolism and by further increasing the oxidative stress
level of the tumor cells (89). Because cancer cells have a higher
oxidative stress response than the normal cells, as well as a higher
sensitivity to radiotherapy and chemotherapy, KD can be used as
an adjuvant therapy to kill the tumor cells selectively. It has been
demonstrated that KD can enhance the effects of chemotherapy
and radiotherapy in brain tumors (70). In addition, a prospective
clinical trial involving nine patients supported the idea that KD is
safe and feasible as an adjuvant in the standard treatment for
glioblastoma (90). Similarly, women with breast cancer who
received radiotherapy and KD had better metabolic indicators
and a significant improvement in quality of life when compared
Frontiers in Oncology | www.frontiersin.org 7
with those on a standard diet (91). Radiotherapy is a critical
treatment for HCC. Therefore, combining it with KD to improve
treatment outcome holds promise.
CONCLUSION

Currently, treatment options for HCC are limited, and better
therapeutic options for HCC are the need of the hour. KD is a
therapy in which the dietary composition is altered, and is safer
than drug therapy. Based on the available evidence, we speculate
that KD may inhibit the growth of HCC by lowering blood
glucose and insulin levels, regulating lipid metabolism, and
alleviating the inflammatory response. Furthermore, KD can be
considered as an adjuvant therapy for HCC. It has been found
that KD intervention is effective in the early stages of the disease,
but most patients are already in the middle to late stages when
HCC is detected. Therefore, the use of KD prophylactically in the
treatment of HCC is an issue that warrants further exploration.
In addition to the timing of the intervention, the patient’s low
compliance with KD is a major issue that should be addressed.
Therefore, in future studies, the formulation of KD must be
optimized to bridge the difference from the traditional diet, as
well as to reduce the occurrence of adverse reactions. It is also
necessary to increase patient education and support to improve
compliance. Most importantly, there are few studies on the use of
KD in HCC, and these do not fully reflect the therapeutic effects.
Therefore, the long-term effects and safety of KD are remain
unexplored. More studies with higher reliability should be
designed to elucidate the mechanism of KD in the treatment of
HCC and its application in clinical practice.
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