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Purpose: This study aimed to investigate the feasibility of predicting NF2 mutation status
based on the MR radiomic analysis in patients with intracranial meningioma.

Methods: This retrospective study included 105 patients with meningiomas, including 60
NF2-mutant samples and 45 wild-type samples. Radiomic features were extracted from
magnetic resonance imaging scans, including T1-weighted, T2-weighted, and contrast
T1-weighted images. Student’s t-test and LASSO regression were performed to select
the radiomic features. All patients were randomly divided into training and validation
cohorts in a 7:3 ratio. Five linear models (RF, SVM, LR, KNN, and xgboost) were trained to
predict the NF2 mutational status. Receiver operating characteristic curve and precision-
recall analyses were used to evaluate the model performance. Student’s t-tests were then
used to compare the posterior probabilities of NF2 mut/loss prediction for patients with
different NF2 statuses.

Results: Nine features had nonzero coefficients in the LASSO regression model. No
significant differences was observed in the clinical features. Nine features showed
significant differences in patients with different NF2 statuses. Among all machine
learning algorithms, SVM showed the best performance. The area under curve and
accuracy of the predictive model were 0.85; the F1-score of the precision-recall curve was
0.80. The model risk was assessed by plotting calibration curves. The p-value for the H-L
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goodness of fit test was 0.411 (p> 0.05), which indicated that the difference between the
obtained model and the perfect model was statistically insignificant. The AUC of our model
in external validation was 0.83.

Conclusion: A combination of radiomic analysis and machine learning showed potential
clinical utility in the prediction of preoperative NF2 status. These findings could aid in
developing customized neurosurgery plans and meningioma management strategies
before postoperative pathology.
Keywords: meningioma, radiomics, NF2, machiene learning, SVM - support vector machine
INTRODUCTION

Meningioma is the most common primary tumor of the central
nervous system (CNS), accounting for approximately 26.1-38.3%
of all intracranial tumors (1–3). According to the WHO CNS
tumor grading criterion, meningiomas are categorized into three
grades and 15 histological subtypes based solely on the
morphological features of the tumor cells. Despite the
widespread use of the WHO classification, it fails to accurately
predict the clinical behavior, aggressiveness, and recurrence of
particular tumors. With the deeper understanding of the
molecular landscape of meningioma, in addition to the
histological diagnosis, the newest 2021 CNS tumor diagnostic
criterion began to integrate the molecular and genetic profiling to
assist in diagnoses and evaluate prognosis.

TheNF2 gene was first implicated in meningiomas after it was
found that its inactivation resulted in the genetic tumor
predisposition syndrome of neurofibromatosis type 2. NF2 is a
tumor suppressor gene comprised of 17 exons with 2 splicing
isoforms that is positioned on chromosome 22q12.2
(4). Alterations in the NF2 gene, which can be caused by
mutation, allelic inactivation, splicing alterations, or
Chromosome 22 loss, have been implicated in approximately
30-60% of sporadic meningiomas, making it the single most
frequent gene alteration in this tumor (5). The frequency of NF2
mutations is simlar inWHOGrade 1, 2 and 3 grades. However, it
varies among histological subtypes and locations and are more
likely to be observed in atypical and cerebral hemispheres. NF2
gene inactivation is considered to play a significant role in the
development of meningiomas (5, 6). Patients with NF2
mutations were also reported to show worse outcomes (7).
Cl inica l tr ia ls target ing NF2 has been under way
(NCT02523014). Thus, prediction of the NF2 status before
surgery can aid in the development of personalized treatment
strategies for meningioma patients.

Radiomics is a novel practice in the field of machine learning.
It could be used to extract and analyze medical imaging data (8).
By conversion of sparse magnetic resonance imaging (MRI) into
data, an immense amount of imaging information that is
otherwise invisible to the naked eye in multiple dimensions
could be generated (9). Radiomics is a potential approach for
noninvasive high-throughput mining of tumor characteristics
and has been applied in several other intracranial tumors,
including glioma and schwannoma (10, 11). For meningiomas,
2

algorithms have been developed in previous studies to predict
WHO grade, tumor texture, peritumoral edema, and Ki-67 labels
through radiomics. These models reported good performance in
terms of accuracy and sensitivity (12–14). The status of well-
known genetic changes could be accurately predicted by
radiomics in several CNS tumors. However, such studies were
scarcely mentioned in meningiomas (15, 16).

In this study, we investigated the utility of a radiomics
signature based on multiparametric MRI as a preoperative and
noninvasive biomarker of NF2 status in meningiomas.
MATERIALS AND METHODS

Patients
A total of 105 meningioma patients underwent surgical
resections between 2019 and 2021 at Huashan Neurosurgical
Center were enrolled. Histological diagnoses were reviewed
according to 2016 WHO meningioma grading criteria by two
experienced neuropathologists (Dr. H.C and Dr. HX.C). Clinical
information including age, gender, location, treatment status, the
extent of resection, surgical outcome, and neurological functions
was extracted from the medical records. Patients with recurrent
meningioma who underwent another opration to remove the
recurrent tumor were considered as recurrent meningioma cases.
Patients with multiple meningiomas were also recorded. The
clinical data of 105 patients was shown in.

Table 1 30 meningioma patients from First Affiliated Hospital
of Nanjing Medical University were enrolled as External
verification. The clinical data of 30 patients are shown in
Supplementary Material 1. The specific research process of
this study is shown in Figure 1. This study was approved by
the Human Subjects Institutional Review Board of Huashan
Hospital, Fudan University.

Next Generation Sequencing
Bidirectional sequencing was performed to detect microlesions in
the NF2 gene. DNA was extracted from tumor tissue with
TIANamp Genomic DNA Kit (Tiangen Biotech, Beijing, China)
as instructed by the manufacturers. The whole coding sequence
and the exon-intron boundaries of the gene were amplified by a
standard polymerase chain reaction (PCR). Subsequently, the
product was used for bidirectional sequencing, as described
previously (17). The sequence data were analyzed by Sequencer
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4.9 (Genecode, MI, USA) and compared with the NF2 sequence
(NM_016418) fromGenBank. Mutations were described according
to the standard nomenclature for DNA sequence changes
according to the Human Genome Variation Society (HGVS).

Loss of Heterozygosity Analysis of 22q
Each tumor sample was subjected to PCR analysis. A fraction of
the PCR product (0.5 liters) was mixed with 0.1 liters of
Genescan 500 size standard (PE Applied Biosystems Foster
City, CA, USA) and 0.9 liters of formamide loading buffer.
Combinations were eletrophoresed on a 5 percent
polyacrylamide gels on an ABI 377 DNA sequencer (PE
Applied Biosystems Foster city CA, USA) for 2 hours after
being denaturated at 96°C for 5 minutes. Individual gel lanes
were visualized using the Genotype 2.0 software. The samples
were scored using strict criteria. The two highest peaks within the
predicted size range were designated as alleles. A loss of
heterozygosity was defined as a ratio of T1:T2/N1:N2 of less
than 0.67 or more than 1.50. The majority of normal DNA
amplifications yielded two PCR results, showing heterozygozity.
The ratio of allelic loss to informative instances was used to
calculate the LOH frequency of a locus. The average LOH
frequency of the long arm of chromosome 22 was the sum of
the LOH frequencies of each location.

Immunohistochemistry
Immunohistochemical staining was performed using
monoclonal antibodies against Ki-67 [Signalway (SAB),
Shanghai, China; 1:200 dilution]. The cells stained in
immunohistochemistry accounting for more than 10% of all
cells were considered positive(+), otherwise negative (–).
Progesterone receptor (PR) level was also examined to classify
the tumors into two categories: PR negative (–) or PR positive
(+). H3K27me3 was examined with anti-H3K27me3 (Millipore,
07-449) on ECL Plus films (Carestream).

MRI Image Acquisition
All patients underwent MRI scanning before operation (with or
without Gadolinium enhancement). MRI scans were performed
Frontiers in Oncology | www.frontiersin.org 3
by the Trio 3.0-T scanner (Siemens, Erlangen, Germany). The
imaging process included axial T1WI (TE, 15 ms; TR, 450 ms;
slice thickness, 5 mm), T2WI (TE, 110 ms; TR 5800 ms; slice
thickness, 5 mm), and CE scans using 0.1 mM/kg gadopentetate
dimeglumine (TE, 15 ms; TR, 450 ms; slice thickness, 5 mm).
Tumor location was described according to Al-Mefty’s published
manuscript, such as parasagittal/falx, skull base, cerebral
convexity, etc.

Tumor Segmentation and Feature
Extraction
Preprocessing was performed using the 3D-Slicer software
(version 4.11). The MRI DICOM files of all patients were
imported into 3D-slicer. T1WI, T2Flair, and DWI images were
registered to the T1C sequence images; N4 bias field correction
was applied to each sequence image to correct non-uniformities
in intensity. Two neuroradiologists painted regions of interest
(ROIs) on T1c images using the 3D-slicer software. Multiple
meningiomas from the same patient were considered as a single
case in ROI classification and impact feature extraction.
Enhancement of the dural tail sign was included in ROI, while
peritumoral edema was excluded. The neuroradiologists were
not informed of the clinical and biomarker data. Pyradiomics, an
open-source python package (https://github.com/Radiomics/
pyradiomics), was used to extract radiomic features.

Feature Selection and Establishment of
Prediction Model
Pyradiomics, an open-source python package (https://github.
com/Radiomics/pyradiomics), was used to extract radiomic
features from the ROIs of each patient’s images. After that, we
eliminated the time, the checked hospital, machine model and
other useless information. 130 radiomics features were retained
in each sequence. To avoid degradation in model performance
due to overfitting and increase in feature dimension, we
evaluated radiomics features in distinguishing between
mut/wild type and screened all radiomic features of each
sequence to generate a new feature set.
TABLE 1 | Clinical data of enrolled patients.

NF2 mut/loss (60) NF2 wild (45) All (105) P

Age 54.10 ± 9.90 51.93 ± 9.14 53.17± 9.60 0.254
Female/Male 2.33 2.21 2.28 1.00
WHO grade
WHO grade 1
WHO grade 2
WHO grade 3

50 (64.29%)
9 (28.57%)
1 (4.08%)

40 (13.21%)
5 (79.25%)
0 (7.55%)

90
14
1

0.47

Location
Skull base
Convexity
Parasinoidal

20 (33.33%)
14 (23.33%)
26 (43.33%)

25 (55.56%)
7 (15.56%)
13 (28.89%)

45 (42.86%)
21 (20.00%)
39 (37.14%)

0.07

Multiple 3 0 3 0.258
Recurrent 12 4 16 0.170
Ki-67 labeling index(%) 4.10 ± 2.70 (range1-12) 3.67 ± 1.94 (range1-8) 3.91 ± 2.40 (range1-12) 0.341
PR positive
H3K27me3 positive

46 (76.67%)
51 (85.00%)

40 (88.89%)
39 (86.67%)

86 (81.9%)
91 (86.7%)

0.130
0.773
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First, three pairs of samples in two groups were tested using t-
test analysis. Levene test was used to test the homogeneity of
variance. For the data with the homogeneity of variance greater
than 0.05, a t-test was used to detect whether the characteristics
of the average of the two groups of independent samples showed
significant differences (P < 0.05). Only characteristics with
significant differences were retained.

Second, a further feature screen was performed based on
LASSO regression, which added L1 regular expression based on
the least square regression. The features screened by t-test were
standardized; the optimal parameter lambda was selected after
ten-fold cross-validation. Thus, the corresponding coefficients of
the model were trained. Features with nonzero coefficients in
the LASSO regression model were selected.

Model Training and Evaluation
Machine learning models were developed to predict the outcome
of NF2 status based on different algorithm. We used five
supervised machine learning algorithms to establish the
prediction model. All the cases were randomly divided into
training and validation cohorts in the ratio of 7:3. The
algorithm was trained based on the training group, and its
effectiveness was verified in the validation group. The
Frontiers in Oncology | www.frontiersin.org 4
algorithm with the highest AUC (area under the curve) in the
validation cohorts was chosen as the best model. Five prediction
models were generated by random forest (RF), k-nearest
neighbor (KNN), support vector machine (SVM), logistic
regression (LR), and extreme gradient boosting (xgboost)
methods. The training and validation cohorts were divided
based on the selected feature subset. Predictions were made
after iterative optimization. The sensitivity, specificity,
accuracy, and F1 score were evaluated. The model performance
was analyzed by plotting ROC (receiver operating characteristic),
P-R (analysis and precision-recall), and calibration curves. The
MRI scans of 30 meningioma patients from First Affiliated
Hospital of Nanjing Medical University were used as external
validation to verify the accuracy of the best model.

Statistical Analysis
Statistical analysis was performed using SPSS 26.0 (IBM SPSS
statistics 26.0 for mac; IBM corp). For continuous variables, the
Student t-test was used; for comparison of mean values of
continuous variables, ANOVA was used. Categorical variables
were compared using the c2 test and the Fisher test. Continuous
data were expressed as mean ± SD. P-value <0.05 was considered
statistically significant.
A

B D

C

FIGURE 1 | Workflow. (A) Patient recruitment strategy. (B) 390 features were extracted from region of interest (ROI) on each magnetic resonance imaging (MRI)
sequence. (C) The inner loop included hyperparameter tuning and features selection in the training datasets. After feature selection, the model with optimal
parameters was used for prediction in the test set. This procedure developed 10 different models with specific sets of features and hyperparameters. (D) The
effectiveness of the model was verified in the validation group. Receiver operating characteristic (ROC) analysis and precision and recall (P-R) analysis were used for
model performance evaluation. The MRI scans of 30 meningioma patients from another hospital were used as external validation.
September 2022 | Volume 12 | Article 879528
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RESULTS

Clinical Data and Immunohistochemistry
A total of 105 patients (32 males and 73 females) with intracranial
meningiomas were recruited in the training and testing cohorts,
including 60 patients with NF2 mutation/loss and 45 wild type
patients. The mean age of the patients was 53.17 ± 9.60 years (range
31 to 73 years). There are 90 (85.71%) grade 1, 14 grade 2 (13.33%)
and 1 grade 3 patients (0.95%), respectively. The most common
pathological subtype was fibrous (45, 42.86%). The median Ki-67
labeling index was 3.91 ± 2.40(range 1-12). PR was positive in 86
patients (81.9%). Loss of H3K27me3 expression was observed in 14
patients (13.3%). No diffence was observed of the compared the
clinical and immunohistochemical characteristics between NF2
mutant and wild-type groups. Parasinoidal (26/60) was the most
common location in NF2 mut/loss group, while NF2 wild tumours
were more likely in skull base locations (25/45). Three cases of
multiple meningiomas were identified in our cohort. However, only
one tumor in each patient was removed, which were all belonged to
the NF2 mutation group. 16 patients (4 with wildtype NF2 and 12
with NF2 mutations) were regarded as recurrent meningiomas and
no difference was observed between de novo and recurrent patients
regarding NF2 status (p = 0.170).

NF2 Sequencing Analysis and
LOH Analysis
Among all 105 patients, 52 patients (49.52%) hadNF2mutations;
8 patients (7.62%) showed loss of NF2 gene due to partial
deletion of chromosome 22q. The remaining 45 patients had
wild-type NF2. Allelic deletion of NF2 and mutations were
classified as NF2 mutation group, amounting to 60 cases. Of
all patients with NF2mutations, 23 were nonsense mutations; 16
were frameshift mutation; 8 were splice site mutation; 4 were
missense mutation. Exon 1 and Exon 6 was detected the highest
mutation frequency, accounting for 6 (11.54%) and 7 (13.46%) of
all mutants, respectively. However, we did not find any obvious
hot spot mutations. The most common copy number deletion
occurred in 22q11.21- q13.33. Details of the NF2mutation status
were shown in Supplementary Table 1.
Frontiers in Oncology | www.frontiersin.org 5
Radiomic Feature Selection and Radiomic
Signature Construction
A total of 130 radiomic features were extracted from each sequence.
390 radiomic features were included in the screening process. 147
radiomic features showed statistically significant differences
between the NF2 mut/loss and wild-type groups. Only 9 features
had nonzero coefficients in the LASSO regression model. The
screening process of Lamda is shown in Figure 2. In Figure 2A,
The red line represents the standard deviation of the mean square
error (MSE) of l. The blue bar indicates the range of the mean
square error. The lambda with the lowest standard deviation is the
most suitable for classification and the model is the simplest.
Therefore, We chose the position with the lowest lambda
standard deviation (red line) as the most appropriate l Value.
The details and p-values for these 9 features are shown in Table 2. 4
features were from the CE-T1Flair, 3 from T1WI, and 2 from
T2WI sequences. 7 features could describe the texture of tumors
and 2 described the wavelet of tumors. The 9 radiomics
features were selected for the model building. We tried to
cluster nine radiomics features through unsupervised hierarchical
cluster analysis. PCA (Principal Component Analysis) is used to
reduce the dimension and describe the distribution of
data (Figure 3).

Finally, we decided to incorporate the 9 features into the
model. Gray Level Dependence Matrix (GLDM) quantifies gray
level dependencies in an image. included descriptors of the three-
dimensional size and shape of the ROI. First-order statistics
describe the distribution of voxel intensities within the image
region defined by the mask through commonly used and
basic metrics.

Gray Level Co-occurrence Matrix (GLCM) describes the
second-order joint probability function of an image region
constrained by the mask.

Model Training and Performance
We randomly divided all patients into training and validation
groups in a ratio of 7:3. 73 patients were included in the training
group. 9 radiomic features of 73 patients were used to train 5
supervised machine learning algorithms (RF, SVM, LR, KNN,
A B

FIGURE 2 | (A) The change of MSE corresponding to the LASSO method. (B) Lamda value screening of LASSO regression.
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and xgboost). The data of a total of 32 patients in the validation
cohort was used to evaluate the effectiveness of the algorithms.
The AUCs of each algorithm in training and validation cohorts
were calculated and compared as shown in Table 3 and Figure 4.
SVM (support vector machine) had the highest AUC of 0.89 in
the training cohort and 0.85 in the validation cohort. F1 score is
the harmonic average of accuracy and recall, while the value was
0.80 in the SVM model. LR (logistic regression) had an AUC of
0.84 in the training cohort and 0.82 in the validation cohort.
Most of the algorithms had AUCs above 0.7.
Frontiers in Oncology | www.frontiersin.org 6
Internal and External Verification
ROC and P-R curve analysis of SVM in training and validation
cohorts were shown in Figure 5. AUC of SVM were 0.89 and
0.85 in the training cohort and validation cohort respectively.
Figure 6 shows the predicted value and their actual mutation of
each validation group sample. Samples with a predicted value
greater than 0 were predicted to be NF2 mut-type by the SVM
model. The actual mutation of the sample were showen by color,
Green represents mut-type and blue represents wild-type. 30
meningioma patients from First Affiliated Hospital of Nanjing
Medical University were enrolled as external validation to verify
the accuracy of the SVM model. the AUC of SVM model is 0.82
in the external validation cohorts. The calibration curve analysis
and Hosmer-Lemeshow test for SVM model demonstrated the
observations and predictions in validation cohorts were in good
accordance (Figure 7).
DISCUSSION

NF2 inactivation was the most common alteration in
meningiomas and played an important role in tumor
A

B

FIGURE 3 | (A) 105 patients with meningiomas were divided into two categories by hierarchical cluster analysis. (B) PCA (Principal Component Analysis) plot showing the
distribution of principal components of the radiomics features. The majority of NF2-mut meningioma and NF2-wild meningioma cases were spatially separated.
TABLE 3 | The performances of five prediction models.

Comparisons Cohorts LR KNN Xgboost SVM RF

AUC train 0.85 1 1 0.89 1
test 0.85 0.76 0.82 0.85 0.77

Sensitivity train 0.775 1 1 0.893 0.806
test 0.75 0.692 0.74 0.7 0.6

Specificity train 0.781 1 1 0.737 0.765
test 0.8 0.789 0.88 0.727 0.765

Accuracy train 0.779 1 1 0.779 0.779
test 0.781 0.751 0.78 0.71 0.688

F1-score train 0.729 1 1 0.685 0.716
test 0.72 0.692 0.76 0.609 0.643
September 2022
 | Volume 12 | Article 8
TABLE 2 | The details of selected radiomics features.

Name Sequence Type p

glcm_Imc2 T2 Texture 0.027
gldm_DependenceNonUniformity T2 Texture 0.022
shape_LeastAxisLength T1 Wavelet 0.037
firstorder_Minimum T1 Texture 0.025
glcm_ClusterShade T1 Texture 0.037
firstorder_Skewness CET1 Wavelet 0.001
glcm_JointAverage CET1 Texture 0.005
glcm_SumAverage CET1 Texture 0.005
gldm_LargeDependenceHighGrayLevelEmphasis CET1 Texture 0.005
79528
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progression (5, 18). Given this, the prediction ofNF2 inactivation
status before surgery might be meaningful for determining an
appropriate personalized treatment strategy. In this study, we
built a machine learning model to preoperatively predict the
Frontiers in Oncology | www.frontiersin.org 7
status ofNF2 inactivation by radiomic analysis. We observed that
the models based on SVM produced excellent results in the
machine-learning experiments. Our radiomics model may aid
the early identifcation of meningioma patients with
NF2 mutation.

NF2 is located on the long arm of chromosome 22 (chr22q)
and encodes a 69 kDa protein named merlin (moesin-ezrin-
radixin-like protein). NF2 is a member of the Band 4.1 FERM
gene family (19). Merlin plays important role in several essential
pathways, including HIPPO pathway, mTOR/PI3K/AKT
pathway, and receptor tyrosine kinases (RTKs) (20, 21).
Previous studies showed that more than 60% of sporadic
meningioma patients harbored somatic mutation, epigenetic
inactivation, or allele loss of NF2 on chr22q. The proportion is
even higher in high-grade meningiomas (22–24). In a study of 88
sporadic meningiomas, 49% exhibited allelic loss of chromosome
22, 24% had NF2 somatic mutations and 26% had aberrant NF2
promoter methylation. In 17% of the meningiomas, epigenetic
NF2 inactivation was the only cause of NF2 deficiency (24).
Compared to NF2-wt meningioma, NF2 mutant meningiomas
was detected with a higher proliferation index (Ki-67 labels) and
often manifested in comparatively larger tumor size (25). In
addition, the deletion of NF2 leads to overexpression of focal
adhesion kinase (FAK), resulting in enhanced cell migration and
invasion (26). In all, non-invasive preoperative prediction of NF2
mutation might be of use. The knowledge of NF2 status might
FIGURE 4 | The Receiver operating characteristic (ROC) curve of five
prediction models in validation cohort.
A B

DC

FIGURE 5 | Performance of NF2 status predictive models based on SVM. (A, C) Receiver operating characteristic (ROC) curve and precision-recall (P-R) curve of
SVM predictive model in training group. (B, D) ROC curve and P-R curve of SVM predictive model in validation group.
September 2022 | Volume 12 | Article 879528
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play a role in decision making of appropriate clinical treatment
strategies for meningioma patients.

Recently, several studies on radiomics focused on
meningiomas and demonstrated encouraging results. Previous
studies could distinguish WHO grade I meningiomas out of
WHO grade II and III meningiomas by radiomic analysis
models. These models were proved to have high accuracy and
sensitivity (27, 28). Lei et al. distinguished two subtypes in WHO
grade I meningiomas by radiomics with an accuracy higher than
90% (29). Other studies focused on predicting clinical
characteristics of meningiomas, such as extent of peritumoral
edema and tumor consistency. For example, Bing et al. analyzed
peritumoral edema in meningioma patients using an SVM-based
machine learning algorithm combined with clinical data (14).
Zhai et al. constructed a radiomic-based signature to predict
meningioma consistency with AUC of 0.94 in the validation
cohort (13). Taken together, previous studies proved the
feasibility of radiomic analysis for meningioma imaging. Some
Frontiers in Oncology | www.frontiersin.org 8
studies also predicted the molecular typing of other primary
tumors, such as breast cancer and glioma. Monti et al. extracted
quantitative radiomic features from DCE-MRI pharmacokinetic
data to differentiate ER, PR, and HER2 status in breast cancer
(30). In glioma, radiomics had been used to predict IDH
mutation and co-deletion of 1p/19q (31, 32). However, up to
now, the report of such studies on meningiomas is scarce.

In this study, we first detected the occurrence of NF2
inactivation in the tumor samples. Mutations or loss of NF2
gene were also considered as inactivation of NF2. By feature
extraction and screening, we finally obtained 9 significant
radiomic features. In previous studies, screening features of
meningiomas ranged between 3 to 22 (27–29). The
discrepancy might be attributed to difference in the process of
screening and imaging data heterogeneity. Most of the 9 features
were extracted from T1WI plain scan and Gadolinium enhanced
sequences (33). The AUC of linear model based on SVM was
0.85 and 0.82 in the internal and external validation cohorts
A B

FIGURE 6 | (A) The calibration curve analysis and Hosmer-Lemeshow test for SVM model demonstrated the observations and predictions in validation cohorts were
in good accordance. (P = 0.411). (B) External validation was performed by 30 patients from other hospitals. The SVM model had an AUC of 0.83.
FIGURE 7 | The p-values of SVM for the validation cohorts. The blue bars show the radiomics signature values for the NF2-wild meningiomas, and the green bars
show the values for the NF2-mut meningiomas.
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respectively, consistent with findings of other studies which
predicted intracranial tumor biomarkers (31, 32). There were
many radiomics studies involving HER2 in breast cancers and
IDH1 in gliomas (34, 35). Approximately, 70% of HER2
mutations occured between amino acids 755 and 781 (exons
19 and 20) in breast cancers (36). 80% of IDH1 mutations in
gliomas occured on R132H (37). NF2 has 17 exons and harbors
no significant hotspot mutations (21). Our cohorts also showed
no significant hotspot mutations, in accordance to previous
reports. This may affect our prediction results; however, we
found AUCs for most of our models were above 0.7 in the
validation cohort. The data was not sufficient enough to
distinguish the differences between NF2 mutation types.

In our cohort, multiple meningiomas in a single patient were
considered as one tumor in ROI selection and feature extraction.
That’s because they chose to remove only the symptomatic
meningioma. Somatic mutation of NF2 is related to
neurofibromatosis type 2 (38) and is often found in multiple
intracranial meningiomas. All our 3 cases of multiple
meningiomas belonged to the NF2 mutation group. Whereas,
the difference in number of multiple meningiomas between NF2
mutant and wild-type groups had no statistical significance. NF2
plays an important role in progression of meningiomas (39).
Additionally, there was no significant difference in number of
relapse patients between the two groups, The limitations
mentioned above might be attributed to the comparatively small
sample size. A study by Clark et al. reported that in meningiomas
with NF2- mutations, tumor location had a predilection for the
posterior and lateral skull base, tentorium, and cerebral falx, while
sporadic mutations, such as those in TRAF7 and SMO, tended to
be relevant with anterior skull base location (5). This phenomenon
was not observed in our cohort. In some previous studies, clinical
data were added to radiomic models to optimize the impact (14).
No significant clinical features were found in our cohort, so these
were not included in the analysis.

Recently, radiomics studies of other diseases selected ROI
through automatic segmentation, such as lung cancer, breast
cancer and gastric disease (40–42). Jonathan et al. had developed
an algorithm based on convolutional neural network to
automatically segment vestibular schwannoma and achieved
satisfactory results (43). The application of automatic
segmentation could benefit our research and clinical practice.
Although at present, no research showed that there is a difference
in accuracy between automatic segmentation and manual
segmentation. Some studies showed that there was no
meningioma tumor cell in the gadolinium enhanced meningeal
tail sign (44), while some others drew the opposite conclusion
(45). We included the meningeal tail sign in ROI analysis because
the boundary between the meningeal tail sign and meningioma is
difficult to distinguish.

There were limitations in our present study. First, this was a
retrospective study with comparatively small sample size which
could have limited the accuracy of our model. Probably due to
restriction of sample size, many difference in clinical and
immunohistochemical features showed no statistical
significance. Secend, the result of this study predicts binary
Frontiers in Oncology | www.frontiersin.org 9
variables. All our radiomic algorithms were based on linear
models. There might be nonlinear models with a higher fitting
degree. Finally, the clinical follow-up of these patients is still
underway. Hopefully, the follow-up data might further confirm
the significance of preoperative prediction of NF2 status.
CONCLUSION

This retrospective study demonstrated that multiparametric
MRI-based radiomics analysis could be a promising approach
for preoperative prediction of NF2 inactivation in patients with
meningioma. It could serve as an effective non-invasive approach
to predict NF2 inactivation and help determine individualized
therapeutic regime for patients with meningioma.
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