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Proper analysis of high-dimensional human genomic data is necessary to increase human
knowledge about fundamental biological questions such as disease associations and
drug sensitivity. However, such data contain sensitive private information about individuals
and can be used to identify an individual (i.e., privacy violation) uniquely. Therefore, raw
genomic datasets cannot be publicly published or shared with researchers. The recent
success of deep learning (DL) in diverse problems proved its suitability for analyzing the
high volume of high-dimensional genomic data. Still, DL-based models leak information
about the training samples. To overcome this challenge, we can incorporate differential
privacy mechanisms into the DL analysis framework as differential privacy can protect
individuals’ privacy. We proposed a differential privacy based DL framework to solve two
biological problems: breast cancer status (BCS) and cancer type (CT) classification, and
drug sensitivity prediction. To predict BCS and CT using genomic data, we built a
differential private (DP) deep autoencoder (dpAE) using private gene expression datasets
that performs low-dimensional data representation learning. We used dpAE features to
build multiple DP binary classifiers to predict BCS and CT in any individual. To predict drug
sensitivity, we used the Genomics of Drug Sensitivity in Cancer (GDSC) dataset. We
extracted GDSC’s dpAE features to build our DP drug sensitivity prediction model for 265
drugs. Evaluation of our proposed DP framework shows that it achieves improved
prediction performance in predicting BCS, CT, and drug sensitivity than the previously
published DP work.

Keywords: deep learning, differential privacy, Rényi differential privacy, breast cancer, omics data
1 INTRODUCTION

In drug discovery research, one of the crucial steps is to test the drug’s sensitivity (i.e., the drug’s
effectiveness to inhibit a particular biological function). Machine learning (ML) models can predict
such a drug response in cell lines using gene expression data instead of time-consuming and
expensive wet-lab experiments (1). Min et al. (2) proposed a deep learning (DL) based framework
(DeepDSC) to predict drug sensitivity using GDSC dataset (3). They achieved improved prediction
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performance than the baselines in terms of root-mean-square
error (RMSE) and coefficient of determination. Ahmed et al. (4)
used graph based DL approach which was evaluated on the
GDSC and showed improved prediction performance than the
shallow models e.g., Random Forest and Support vector
machines. Recently, Shuangxia et al. (5) proposed another DL
based framework (DeepGRMF) to predict drug sensitivity.
DeepGRMF was evaluated using GDSC and showed
superiority than the baselines. DeepGRMF used DL, graph
model and matrix-factorization to collect various set of drug
chemical structures for the final prediction of the response of a
drug to single cell-lines.

However, a data custodian may not want to publicly release a
genomics dataset to build an ML model because of the privacy-
sensitive nature of gene expression data (6). We know that an
exposed genome data can be used to know everything about a
person, such as the possibility of misery from a disease and life
expectancy (7). Therefore, access to private sensitive genomics
data often goes to the applicants after an application process with
a nondisclosure agreement and a thorough background check.
This process limits data availability to a broader audience, which
negatively affects the development speed of biological insights for
various problems (e.g., risk gene identification of diseases).
Therefore, we need to develop a framework that will promptly
acquire a sensitive genomic dataset and perform problem-
specific analysis without divulging the individuals’ private
information in the dataset.

Recently, for thefirst time,Honkela et al. (8) used the differential
privacy (DP) mechanism in drug sensitivity prediction. DP is a
rigorous privacy incorporation approach that permits researchers
to access and analyze genomic data while provides a mathematical
guarantee of individuals (i.e., participants in the study) privacy (9).
According to Dwork et al. (10), a randomized algorithm (AL) is
called ∈-DP if AL can produce output (OUT) for the two
neighboring datasets DS and DS′ (i.e., differed by at most one data
record) which holds the equation 1.

Prob Al DSð Þ = Outð Þ ≤ e∈Prob(Al(DS0)  =  Out) (1)

In general, the DP preserves an individual’s privacy by
injecting random Laplacian noise into the published statistical
outcomes that were processed from sensitive personal
information. Intuitively, the random noise is brought into the
data in a way that the statistical outputs (e.g., disease status) from
the raw and noisy datasets are similar up to a factor (exp ∈). In
this way, every patient who participates in the study achieves
plausible deniability about a specific outcome. Hence, we can say
that if a model is ∈-differential private, then an adversary who
knows every patient’s private information in the dataset except
for one single patient, can not infer with high confidence
(depends on ∈), about that unknown patient’s private
information. Privacy budget (∈) refers to the maximum
amount of private information a DP model can leak. A smaller
value of ∈ corresponds to tighter privacy protection. From the ∈ =
1.0-DP model, an adversary can not be more certain about a
participant’s outcome than to the multiplicative factor of e ∈ = 1.0
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= 2.718 compared to the actual outcome of that participant in the
study. However, Honkela et al. (8) approach for drug sensitivity
prediction is suffering from the high-dimensionality nature of gene
expression data.

We need to produce useful results from sensitive genomic
data analysis without violating individuals’ privacy. DL has
become the most effective ML approach to process genomic
data in recent times. A DL model can analyze high dimensional
data (e.g., gene expression) (11) and achieves better prediction
performances while keeping the privacy of the data intact (12).
Besides, DL has the ability of automatic trainable feature
extraction from high-dimensional data to achive state-of-the-
art predictions, such as image classification (13). Of note, if we
train a non-private DL model with the sensitive data, it becomes
vulnerable to privacy inference attack (14) and model inversion
attack (15).

Breast cancer is a common and fatal disease, and it appears
that normal tissue is converted to tumor pathology. A usual and
successful means of detecting this disease are mammogram
images. Previously, DL based methods have shown promises to
extract fine-details from image data for further classification of
an image. Therefore, Altan (16) proposed a convolutional neural
network (CNN) based DL framework to classify Mammograms
as cancer-normal. Then, Altan (17) extracted only the region of
interest from the Mammograms (ROIs) to apply CNN and deep
autoencoder based architecture to separate cancer-normal
patients. In both cases, DL based approaches were able to
achieve high prediction performance for classifying patients to
cancer-normal in terms of accuracy, sensitivity, specificity and
precision. Then, Altan (18) uses Deep belief Networks to classify
ROIs. This framework also achieved similar prediction
performance compared to (16, 17)

In addition, an obvious limitation of the DL approach is that
it requires lots of training examples to optimize a massive
number of parameters. In real-life scenarios, one source of
sensitive data (i.e., genomic data) may not always have much
labeled data. To overcome this limitation, collaboration among
the genomic data custodians is necessary. In addition, genomic
data sharing among many researchers leads to the development
of new biological insights (19). Nevertheless, the collection of
large volumes of genomic data may violate individuals’ private
data (20). We can do such collaboration while keeping the
privacy of the data from multiple data custodians by leveraging
one of DL’s attractive properties, i.e., transfer learning. Transfer
learning allows us to transfer the knowledge learned by a model
for one task to another second task model.

We know that genomic data contains both categorical (e.g.,
disease status) and continuous data (e.g., expression levels of
genes). Thus, we can use genomic data to build regression
models for different regression tasks (i.e., logistic regression
and linear regression). Unfortunately, an adversary can infer
an individual’s participation in the study by analyzing the
regression coefficients of a published regression model (21).

Chaudhuri et al. (22) introduce a ∈-differential privacy
solution for the differentiable and convex objective functions of
a logistic regression task. We can not use this approach in
June 2022 | Volume 12 | Article 879607
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practice because most of the real-world regression problems
follow non-convex regression objective functions. Hence, the
authors modify the input to achieve a convex regression objective
function. Besides, Kifer et al. (23) extended this approach for a
convex objective function based linear regression task. To
overcome the compulsory requirement of a convex objective
function, Zhang et al. (24) introduced a new approach called
Functional Mechanism (FM) to adapt ∈-differential privacy to
both types of regression tasks. FM can ensure ∈-differential
privacy for non-convex standard regression problems even when
the output space is unbounded.

Niinimäki et al. (25) overcame the limitation of Honkela et al.
(8) by using the transfer learning in a differential privacy
framework, which achieved state-of-the-art prediction
performance (∈ = 10) using gene expression-based genomic
datasets. They collected the TCGA and the GDSC datasets as a
public and private datasets respectively. They also redistributed
the TCGA dataset to match the data distribution of the GDSC.
Later, they built a non-private data representation learning
model (variational autoencoder (26)) with the public dataset.
This model was used to extract a new representation (i.e.,
transfer learning) of their private data. These newly
represented data were used to build DP based classifier (22) to
classify cancer types from the TCGA dataset, and DP based
linear regression models (23) to predict drug sensitivity from the
GDSC dataset.

The primary limitation of Niinimäki et al. (25) is that there
must be a publicly available dataset to train a data representation
learning model. However, requiring a public dataset is not
practical for real-life scenarios. We may not always find a
publicly available dataset that is similar to a private dataset. It
is possible to find a similar dataset from a private source. Besides,
the amount of noise Niinimäki et al. (25) insert into the data
depends on the cardinality. Hence, this framework (25) can be
used for a small training set only. Niinimäki et al. (25) also
requires the redistribution of the public dataset according to the
private dataset. Intuitively, a public dataset redistribution
according to a private dataset is an apparent privacy violation.

Differential privacy has several attractive properties, such as
composability, i.e., if all model components are differentially
private, then the model becomes differentially private. For
example, if a DL model with two components (i.e., different
batches of training data) with a privacy budget ∈1 and ∈2 has
access to a private dataset, the complete DL model can achieve
differential privacy with a privacy budget ∈1 + ∈2 . Besides, DP
based models are invariant to post-processing, such as model
inversion attack (14, 15). Hence, Shokri et al. (27) first
introduced differential private DL model.

Abadi et al. (12) showed that the ∈-differentially private DL
models suffer from the low utility in several applications. As a
result, they used a relaxed version of differential privacy
(equation 2) called (ϵ,d)-differential privacy (28) to build their
differentially private DL models. A DL model is (∈, d)-
differentially private if it achieves ∈-differential privacy with a
high probability d. This form of relaxing differential privacy is
useful for a complex optimization problem when a stricter
Frontiers in Oncology | www.frontiersin.org 3
version produces useless results (29). However, a(∈, d)-DP
model achieves (∈)-DP with probability (1-d). In (12), authors
introduced Gaussian noise into the trainable parameters’
gradients. They inserted noise during the stochastic gradient
descent computation of the training phase and achieved ∼ 90%
accuracy on the MNIST data set at ∈ = 0.5 (∈ = privacy budget
and lower ∈ signifies tighter privacy in the model). However,
Mironov (30) introduced Rényi differential privacy (RDP) which
overcomes the information leaking problem of amount (1-d) by
(∈, d)-differential privacy. Recently, Triastcyn and Faltings (31)
introduced a Bayesian differential privacy (Bayesian DP)
mechanism, which focuses on the dataset specific data
distribution. However, in the worstcase scenario, Bayesian DP
may fail to protect the training data from an adversary.

Prob Al DSð Þ = Outð Þ ≤ e∈Prob(Al(DS0) = Out) + d (2)

Phan et al. (32) was the first work to build a DP-DNN
autoencoder that can provide state-of-the-art regression
performances such as the prediction of human behaviors from
health social networks. They used FM((24)) to perturb the
objective function’s coefficients to build DP-DNN. However,
FM((24)) follows ∈-DP which may affect the performance of
Phan et al. (32) framework in many real life applications (29).

In this study, our goal is to build a framework to perform
three specific tasks: first, build a (a,∈)- Rényi differential private
(RDP) DL based data representation learning model (dpAE)
from a private dataset; second, transfer the learned knowledge
from dpAE to build a (a,∈)-RDP DL based binary classifiers;
third, transfer knowledge from dpAE to build (a,∈)-RDP DL
based linear drug sensitivity regressors while producing
improved utility then the related previously published
approaches (8, 25, 32). We consider anyone as an adversary
who wants to identify ith particular participant in the dataset.

We assumed there are two data sources. The first data source
has a private dataset (PD1) with a small number of samples. The
second data source has another private dataset (PD2), with a
larger number of samples with the same set of features as the
PD1. Then, we built a DP based autoencoder (dpAE) using PD2.
We used dpAE as a data representation learning model as well as
a data dimensionality reduction technique. Afterward, we used
this dpAE to map (i.e., transfer learning) the data from PD1 into
a lower dimension space. Finally, we used these lower-
dimensional DP features of PD1 to build DP based DL models:
dpClassM (to predict cancer type or cancer status of a breast
cancer patient) and dpRegM (to predict drug sensitivity). Of
note, the components in our proposed model are differential
private. Hence, according to DP’s composability property, the
final models (dpAE, dpClassM, and dpRegM) are also
deferential private.

Experimental evaluation indicates that the proposed
framework achieves improved prediction accuracy (i.e., utility)
in DP cancer type (CT) and breast cancer status (BCS) prediction
than the baseline works (25, 32). We also have improved
Spearman’s rank correlation coefficient while ensuring better
privacy in DP drug sensitivity prediction than the previously
June 2022 | Volume 12 | Article 879607
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published state-of-the-art approachs (8, 25). Therefore,
according to the experimental results, one can use our
proposed framework to integrate multiple private datasets to
build robust DL models while providing a robust privacy
guarantee for the privacy-sensitive raw input data.

This paper is organized as follows: Section 2 describes our
proposed differential private DL framework for BCS, CT, and
drug sensitivity prediction and the datasets that were used during
the experiments, then follows Section 3 that presents and
discusses our experimental findings, and finally, Section 4
presents our conclusions.
2 MATERIALS AND METHODS

2.1 Datasets
Contemporary large-scale pharmacogenomics research e.g., the
TCGA (33) and GDSC (3) provides valuable information to
computational drug discovery such as prediction of cell-drug
response (GDSC) orcancer outcome (TCGA). METABRIC (34)
dataset can be used to predict estrogen receptor +/- using privacy
sensitive copy number variations. In this study, we have collected
datasets to build privacy incorporated deep learning frameworks.
All these datasets are publicly available. However, for the
experimental purposes, we have collected and treated them as
private sensitive data to mimic private datasets (i.e., contain
sensitive private information) concepts.

First, we collected the Genomics of Drug Sensitivity in Cancer
(GDSC) project (3) data. We pre-processed GDSC similarly to
the previous work (25). After the pre-processing, the GDSC has
985 cell lines, and each of them has microarray-based gene
expression data of 11,714 genes. Besides, the GDSC dataset has
the half-maximal inhibitory concentration (IC50) of 265 drugs
(i.e., drug sensitivity) in cancer cell lines. A lower IC50 means
higher sensitivity of the drug on the cell line. Second, we collected
a privacy-sensitive dataset called METABRIC (Molecular
Taxonomy of Breast Cancer International Consortium) (34) in
order to perform experiments for breast cancer subtypes
(estrogen-receptor-positive (ER+) or estrogen-receptor-
negative (ER-)) classification. METABRIC contains copy
number alteration (CNA) data for each patient. Such CNA
data is a type of Copy number variation (CNV) data
representing the copy number gain or loss or diploid
information of DNA fragments (i.e., genes) in the genome. An
adversary can use such exposed CNV data to know about a
specific genetic disorder or complex diseases such as autism,
cancer, immune deficiency, and neurodegenerative and
neuropsychiatric disorders (35). Hence, it is essential to have a
privacy mechanism in the CNV type data analysis pipeline to
protect individuals’ privacy from the adversary. In METABRIC
(34), we have three discrete copy number calls for each gene of a
patient (18,000 genes/patient): −1= copy number loss, 0=
diploid, 1= copy number gain in our CNA mutation matrix
(patients-by-genes). Of note, we have 991 samples (794 samples
for ER+ and 197 samples for ER-) and 984 samples to train and
test a binary classifier to predict ER status (ER+-), respectively.
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Third, similar to (25), we collected pre-processed version of
TCGA from https://xenabrowser.net/datapages/. We assembled
the preprocessed version of the pan-cancer RNA-seq gene
expression data from the TCGA while removing low
expression genes. Then, 14,796 genes were left to represent
each of the 10,534 patients from 33 different cancer types.

Before proceeding further, we unified TCGA and GDSC datasets
together in the framework by the genes from the TCGA and GDSC
datasets which are present in both these datasets. Similarly, we
unified TCGA with METABRIC and METABRIC with GDSC

2.2 Methods
In this study, we proposed a framework to predict patient cancer
outcome, and sensitivity of drugs in a cell line while preserving
every patient’s private information (Algorithm 1) in the datasets.
Figure 1 shows the details pipeline of our proposed framework.

2.2.1 Rényi Differential Privacy
We used Rényi differential privacy (RDP) (30) definition to make
our DL models∈-differential private. RDP is a natural relaxation
form of ∈-DP (10) while overcomes the limitation of relaxed
(ϵ,d)-DP (28). Unlike ∈-DP (10) the RDP, which inserts
Gaussian noise to the model parameters, we can use it for
training a DL model by leveraging the property ‘closed under
the addition’ of Gaussian noise. According to RDP, if a DL model
is ∈-DP then, all the batches during the training are also ∈-DP
(composition property). However, RDP used Rényi divergence to
produces a random variable under a constraint (a) instead of the
multiplicative factor e∈.

Definition (Gaussian mechanism): If the randomized
algorithm Al for a dataset DS produces N(Q(DS),s2Ik) then
for the neighboring datasets DS and DS′, and a = (1,∞),
Gaussian mechanism can be defined as RDalpha (A1(DS))
  ‖A1(DS2) ≤

aD2
2(Q)

2s 2 . Mirnov (30), provides mathematical
guarantee that Al achieves (a,∈) -RDP when s 2 = aD2

2(Q)
2∈ .

Here, Q is the vector-valued function for the queries in the
dataset. Hence, this function represents the sampling rate for
each of the samples in the dataset. We know the main
component to ensure RDP is the addition of Gaussian noise.
Such noise is dependent on the ℓ2 sensitivity of Q. Therefore, we
insert the appropriately scaled noise to perturb the learning
weights based on Q. Besides, D2 =ℓ2 sensitivity of Q = max ‖Q
(DS)−Q(DS')‖2 where DS and DS′ datasets are same except
one record.

Definition (Composition property): The composition property
of RDP allows us to apply Rényi differential privacy in a DLmodel
as we train our models using batch-wise training fashion. This
property states that if two randomized algorithms A1 and A2 for
two different data batches of samples have parameters (a, ∈1) –
and (a,∈2), which are Rényi differentially private respectively,
then the randomized algorithm defined as (A, B), where A∼A1

and B∼A2 (A), satisfies (a,∈1+∈2)-RDP. RDP uses an accountant
function to keep track of the privacy parameter that gets spent for
each batch training.

Algorithm 1 Differential private deep learning based
classification and linear regression framework.
June 2022 | Volume 12 | Article 879607
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input: DM= The private METABRIC dataset,
G = The private GDSC dataset,
labelclass = Breast cancer status i.e., ER+/- labels of DM

labeldrugSensitivity = Drug sensitivity of DG

Here, H = Hyperparameters, I = Indicator, F = Features, L =
Labels, P = Performance

output: Public release of the dpAE, dpClassM, and
dpRegM models.

initialization:
dpAEH = {number of layers, learning rate, training epochs}, P =

[0,0], Indicator = 10
Pseudocode:
While I > 0
Build dpAE:f(DM)! Low-dimensional DM

dpAEF dpAE(DM)
Build dpClassM:f(dpAEF, labelclass)! ER+/-‖
dpClassMP  [accuracy(dpClassM), AUC(dpClass)]
if dpClassMP ≥ P then
P dpClassMP

dpAEH update with new settings
I 10
else
dpAEH update with new settings
I I - 1
end if
end while
Publish dpAE
if Breast cancer status classification then
Publish dpClassM
end if
if Drug sensitivity prediction then
dpAEF dpAE(DG)
Build dpRegM: f(dpAEF, labeldrugSensitivity)! drug sensitivity
Publish dpRegM
end if

2.2.2 Differential Private Deep Autoencoder
We followed the idea of the stacked denoising autoencoder
(SDAE) (36) to build an underlying data representation
learning model. Unlike the traditional autoencoders, SDAE can
predict a robust lower dimensional output representation of the
input even if the input data is corrupted. This is helpful in our
case, as we are building this autoencoder to predict the low-
dimensional equivalent output from another dataset with
different data distribution. Previously published independent
researchers have showed that we can insert random noise into
the gene expression input data during the training process. Then,
denoising autoencoder is capable of extracting robust stable
biological principles between genes from genome-wide
expression data (37, 38). In our framework, we inserted noise
from random normal distribution with mean 0 and a range of
standard deviations [0.1, 0.2,.3]. We achieved the optimal
prediction performance for standard deviation 0.1. The higher-
level architecture of dpAE is shown in Figure 1B. We used dpAE
as a lower-dimensional data representation learning model. In
the beginning, we inserted a random noise into the raw original
input (ROI). Then, we pass this noisy input to the encoder. We
Frontiers in Oncology | www.frontiersin.org 5
encoded the input data with three fully-connected (dense) layers
of 8000, 4000, and 2000 sizes. Each neuron of a dense layer
receives input from all of the previous layer’s neurons. A dense
layer performs a regular matrix multiplication and passes the
output to the next layer. Next, we transformed each layer’s
output using the rectified linear unit (ReLU) to introduce non-
linearity into our dpAE model. A ReLU layer converts all the
negative values into zeros. We used a Dropout layer (39) after
each ReLU layer to improve the model’s performance over the
unseen data. The dropout layer randomly drops some neural,
forcing the network to learn general weights for each neuron.
Then, we pass this encoder’s output to the decoder. Here, our
objective is the reconstruction of the ROI. This decoder also
consists of three dense layers of sizes 4000, 8000, and the original
input dimension. Each of these layers tries to reproduce the
output from the encoder’s associated same size layers. Similar to
the encoder, a ReLU and a dropout layer follow these dense
layers. Then, we used a loss layer, which acts as the objective
function to calculate the loss between the reconstructed input
and the ROI. This loss represents the similarity between the
reconstructed input and the ROI (lower loss represents a
higher similarity).

To make dpAE (a,∈)-Rényi differential private (i.e., (a,∈)-
RDP), we inserted Gaussian noise into the reconstructed loss
gradients. Then, we used these noisy gradients to update the
model’s trainable weight parameters. Next, we used these
perturbed model parameters to minimize the reconstruction
error. Consequently, according to the DP’s composability
property, the complete dpAE model is also a,∈-Rényi
differential private.

2.2.3 Differential Private Deep Learning Based
Classification Model
In this study, we proposed a framework (Figures 1A–C) to build
a (a,∈)-RDP DL model (i.e. dpClassM) to predict ER+ or ER-
using gene expression data.

We used the dpAE to extract the lower dimensional differential
private representation for the METABRIC train dataset, i.e., dpAE
features. These dpAE features were processed by a dense, ReLU and
dropout layer. The processed dpAE features were used as input to a
2-size dense layer to get the final prediction scores for ER+ and ER-
classes. We converted these prediction scores into prediction
probability using a softmax (40) function. We used the cross-
entropy loss function to calculate the error between prediction and
ground truth of the input. We stopped the training of dpClassM
when there is no improvement in the model performance for ten
consecutive times. In Algorithm 1, the variable ‘Indicator’ is used to
perform the stopping of dpClassM training.

We followed (30) approach to introduce Gaussian noise into
the gradients (which were calculated with respect to the model
parameters’) of the objective function to make dpClassM the
(a,∈)-RDP. Finally, we used a stochastic gradient descent
approach to train dpClassM in batches of training samples
with these perturbed model parameters. Let us assume we have
ten batches of samples to build dpClassM, and outputs from each
of these batches are (a,∈)-RDP. Then according to the
composability property of DP, dpClassM is (a, ∈1 + ∈2…… +
June 2022 | Volume 12 | Article 879607
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∈10) -differential private. Intuitively, the complete dpClassM
model leaks ten times more private information than the given
privacy budget ilon. This is undesirable, which led us to use an
accountant function (similar to (12)) to distribute given ∈ into
each batch so that the privacy budget of dpClassM do not
exceed ∈.
2.2.4 Differential Private Deep Learning Based Linear
Regression Model
Figure 1 shows the proposed framework to build (a, ∈)-RDP
DL model (i.e., dpRegM) to predict the sensitivity of drugs in
cancer cell lines. At first, we built a (a, ∈)-RDP based dpAE
using the private METABIRC dataset. We used a trained dpAE
to extract low-dimensional (a, ∈)-RDP representations (i.e.,
dpAE features) of our private GDSC dataset. This new private
lower representation of the GDSC was used as input into the
architecture of dpRegM (Figure 1E). We then transform the DP
representation using a set of dense layers, insertion of non-
linearity (ReLU layer), and a dropout layer. The last dense layer
produces only one output, which we treated as the predicted
sensitivity of drugs in a, ∈-RDP cell line data. Similar to the
building of dpClassM strategy, we used Gaussian noise-based
mechanism of Mironov (30) to make dpRegM (a, ∈)-RDP.
Frontiers in Oncology | www.frontiersin.org 6
Then, we trained the dpRegM using a standard batch-wise
stochastic gradient descent approach.
3 RESULTS AND DISCUSSION

In this study, we performed our experiments using the
TensorFlow software (41) to build differential private BCS (i.e.,
ER+ or ER-) and CT classifiers, and drug sensitivity regressor.
We have considered GDSC and TCGA as private datasets, while
the METABRIC is an actual private dataset. In all the
experiments, baseline Bayesian DP (31) uses high-dimensional
original raw data as input to solve binary classification and linear
regression tasks.

3.1 Differential Private Classifiers
We used the METABIRC data to build our dpAE and dpClassM
binary classifiers to classify patients, either ER+ or Er-. We used
two popular metrics, accuracy and Receiver Operating
Characteristics (ROC) Area Under the Curve (AUC), to
measure our classifiers’ effectiveness. Figures 2A, B shows our
proposed dpClassM’s ER+/- prediction performance for the
METABRIC test dataset. We have the best prediction result,
FIGURE 1 | Proposed deep learning based differential private framework to perform classification and linear regression tasks with privacy-sensitive biological data.
(A) Pipeline to build an underlying data representation learning model (i.e., dpAE) with private data. (B) DL architecture of dpAE. (C) DL architecture of our proposed
differential private classifier (i.e., dpClassM). (D) Pipeline to predict the sensitivity of drugs in cell lines. (E) DL architecture of our proposed differential private linear
drug sensitivity regressor (i.e., dpRegM).
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76% accuracy (Figure 2A), and 0.78 AUC (Figure 2B) when∈ =
20 (we repeated the experiment for 10 times and reported the
mean accuracy and AUC with standard deviation in Figures 2C,
D). This figure also compares our predictions with the baselines
(31, 32) prediction performances. However, Figures 2A, B shows
that our proposed approach for the METABRIC dataset (for ER
+/- classification) achieved improved accuracy and AUC for each
of the predefined ∈s than the baseline. However, we can not use
Niinimäki et al. (25) approach for the METABRIC dataset as
their approach requires a public dataset for representation
learning, and METABRIC contains real private data.

In addition, we also performed experiments on the TCGA
dataset to build a dpAE and cancer type classifier. Supplementary
Figure S1 shows the pipeline for the drug sensitivity prediction
when the TCGA dataset is used to build a low-dimensional data
representation learning model. The TCGA dataset contains a
patient’s outcome for 33 distinct cancer types. We need to build
ð33 2Þbinary classifiers to predict patient’s cancer types in order to
cover all possible combinations of cancer type pairs (i.e., two
cancer types at a time from the 33 available cancer types) in the
TCGA. The supervised binary classification task is relatively easy
for some of these cancer types pairs. Therefore, Niinimäki et al.
(25) used a non-differential private classification approach to rank
Frontiers in Oncology | www.frontiersin.org 7
all the ð33 2Þ pairs of cancer types based on their difficulty of
prediction in a binary classification setting. Supplementary
Table S1 shows the top 16 pairs of cancer types, which are
difficult to predict. Among these pairs of cancer types, we
choose to perform our experiments for the eight numbered
cases in Supplementary Table S1 to facilitate a direct
comparison of our experimental outcomes with the baseline (25).

The first step of the proposed cancer type classifier framework
(Supplementary Figures S1A–C) is to split the TCGA dataset. In
this case, our first private dataset (PD1) has data for one of the
cases from Supplementary Table S1, and patients for the
remaining 15 pairs of cancer types go to the second private
dataset (PD2). We used the PD2 dataset to build our (a,
∈)-RDP data representation learning model (dpAE). Then, we
used dpAE to extract 2000-size low-dimensional representations
for each of the PD1 patients. These dpAE representations were
used to build (a, ∈)-RDP dpClassM (Supplementary Figures
S1A–C). We used the prediction performance (average accuracy
and AUC of 10-fold cross-validation) of dpClassM to tune the
hyperparameters of dpAE. Next, we built our dpAE with the best-
found hyperparameters to mine (a, ∈)-RDP representations for
the patients in PD1. Finally, we used these 2000-size DP
representations of PD1 patients to build our final dpClassMmodel.
A B

DC

FIGURE 2 | Comparison of prediction performances between our proposed Rényi differential private binary (ER+/-) classifiers and baseline models for different
privacy budgets on the METABRIC (34) dataset. (A, B) Comparison of ER+/- classifiers in terms of mean accuracy (%) and mean AUC, respectively, from the 10-
times repeated experiments (C, D) Comparison of standard deviations of accuracy (%) and AUC, respectively, from the 10-times repeated experiments.
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For the TCGA dataset, Figures 3A, B shows the comparison
(mean accuracy and AUC of 10-fold cross-validation) of
dpClassM against the baselines (25, 31, 32) with the same
privacy budget (∈ = 1.0). In Figures 3A, B, the x-axis
represents the ER status (ER+/-) and eight pairs of cancer
types (number cases of the Supplementary Table S1) that we
choose to perform our experiments. Figures 3C, D shows the
standard deviations of accuracies and AUCs from 10-fold cross-
validation. Figures 3A, B clearly shows that our proposed
dpClassM has significant improvement for the ER+/- and each
of the eight cancer types prediction performances (accuracy and
AUC) then the baselines. Similar to the baselines, the prediction
performance of dpClassM for the TCGA cases also varies for
different cases because of two reasons: variation in the total
number of samples and the imbalance distribution of samples in
the two classes (i.e., cancer type pairs). Intuitively, our proposed
dpClassM has lesser prediction performance than its non-private
version because of the external noise we added during the
training of dpClassM (Figures 3A, B). Our dpClassM did not
learn the actual weight parameters; instead, we used perturbed
weight parameters to build dpClassM. The Supplementary
Table S2 also compares the prediction performances among
Frontiers in Oncology | www.frontiersin.org 8
the proposed framework and baselines for five different privacy
budgets. Our proposed framework achieved improved prediction
performance in all cases in terms of accuracy and AUC. The
above comparison indicates our proposed framework’s
superiority under a stricter privacy budget than the baselines.
We have also added Supplementary Table S4 in our
supplementary with the prediction performance in terms of
95% confidence intervals [similar to (42)] for accuracy (%) and
AUC for the METBRIC dataset and the numbered cases from the
Supplementary Table S1.

3.2 Differential Private Regression Analysis
We trained linear regression models (dpRegMs) for each of these
265 drugs from the GDSC dataset to predict their sensitivity in
cell lines. This dataset contains lots of missing values because all
265 drugs were not tested in all the ~ 1,000 cell lines. For each of
the 265 linear regression models, we only kept the samples (i.e.,
cell lines) for which that drug was tested. Therefore, the total
number of samples in each linear regression model varies from
~350 to ~ 850. Intuitively, if we build dpRegM using these small
numbers of high-dimensional gene expression samples, then
dpRegM will become prone to the overfitting problem. Hence,
A B

DC

FIGURE 3 | Comparison of prediction performances between our proposed Rényi differential private binary (ER+/- or cancer types) classifiers and baseline models
on the METABRIC (34) and the TCGA (33) datasets when privacy budget is 1.0. (A, B) Comparison of binary (ER+/- and cancer types) classifiers in terms of mean
accuracy (%) and mean AUC, respectively, from the 10-fold cross-validation (C, D) Comparison of standard deviations of accuracy (%) and AUC, respectively, from
the 10-fold cross-validation.
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we first built a dpAE to extract a 2000-size low-dimensional
representation for each of the samples in GDSC. If we build
dpRegM on these low-dimensional representations, it is less
likely for dpRegM to overfit the training data because of the
fewer parameters to be learned by dpRegM. We considered the
modified METABRIC dataset as the second private dataset. Then
we followed the approach of Section 3.1 to train a
hyperparameter tuned dpAE using the modified METABRIC
dataset. This trained dpAE was used to extract 2000-size
representations for every sample in the GDSC. Finally, we used
these low-dimensional representations of the GDSC to build the
(a, ∈)- RDP regression model (dpRegM) to predict the drug
sensitivity for each of the 265 drugs in cancer cell lines.

In Table 1, we showed the performance of our proposed
framework for drug sensitivity prediction. We used Spearman’s
rank correlation coefficient (43) to evaluate the performance of
our differential private linear regression models. Spearman’s rank
correlation coefficient (SRCC) measures the correlation between
the predicted ranking of the cell lines and the cell lines’ original
ranking. SRCC values can be between -1 (perfect negative
correlation between the predicted vs. original labels) to 1
(perfect positive correlation between the predicted vs. original
labels). We have built 265 differential private drug sensitivity
linear regressors. We used 10-fold cross-validation to measure
the performance of each of the linear regression models. We
considered the mean of SRCCs as the final prediction
performance of (a, ∈)- RDP dpRegM.

Table 1 shows the averaged SRCC from all 265 dpRegM
models. We can see that our proposed framework’s SRCC in
predicting drug sensitivity is higher than the baselines (8, 25)
when we used the TCGA dataset to build our data representation
learning model (dpAE). However, we have a slightly smaller
SRCC than the (25), when we used METABIRC to build dpAE.
Nevertheless, this was expected as METABIRC contains discrete
values (0,1 and -1), and TCGA contains continuous values
(similar to GDSC). Therefore, dpAE, which was trained on
TCGA, extracted a more similar representation of GDSC,
which leads to the best drug sensitivity prediction performance.

In addition, we also used TCGA dataset to build dpAE, which
extracts low-dimensional private deep representation from the
GDSC dataset. Then, we used the dpAE extracted low-
dimensional GDSC dataset to build our proposed dpRegM for
each of the drugs from the GDSC dataset (Supplementary
Figure S1 and Supplementary Algorithm S1). In (25), the
Frontiers in Oncology | www.frontiersin.org 9
TCGA dataset was redistributed to match the GDSC dataset
distribution to build a data representation learning model. Such
data redistribution is a blatant privacy violation, which was also
indicated by the authors. In such cases, an adversary may analyze
the public data to extract private information from the private
dataset. However, the baseline (25) achieved ~ 0.25 averaged
SRCC. Unlike the baseline approach, dpRegM without dataset
distribution overcomes the privacy risks from the dataset
redistribution procedure, yet dpReGM outperforms (i.e., ~0.27
averaged SRCC) the baseline approaches. Table 1 also shows the
averaged SRCC of all 265 non-private versions of dpRegMs (i.e.,
without inserting any external noise to the weight parameters
during the training phase). Intuitively, all non-private version
models of the proposed framework have improved the averaged
Spearman’s rank correlation coefficient than their corresponding
differential private versions.

Of note, each of our DL models (dpAE, dpClassM, and
dpRegM) in the proposed framework are independent of one
another. At first, we build Rényi Differential Privacy (RDP)
incorporated dpAE model with privacy budget 1.0. RDP used
an account function to keep track of the privacy budget spent
during each batch-wise model training. Then, we used dpAE
representations with another privacy budget 1.0 to build
classifiers and regressors. We have added training details of dpAE,
dpClassM and dpRegM in the Supplementary File. In addition, we
have added the dpClassM’s performance for the eight cases
(Supplementary Table S1) for five different privacy budgets in
the Supplementary Table S2. Besides, Supplementary Table S3
shows the list of hyperparameters that were used to build differential
private models. List of hyperparmeters that were tested during the
training of our DL models (dpAE, dpClassM, and dpRegM) can be
found in Supplementary Table S5–S9. Finally, the comparison of
hyperparameters (during the representation learning) with the
previous state-of-the art is shown in Supplementary Table S10.

3.3 Significance of the Proposed
Framework
Our proposed framework incorporated a state-of-the-art
differential privacy mechanism in two different stages: low-
dimensional feature extraction and binary classification or
linear regression. We used (a, ∈)-RDP mechanism to build
DP models which has higher utility than the ∈-DP (10) models
because the (a, ∈)-RDP mechanism allows additional leakage of
information. However, we used this privacy mechanism on the
TABLE 1 | Comparison of drug sensitivity prediction performance in terms of average Spearman’s rank correlation coefficients of differential private and non-private models.

Framework Dataset for representation learning Privacy Status Spearman’srank correlation coefficient

(25) Redistributed TCGA Private 0.25
(8) None Private 0.18

Non-private 0.26
Bayesian DP (31) None Private 0.20(STD 0.057)
Proposed framework METABRIC Private 0.20(STD 0.051)

Non-private 0.22(STD 0.043)
TCGA(Original) Private 0.26(STD 0.045)

Non-private 0.28(STD 0.044)
The privacy budget was ∈ = 1.0 for all differential private models. The “Proposed framework” means the differential private model, and the STD represents the standard deviation.
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noisy data to build dpAE. Later, we used the extracted features of
dpAE to build dpClassM and dpRegM. Therefore, we have
mitigated private data leakage by the (a, ∈)- RDP model
because dpClassM and dpRegM did not use the original
patient’s private data. An adversary with strong background
knowledge can only access (a, ∈)- RDP perturbed data to
induce private information from the dataset. Hence, such an
adversary can only infer perturbed (by a factor of ∈) private
information rather than accurate private information. In short,
all of our models can preserve patients’ sensitive private
information up to a factor of ∈.

In our experiments for building differential private (∈ 1.0)
classifiers and regressors, first we extracted low-dimensional
private (∈ 1.0) dpAE representations from the original raw data.
Then, we used these differential private (∈ 1.0) representations to
build our classifiers and regressors using 10-fold cross-validation.
Finally, we used the prediction performances of our classifiers and
regressors from these 10-folds to tune their hyperparameters. This
tuning approach is not violating any privacy as we are not
publishing any data (rather we publish the final model only) and
our models were tuned based on the differential private (∈ 1.0)
representation instead of the original raw data.

Our proposed models, dpClassM and dpRegM showed better
predictionperformances in breast cancer status andTCGA’s cancer
type classification; and GDSC’s drug sensitivity prediction,
respectively, than baseline approaches (25, 32). We believe that
this performance gain came from using the deep learning based
methods and our choice of differential privacy algorithm in our
framework.We know from the previously published literature that
DL based approaches are usually more suitable to analyze high-
dimensional gene expression data in terms of prediction
performance than traditional machine learning methods. Besides,
we incorporated the dropout technique into our framework.
Dropout improves the generalization ability of our model towards
the unseen data than the baseline models. Besides, unlike baseline
models, ourDLmodels are non-linear.Usually, it ismore difficult to
find a distinct trainable pattern in a linear space, to perform
complex optimization problems such as classification or linear
regression than in a non-linear space. In addition, Rényi
differential privacy is more suitable for real-life applications
than∈-DP.

Our proposed framework (Algorithm 1) neither publishes the
dpAE representation nor the dense layer representations of
dpClassM and dpRegM. Instead, the proposed framework
publishes only the trained (a,ilon)-RDP models (dpAE,
dpClassM, and dpRegM). Similar to the works of Abadi et al.
(12), first, we used the ℓ2 norm gradient clipping during the
stochastic gradient descent (SGD) process. This step allows us to
control the sensitivity of any single input data on the gradients.
Then, we used the (a,∈)-RDP approach to perturb the gradients.
Finally, these perturbed gradients update model (dpAE, dpClassM
and dpRegM) parameters (i.e., weights). (a, ∈)-RDP ensures that
each step of the SGD is differentially private. Thus, the final output
model achieves a certain level of differential privacy under the
composition property (30, 44). Therefore, our final trained models
(dpAE, dpClassM, and dpRegM) contain only noisy weight
Frontiers in Oncology | www.frontiersin.org 10
parameters. According to Mironov (30), these noisy weight
parameters are (a, ∈)-RDP preserved by post-processing.
Consequently, an adversary will not be able to infer any privacy-
sensitive training data confidently. Furthermore, Mironov (30)
mathematically proved that the output from the adaption
sequential composition of two RDP mechanisms preserves the
RDP (composition property). Hence, we can say that the
proposed framework provides a formal privacy guarantee on the
published models (dpAE, dpClassM, and dpRegM). Therefore, the
proposed framework of dpAE will not violate any privacy of the
training data. Similarly, the published dpClassM and dpRegM will
not violate any privacy of the training data. Please be noted that the
publisheddpAEcanbe treated as a formof the pre-trainedmodel to
be used by other researchers to extract a lower-dimensional
representation of their local dataset. Then, local data holders may
use the extracted representation to perform further analysis (for
example, they can build their dpClassM).

Our proposed differential private framework is not limited to
use to predict BCS, CT, and drug sensitivity. For example, there
are three pharmaceutical companies and each of them has a
private library of small molecules. Of note, these companies do
not want to share their library. Now, assume that each company
wants to build a DL model to predict a candidate from their
library, which can be used as a drug. However, none of the three
libraries has enough molecules to build a robust DL based drug
candidate identificationmodel. In this scenario, each company can
take our dpAE to extract the (a, ∈)- RDP representation of their
library. Hence, dpAE will allow companies to share their own
private data library while preserving their raw libraries’ privacy.
This approach will equip each company with a larger number of
training samples. Each company can also use our dpClassM (to
predict whether a molecule is a candidate to be used as a drug) or
dpRegM (to predict a drug candidate’s sensitivity) to build a (a,
∈)- RDP classifier or linear regressor model with better utility.
Now, companies can publicly release these models for commercial
use. An adversary with strong background knowledge about these
companies’ libraries can not precisely infer a small molecule’s
original properties from the published (a, ∈)- RDP model.
Therefore, the companies’ privacy remains intact to a factor (∈).
In a nutshell, if someone wants to build a state-of-the-art DL
classifier and linear regressor with multiple private datasets or a
combination of public and private datasets, then one can choose to
work with our framework (dpClassM for classification or dpRegM
for linear regression) while maintaining the privacy of the private
datasets within a predefined privacy budget ∈.
4 CONCLUSION

This study predicts breast cancer status, cancer type, and drug
sensitivity in cancer cell lines using sensitive human genomic data
while preserving individuals’ privacy. We hypothesized that our
proposed framework would protect individuals’ privacy of the
dataset even if the model trained on this dataset is shared with
other organizations, while providing improved utility than the
previous state-of-the-art baseline approach. Our experimental
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results suggest the superiority of our proposed framework in the
classification of breast cancer status and cancer type over the
baseline. Furthermore, in differential private drug sensitivity
prediction, unlike the baseline, the prediction of our proposed
framework outperformed previous state-of-the-art baseline
results using private datasets only. In brief, the proposed
framework achieves improved utility while guaranteeing
individuals’ privacy than existing approaches. Of note, we
perturbed our model’s parameters to build our differential private
model in all experimented tasks (i.e., breast cancer status and cancer
type classification, and drug sensitivity prediction). Hence, no
adversary can infer with sufficient confidence about the
individuals’ original raw input data even if we publish our trained
models. This attractive property will allow interested parties (e.g.,
individuals, hospitals, and pharmaceutical companies) to integrate
privacy-sensitive data from multiple sources. Consequently, they
can build data-hungry deep learning based models without
disclosing any raw privacy-sensitive input data.

Our experiments used a private sparse binary dataset
(METABIRC) to extract a low-dimensional representation of a
continuous valued data set (GDSC). In the future, we will try to
collect and include another such private data set with continuous
valued gene expression in the proposed framework. Intuitively, the
addition of such a private dataset will produce amore accurate low-
dimensional representation of the GDSC. Consequently, the
proposed framework will provide improved drug sensitivity
prediction performance. Another future work of this study would
be the extensive hyperparameter tuning for DL (e.g., number of
layers, number of neurons per layer) models. This will likely
improve the prediction performance of each DL model.
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