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R0 surgical resection is the preferred treatment for bone and soft tissue sarcoma.
However, there is still a lack of precise technology that can visualize bone and soft
tissue sarcoma during surgery to assist the surgeon in judging the tumor surgical
boundary. Fluorescence imaging technology has been used in the diagnosis of cancer.
It is a simple and essentially safe technique that takes no additional time during the
operation. Intraoperative fluorescence imaging has potential application prospects in
assisting the surgeons in judging the tumor boundary and improving the accuracy of
surgical resection. This review mainly starts with clinical studies, animal experimentation,
and newly designed probes of intraoperative fluorescence imaging of bone and soft tissue
sarcoma, to appraise the application prospects of fluorescence imaging technology in
bone and soft tissue sarcoma.
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INTRODUCTION

Traditionally, surgeons mainly use preoperative CT(computed tomography) and MRI(magnetic
resonance imaging) to assess the tumor boundary within the surgeons’ naked eyes to select the scope
of resection during the surgery (1). CT and MRI cannot be used in real-time and have limited tumor
specificity (2). Assessments of the resection boundary based on the surgeons’ naked eyes are
inaccurate and rely on surgeons’ experience. The intraoperative frozen section reduces surgical
efficiency because of the unavoidable extension of the surgery period (3). It is urgent to find an
auxiliary examination during the operation to judge the boundary between the tumor tissue and the
normal tissue, which can improve the accuracy of the operation together with assistance in finding
the tumor satellite foci (4).

The essence of intraoperative tumor fluorescence imaging is to allow fluorescent dyes to
accumulate in tumor tissue during the operation so that the surgeons can find the boundary of
the tumor. Fluorescent probes have different principles, such as EPR effects (enhanced permeability
and retention) and antigen-antibody reactions. To date, fluorescence imaging has exhibited
Abbreviations: CT, computed tomography; MRI, magnetic resonance imaging; SPECT, single photon emission computed
tomography; TBR, tumor-to-background ratio; ICG, indocyanine green; NIR, near-infrared; IHC, immunohistochemistry;
VEGF, vascular endothelial growth factor; EGFR, epidermal growth factor receptor; VEGFR, vascular endothelial growth
factor receptor; 5-ALA, 5-aminolevulinic acid; FR-a, folate receptor-a; insulin-like growth factor, IGF; EPR, enhanced
permeability and retention; CME, clathrin-mediated endocytosis; glutathione, GSH.
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promising advantages in various tumors, such as brain tumors
(5), breast cancer (6), and gastric cancer (7).

In recent years, intraoperative fluorescence imaging of bone
and soft tissue sarcoma has been explored in clinical studies,
animal experimentation, and these studies have led to the
development of new probes.
PRINCIPLE OF FLUORESCENCE IMAGING

Non-Specific Fluorescent Probes
Based on the principle of fluorescent probes, we divide the
current fluorescent probes into four types and summarize
them in Figure 1.

Most non-specific probes rely on a passive targeting strategy,
which preferentially accumulates molecules in tumors. The passive
targeting strategy attributes to the tumor microenvironment such as
accumulation of acidity, anoxic habitat, and necrotic tissue (8). It is
not specific so that burns, wounded, and other tissues can also retain
more fluorescent dye than surrounding tissues.

The principle fluorescent component of tetracycline is achelate
formed upon combination with calcium ions ontrabecular bone
(9). OWEN et al. (10) studied the fluorescence of tetracycline
medicines in bone cancers and normal bone in 1961. Normal bone
tissue has strong fluorescence, while necrotic bone has no or low
fluorescence. Tetracycline is nowadays used only infrequently for
intraoperative imaging of bone and soft tissue sarcoma, not only
because tetracycline drugs are toxic and have a high rate of adverse
reactions, but also because the wavelength of tetracycline
Frontiers in Oncology | www.frontiersin.org 2
excitation light is 450-490nm, which is in the visible light range.
This wavelength overlaps with normal tissues and is heavily
absorbed in tissues such as hemoglobin and myoglobin (11).

Compared with fluorescent probes for fluorescence imaging in
the visible region, the research direction in recent years has focused
more on fluorescent probes with excitation wavelength in the near-
infrared region NIR-1 (700-900nm). Near-infrared fluorescence
with a wavelength of 700-900nm is rarely absorbed in tissues (12).

For example, the most commonly used and clinically approved
fluorescent probe is indocyanine green (ICG). ICG has absorption
and fluorescence spectra in the near-infrared (NIR) region. The
excitation wavelength is 780nm, and it emits fluorescence in the
range of 700-850nm. The red light is visible to the naked eye, but
most of the light is not (13). Most researchers believe that the
accumulation of ICG within solid tumors attributes to the EPR
(enhanced permeability and retention) effect (14). Due to the
presence of defective endothelial cells and wide fenestrations (600
to 800 nm) in nascent blood vessels, small molecules such as ICG
are injected systemically and passively accumulate in tumors (15).
However, Pandit et al. (16) pointed out that in addition to the EPR
effect, transcytosis is the principle of molecular accumulation in
tumors. It is the same as the research on ICG in Colorectal Cancer.
Cancer cells have a high endocytic rate (17). ICG was preferentially
taken up by cancer cells via clathrin-mediated endocytosis (CME)
(18). Indocyanine green is a safe, basically non-toxic drug, which
rarely reacts with other drugs (19). However, Indocyanine green
accumulates in bone tumors, inflammation, and bone deformities.

Many factors can influence the EPR effect, including tumor
type, size, and vascular mediators. As a result, the intensity of the
ICG signal is unpredictable (20). If the patient has a fracture or
FIGURE 1 | (A) Non-Specific Fluorescent Probes (ICG): the fluorescent dye remains in areas where the vasculature is highly disordered. (B) Activatable
Fluorescence Probes: the dye fluorescence only when the group breaks down under tumor circumstances. (C) Specific fluorescent Probes: the fluorescent dye
combines antibodies bind to biomarkers. (D) Multimodality Fluorescence Imaging Probes: the fluorescent dye used for both NIR imaging and SPECT/CT, MRI.
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ischemia at the surgical site during surgery, it will cause false-
positive results and affect the judgment. According to research,
encapsulation of ICG improves its targeting abilities and
circulation time (21, 22).

Activatable Fluorescence Probes
Some scientists have also designed activatable fluorescent probes
that emit fluorescence only in tumor tissues. This probe contains a
chemical group, which can be broken down via some enzymes in
the tumor and microenvironment, therefore this probe is activated.

Many activatable fluorescent probes have applications in other
types of tumors, and could theoretically be used for intraoperative
imaging of bone and soft tissue tumors. The activatable fluorescent
probes for the tumor microenvironment are mainly activated by
extracellular enzymes specifically emitted in the tumor
microenvironment. In addition to cathepsin-activated fluorescent
probes that have been used in soft tissue sarcoma animal
experimentation, there are also fluorescent probes activated by
matrix metalloproteinases (23). The activatable fluorescent probes
for tumor cells consist of two parts. One is the activation of
intracellular enzymes, such as b-galactosidase bioactivation (24)
and glutathione (GSH) bioactivation (25). And the other one is the
activation of fluorescence by the tumor cell hypoxia environment
(26). Besides, the pH of the tumor microenvironment is generally
between 6.7-7.1, the pH of tumor cells is between 5.9-6.2, and the
pH of advanced tumor cells can even reach 5.0-5.5, which is an
acidic environment compared with normal tissues. Some probes are
sensitive to pH, and their fluorescence is activated in an acidic
environment allowing fluorescence imaging of tumors and tumor
microenvironments (27).

Activatable fluorescence probes reduce the fluorescence
intensity of normal tissues and further increase the tumor-to-
background ratio (TBR). But at the same time, the chemical
synthesis of probes is complicated, and there is still a lack of
further research on the adverse reactions of these probes.

Specific Fluorescent Probes
Unlike ICG with the EPR effect, specific probes do not rely on the
tumor microenvironment but instead rely on a targeting moiety
conjugated to a contrast agent with a high binding affinity. These
probes have higher targeting properties than indocyanine green (28).

The original design method is to combine monoclonal
antibodies with fluorescent dyes to create fluorescent probes.
Previously, monoclonal antibodies were used as targeted drugs to
treat tumors. For example, Bevacizumab is a monoclonal
antibody that binds to vascular endothelial growth factor-A
(VEGF-A)which is highly expressed in tumor cells (29) and
plays a direct role in vascular endothelial production (30).
Combine bevacizumab with the fluorescent dye IRDye800CW
to synthesize a fluorescent probe that can specifically bind to
tumors. Scientists designed Panitumumab-800CW (31) and
Cetuximab-800CW (32) based on the principle of similars.
Panitumumab is a monoclonal IgG2 antibody that binds to the
Epidermal Growth Factor Receptor (EGFR) with high specificity
(33). EGFR is highly expressed in bone and soft tissue sarcoma
and is involved in osteolytic metastases of bone tumors.
Cetuximab is also an anti-EGFR monoclonal antibody.
Frontiers in Oncology | www.frontiersin.org 3
In recent years, with the development of chemical synthesis
technology, moieties for active targeting have become available,
such as nanoparticle scaffolds, peptides, ligands, and aptamers.
Compared with antibodies, the moieties have similar binding
characteristics but show better tumor penetration and more
rapid clearance from non-targeted tissues (34). For example,
ABY-029 is an EGFR-targeted affibody molecule labeled with
IRDye 800CW (35). While performing intraoperative tumor
fluorescence imaging, ABY-029 can be injected on the same
day. Besides, compared with bevacizumab, panitumumab, and
cetuximab, ABY-029 retains high EGFR specificity (36) with low
immunogenicity and low toxicity (37).

Specific fluorescent probes are based on active targeting, their
synthesis is complicated. Tumors are heterogeneous, so we can’t
find a tumor marker expressed in each tumor tissue. The
majority of specific probes are still in the pre-clinical stage. It
requires more feasibility and toxicity studies, particularly for
small molecule probes before clinical trials.

Multimodality Fluorescence
Imaging Probes
SPECT/CT, MRI, and NIR combined multimodal imaging
technology have gained significant popularity. Scientists have
designed fluorescent probes with SPECT/CT, MRI sensitive groups,
and fluorescent dyes (38) (Figure 2). The contrast of preoperative
SPECT/CT, MRI tumor imaging is improved by preoperative
injection of multimodality fluorescent probes. The fluorescent sign
of the tumor can also be collected during the operation. This
combination of imaging and fluorescence imaging can significantly
increase the detection rate of tumors and obtainmore accurate tumor
boundaries. This probe is used for preoperative tumor imaging,
surgical planning, and intraoperative tumor fluorescence imaging.

Schematically, this kind of probe has much potential. For
example, if we expand our scope to treatment, scientists have
designed probes that combine Photodynamic therapy with
fluorescence imaging (39, 40).

All imaging techniques have their limitations, e.g., MRI has
problems with relatively low sensibility, and optical imaging has
issues with low spatial resolution and small penetration depth
(41). Multiple imaging techniques aid in early diagnosis and
treatment planning. However, it is worth exploring whether it is
necessary to enhance preoperative MRI and SPECT/CT tumor
signal intensity in clinical practice (42).

In recent years, some researchers have focused on fluorescent
probes in the NIR-2 range (1000-1700nm) and have produced
several fluorescent probes for tumor imaging in the NIR-2 range
(43). According to some researchers, fluorescence with a wavelength
of 1000-1700nm, can reduce scattering when passing through the
skin and is less affected by normal tissue autofluorescence.
Compared with NIR-1 imaging, it can penetrate deeper tissues (44).
PRE-CLINICAL RESEARCH

Non-Specific Fluorescent Probes
Presently the widely used non-specific fluorescent probe in
tumor surgery is indocyanine green. Overall, these cases in the
July 2022 | Volume 12 | Article 879697
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past five years support that bone and tissue sarcoma can
fluoresce after injection, and the tumor boundary is consistent
with the pathological section control.

For example, Fourman (2018) (45) injected osteosarcoma
cells into the left hind limb of BALB/c Mice. Researchers used
pathological sections to confirm that the fluorescent part of the
hind limb was a bone sarcoma. Mice with fluorescent lung tissue
developed lung metastases from osteosarcoma. Interestingly, the
researchers discovered that the higher the fluorescence intensity
of the primary bone tumor, the greater the possibility of lung
metastases. This finding suggests that we can early predict the
probability of lung metastases in osteosarcoma patients through
intraoperative bone tumor fluorescence intensity.

Another example of what is meant byMahjoub (46), is that they
injected ICG into 11 osteosarcoma mice 12 hours before surgery
for fluorescence-guided osteosarcoma surgery. The recurrence rate
of mice with osteosarcoma resection guided by ICG was much
lower than that of mice with conventional resection.

In addition to indocyanine green, non-specific fluorescent
probes such as Alizarin Red and Tetracycline had been expected
to have great potential for intraoperative imaging of bone and soft
tissue sarcoma. However, the fluorescence excitation wavelengths
are 465nm and 490nm, which are both in the visible light range, and
the fluorescence area overlaps with normal tissues. There have been
few related studies in recent years.

Activatable Fluorescence Probes
According to the different characteristics of tumor cells and tumor
microenvironments from normal tissues, scientists have designed
activatable optical probes. In 2016, Bartholf Dewitt S (47) used the
cathepsin-activated fluorescent probe LUM015 in dogs with soft
tissue sarcoma for intraoperative fluorescence imaging. According to
previous studies, cathepsin is overexpressed in soft tissue sarcoma
and other tumors while rarely expressed in normal tissues. All the
dogs’ soft tissue sarcoma fluorescence when imaging. The
pathologist took 33 parts of the excised tissue for biopsy, all of
which were tumor tissues. The cathepsin-activated fluorescent probe
is further exemplified in studies by Prince et al. (48). The researchers
compare the TBR and effect of prosense750EX (another cathepsin-
Frontiers in Oncology | www.frontiersin.org 4
activated fluorescent probe) with multiple fluorescent probes for
fluorescence imaging of soft tissue sarcoma. Prosense750EX, like the
other probes in the study, can identify tumor beds with a diameter of
less than 1mm intraoperatively. Therefore, the Prosense750EX can
be used as a probe for fluorescence imaging.

Specific Fluorescent Probes
Some specific probes have been designed, and animal
experimentation has proved their specificity and sensitivity.
Most specific probes are created by combining fluorescent dyes
with antibodies or ligands that precisely bind to tumor cells
(Table 1).

Based on this probe design idea, our team designed a specific
fluorescent probe CS2-N-E9R for Ewing ’s sarcoma-
specific fusion protein EWS-FLI1 (E/F) in 2021 (49). Our
specific probe can make Ewing’s sarcoma fluorescence imaging
in cell experimentation and animal experimentation. Besides, it
does not show fluorescence for E/F-negative osteosarcoma cells.

For example, Li et al. (50) combined the non-antibody
binding protein of CD105 with fluorescein isothiocyanate
(FITC) to obtain a fluorescent probe targeting osteosarcoma.
This fluorescent probe causes the osteosarcoma cells, dissected
osteosarcoma tissues, and osteosarcoma in mice to emit
fluorescence, proving that it can label osteosarcoma.

Another example of what is designed by Zhou (51) is CH1055-
PEG-PT and CH1055-PEG-Affibody. These probes combined
Small molecule protein binding to 143b osteosarcoma cells with
Fluorescent dyes in the NIR-2 region. Both of these probes can
image fluorescence in osteosarcoma. The surgeons used
fluorescence guidance for tumor resection. Pathology specialists
sectioned the tumor and adjacent tissues and stained them for
microscopic examination after the surgery. The results revealed
that the fluorescence intensity of the tumor was higher than that
of adjacent tissues. The researcher suggests that, compared with
CT, the fluorescent probe can image tumors smaller than 1 cm in
diameter and has a clear fluorescence boundary.

This technology is further exemplified in animal
experimentation using indocyanine green and ABY-029
combined fluorescence imaging in soft tissue sarcoma surgery.
A B

C

FIGURE 2 | The chemical structure of fluorescence, magnetic, and SPECT nanoparticles that can compose multimodality probes. (A) A fluorescent dye: Cy5.5
carboxylic acid. (B) A magnetic nanoparticle as molecular imaging agent: gadodiamide. (C) A SPECT-CT tumor imaging agent: technetium Methylenediphosphonate
(99mTc-MDT).
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Sardar et al. (52) discovered that fluorescence imaging with ICG
and ABY-029 is superior to ICG or ABY-029 alone. Among
them, ABY-029 is more concentrated in the high-cell living tissue
area, while ICG is more concentrated in the low-cell area. The
article did not explore the reasons further. A possible explanation
for these results may be related to the difference in imaging
principles between the two probes. ICG accumulates more in
new blood vessels, whereas ABY-029 binds to cancer cells
specifically. It suggests that combining two fluorescent probes
with different localization areas and fluorescence imaging
principles could improve the specificity and sensitivity of
fluorescence imaging in bone and soft tissue tumor surgery.

Xu’s experimentation study explored the feasibility of specific
fluorescent probes used for intraoperative imaging after radiotherapy
and chemotherapy (36). Xu designed a mouse model of soft tissue
sarcoma after chemotherapy and radiotherapy and injected ABY-
029 intraoperative fluorescence imaging into the mice 4-8 hours
before surgery. It might be possible to estimate whether most
patients with soft tissue sarcoma undergoing preoperative
radiotherapy and chemotherapy can use ABY-029 Intraoperative
fluorescence imaging. The results confirmed the feasibility of
fluorescence imaging of soft tissue sarcoma in mice after
radiotherapy and chemotherapy. This outcome is contrary to that
of Nicoli et al. (53) who found indocyanine green could not
fluorescently label osteosarcoma after radiotherapy. This result
demonstrates the superiority of specific fluorescent probes
compared to fluorescence imaging in indocyanine green.

Another research compared several fluorescent probes on soft
tissue sarcoma mice (48). The researchers compare the
intraoperative tissue fluorescence range with HE stained sections,
and immunohistochemistry(IHC) to quantitatively compare TBR.
Compared to DC101(binding to VEGFR-2) TBR 3.7,
IntegriSense750(A small-molecule probe binding to integrin avb3)
TBR 7.0, and ProSense750EX (activated by locally expressed
cathepsin)TBR 5.8, the TBR of cetuximab-IRDye800CW was 16.8,
which was significantly higher than other fluorescent probes.

In addition to the fluorescent probes that have been assessed on
bone and soft tissue sarcoma, many newly designed fluorescent
probes may have the potential to be used in intraoperative imaging
Frontiers in Oncology | www.frontiersin.org 5
of bone and soft tissue sarcoma. Mahalingam et al. (54) designed
the Centyrin-Based Near-Infrared Probe, a fluorescent probe that
images EGFR-positive tumors. Reviews show that osteosarcoma
and soft tissue sarcoma can overexpress EGFR (55). In the future,
we can build mouse models and conduct further animal
experimentation to explore whether this probe is used for bone
and soft tissue tumor imaging.

For a ligand or antibody that specifically binds to bone and
soft tissue sarcoma, the ideal is to find a target not expressed in
other tissues and expressed in all bone and soft tissue sarcoma,
especially tissue cells surrounding the tumor. There are many
studies on tumor-specific markers of bone and soft tissue tumor
cells. CxCR4 (Cys-X-Cys receptor 4), PDGFR-b(Platelet-derived
growth factor receptor-b), TEM1 (Tumor Endothelial Marker 1),
VEGFR-1, EGFR, VEGFR-2, IGF-1R, IGF-2R, CD40, et al. are
high specific tumor markers (56–58). Scientists use these tumor-
specific markers to create antibodies or ligands and combine
antibodies and ligands with fluorescent dyes to make specific
fluorescent probes. According to animal experiments in the past
five years, ligands and small-molecule peptides spread faster than
antibodies and are more likely to accumulate in tumor tissue.
There are numerous fluorescent dyes on the market currently,
most of them are classified as rhodamines, oxazines, fluoresceins,
cyanines, and carbopyronines in structure (59). The commonly
used near-infrared fluorescent dyes such as IRDye800CW still
have high development prospects.

In the case of specific fluorescent probes, future research could
focus on developing new probes specifically binding to bone and
soft tissue sarcoma, determining whether existing fluorescent probes
can be used for bone and soft tissue sarcoma, and evaluating the
advantages, disadvantages, and effectiveness of the probes.

Multimodality Fluorescence
Imaging Probes
Probes for multimodal visualization in MRI, SPECT/CT, and
Near-Infrared Optical Imaging have gotten attention in the past
five years. These probes have the potential for preoperative
tumor imaging, surgical planning, and intraoperative tumor
fluorescence imaging.
TABLE 1 | Specific fluorescent probes for bone and soft tissue tumor imaging.

Target Probe Type of tumor Name Observation from
postinjection

Year author

CD105 Non-antibody-binding
proteins

Osteosarcoma A novel peptide
targets CD105

1h 2018 Xiaolong Li (50)

EGFR Affibody molecule Synovial sarcoma ABY-029 4h 2021 Hira Shahzad
Sardar (52)

Antibody Fibrosarcoma Cetuximab
-IRDye800CW

9d 2018 Andrew C.
Prince BSc (48)

EWS-FLI1 Peptide Ewing sarcoma CS2‐N‐E9R 6h 2021 Yu Wang (49)
integrin avb3 Small molecule Fibrosarcoma IntegriSense750 9d 2018 Andrew C.

Prince BSc (48)
Small molecule Osteosarcoma 68Ga-CHS2 4h 2018 Yao Sun (73)

osteocalcin property receptor Peptide the lung metastases of osteosarcoma CH1055-PEG
-Affibody

12-36h 2020 Hui Zhou (51)

Peptide Osteosarcoma CH1055-PEG-PT 12-36h 2020 Hui Zhou (51)
VEGFR2 Antibody Fibrosarcoma DC101

-IRDye800CW
7d 2018 Andrew C.

Prince BSc (48)
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It is exemplified in the animal experimentation undertaken by
Xu with 99mTc-Gd@OVA-Cy nanoprobe (60). Researchers
performed preoperative NIR fluorescence imaging, MRI, and
SPECT/CT of osteosarcoma with nanoprobe. After 15 minutes of
intravenous injection of the fluorescent probe, the images of all
three modes showed enhanced signals of osteosarcoma. In MRI,
SPECT/CT, and NIR imaging, researchers can observe a clear
boundary of osteosarcoma, and the tumor boundary is consistent
with the results of HE staining sections. Surprisingly, the
researchers also found that the fluorescent probe can show
lymph drainage and sentinel lymph nodes. Therefore Xu
considered that this probe might be used for osteosarcoma to
improve lymph node resection and preoperative planning.

Scientists designed many fluorescent probes for multimodal
imaging in the past five years. But there are few animal
experiments on whether these fluorescent probes can be applied
to bone and soft tissue sarcoma. Lee et al. (61) designed an Nd3
+-UCNPs nanoprobe specifically binding to CD44. The
nanoprobe is injected into the hepatocellular carcinoma of
patients, used for preoperative MRI detection and intraoperative
NIR tumor imaging. Related literature shows that bone and soft
tissue sarcoma can express CD44 (62). Therefore, this multimodal
probe may be significant in intraoperative and preoperative tumor
imaging for CD44-positive bone and soft tissue sarcoma.

Researchers also focus on probes for multimodal visualization
in SPECT/CT and intraoperative near-infrared optical imaging.
A notable example is the folate-ECG-ROX targeted folate
receptor in the tumor (63). Another example designed by
Manca is the ICG-99mTc probe, which facilitates visualization
of lymph drainage and assesses the sentinel lymph node (64).

Clinical Trials
Reports about intraoperative fluorescence imaging of bone and
soft tissue sarcoma are limited (Table 2). In 2019, Samkoe et al.
(65) reported a case of using ABY-029 intraoperative fluorescence
imaging for soft tissue sarcoma. The intraoperative fluorescence
intensity ratio of soft tissue sarcoma to normal tissue/background
is 2.0/3.4, which is sufficient to distinguish tumor from normal
tissue by fluorescence during operation. The tumor was stained
with hematoxylin-eosin staining and IHC postoperatively, and the
fluorescent tissue was confirmed to be soft tissue sarcoma, and the
fluorescence signal was highly associated with the expression
of EGFR.

In a similar case in the UK, 11 patients with bone and soft tissue
sarcoma were admitted for ICG intraoperative fluorescence imaging
(53). ICG was injected intravenously 16-24 hours before the
operation, and the Stryker Spy Phi near-infrared device collected
the fluorescence signal during the operation. Surgeons believe that
in three of the 11 cases, they removed more tissue during the
operation due to fluorescence. Nine of the 11 instances revealed
tumor fluorescence during surgery. Two instances exhibited no
fluorescence during surgery, one was grade 1 myxofibrosarcoma,
and the other was osteosarcoma with more than 90% necrosis after
chemotherapy. The failure could be because ICG fluorescence
imaging is better suited to tumors with a higher degree of
malignancy, no treatment, and fewer necrotic areas.
Frontiers in Oncology | www.frontiersin.org 6
This technology is further demonstrated in studies using
Bevacizumab-IRDye800cw fluorescence imaging in 15 patients
with soft tissue sarcoma during surgery (66). Researchers found
fluorescence in soft tissue sarcoma during and after the operation in
all 15 cases and no adverse reactions. Furthermore, the researcher
discovered that the necrotic area of soft tissue sarcoma treated by
neoadjuvant chemotherapy had no fluorescence. Auspiciously, we
noticed in clinical practice that the necrotic area is more inside the
tumor and has few effects on the fluorescence of the tumor border.

Furthermore, bone and soft tissue tumor metastasis are frequent.
Fluorescence imaging can detect tumor metastasis in bone and soft
tissue. These clinical trials reveal the need for fluorescence imaging
amongmetastases. Patients subjected toI CG injection were assessed
after24hours (notoverlappingwith theoptimal time for ICGtoshow
bone and soft tissue sarcoma). Among 44 patients with soft tissue
sarcoma lung metastases, 40 lung metastases showed fluorescence
during Video-assisted thoracoscopic surgery(VATS). Among 40
cases of osteosarcoma lung metastases, 36 cases had fluorescence.
The depth of all lung metastases without fluorescence imaging was
more than 2 cm. According to Predina, fluorescence imaging during
ICG surgery is better for detecting tumor metastasis with a depth
smaller than 2 cm and a diameter greater than 5 mm (67).

Scheichel (68) performed a clinical trial using 5-aminolevulinic
acid (5-ALA) intraoperative fluorescence imaging in fifty patients
with bone and soft tissue infiltrating meningiomas. All bone
fluorescence shows tumor invasion into bone tissue. Three
patients showed additional fluorescence in the periosteum and
temporal muscles, and histopathological examination confirmed
tumor infiltration (68).

Predina and colleagues studied a patient with osteosarcoma
lung metastases undergoing surgery and showed that fluorescence
imaging with OTL38 enabled the detection of Lung metastases.
According to previous studies, FR-a is overexpressed in 80% of
primary osteosarcoma. The lung metastases had strong
fluorescence after intravenous injection of 0.025mg/kg OTL38.
However, the researchers did not specify whether fluorescence was
observed in the primary osteosarcoma (69).
Future Perspectives
At present, intraoperative fluorescence imaging does not use
quantitative norms to determine whether it is tumor tissue.
There is no standard for how high the fluorescence contrast
should be to indicate a tumor in intraoperative fluorescence
imaging technology. To determine the standard, it is important
to conduct clinical trials including large sample size and compare
with pathological results. Futhermore, a technique combining
biophysics-inspired modeling and artificial intelligence (AI) was
envisioned to monitor intraoperative changes in NIR intensities
over time in different tissue and provide clinically significant
lesion identification (70). In addition, mixed reality(MR)
techniques that combine fluorescence imaging with CT have
been used in liver resection (71). We can embed an augmented
reality (AR)-based navigation system in the fluorescence imaging
devices (72), and evaluate the usefulness of the system in the
experimental study.
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The manufacture and use of fluorescent probes for
intraoperative fluorescence imaging of bone and soft tissue
sarcoma have a potential future. Non-specific probes may
additionally fluoresce in non-tumor areas, which can cause
surgeons to misjudge. The main direction of new fluorescent
probes will be specific fluorescent probes with high specificity to
label tumors. With the further investigation of the mechanism of
bone and soft tissue sarcoma, scientists will discover more
specific tumor-expressed molecules. We can accordingly design
specific fluorescent probes with high specificity and sensitivity.

Simultaneously, we noticed that tumors are heterogeneous, and
it is difficult for a probe to image all tumors of the same type.
Experiments are currently underway to combine two fluorescent
probes with different principles to increase accuracy and lower the
negative rate. In the future, we can design fluorescent probes with
multiple responses to tumors and the microenvironment to further
reduce the false-negative rate offluorescence during tumor surgery.
Frontiers in Oncology | www.frontiersin.org 7
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