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Classifying primary central
nervous system lymphoma from
glioblastoma using deep
learning and radiomics
based machine learning
approach - a systematic review
and meta-analysis

Amrita Guha1*, Jayant S. Goda1*, Archya Dasgupta2,
Abhishek Mahajan1, Soutik Halder3, Jeetendra Gawde3

and Sanjay Talole3

1Department of Radio Diagnosis, Tata Memorial Centre, Homi Bhaba National Institute, Mumbai,
India, 2Department of Radiation Oncology, Tata Memorial Centre, Homi Bhaba National Institute,
Mumbai, India, 3Department of Biostatistics, Tata Memorial Centre, Homi Bhaba National Institute,
Mumbai, India
Background: Glioblastoma (GBM) and primary central nervous system

lymphoma (PCNSL) are common in elderly yet difficult to differentiate on

MRI. Their management and prognosis are quite different. Recent surge of

interest in predictive analytics, using machine learning (ML) from radiomic

features and deep learning (DL) for diagnosing, predicting response and

prognosticating disease has evinced interest among radiologists and

clinicians. The objective of this systematic review and meta-analysis was to

evaluate the deep learning & ML algorithms in classifying PCNSL from GBM.

Methods: The authors performed a systematic review of the literature from

MEDLINE, EMBASE and the Cochrane central trials register for the search

strategy in accordance with PRISMA guidelines to select and evaluate studies

that included themes of ML, DL, AI, GBM, PCNSL. All studies reporting on ML

algorithms or DL that for differentiating PCNSL from GBM on MR imaging were

included. These studies were further narrowed down to focus on works

published between 2018 and 2021. Two researchers independently

conducted the literature screening, database extraction and risk bias

assessment. The extracted data was synthesised and analysed by forest plots.

Outcomes assessed were test characteristics such as accuracy, sensitivity,

specificity and balanced accuracy.

Results: Ten articles meeting the eligibility criteria were identified addressing

use of ML and DL in training and validation classifiers to distinguish PCNSL from

GBM on MR imaging. The total sample size was 1311 in the included studies. ML
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approach was used in 6 studies while DL in 4 studies. The lowest reported

sensitivity was 80%, while the highest reported sensitivity was 99% in studies in

which ML and DL was directly compared with the gold standard

histopathology. The lowest reported specificity was 87% while the highest

reported specificity was 100%. The highest reported balanced accuracy was

100% and the lowest was 84%.

Conclusions: Extensive search of the database revealed a limited number of

studies that have applied ML or DL to differentiate PCNSL from GBM. Of the

currently published studies, Both DL & ML algorithms have demonstrated

encouraging results and certainly have the potential to aid neurooncologists

in taking preoperative decisions in the future leading to not only reduction in

morbidities but also be cost effective.
KEYWORDS

machine learning, deep learning, predictive analytics, primary central nervous system
(CNS) lymphoma, glioblastoma, magnetic resonance imaging, metaanalysis,
systematic review
Introduction

Primary Central Nervous System Lymphomas (PCNSL) and

Glioblastomas(GBM) are tumours of the adults and elderly,

however, they are distinct entities in terms of their cell of

origin, incidence, natural history, treatment protocols and

prognosis (1). Even though these tumours are different, they

appear radiologically appear similar on Magnetic resonance

imaging(MRI) with only a few discerning features (2).

Although there are a few semantic MR imaging features that

help the radiologist to differentiate PCNSL from GBM (3), these

features are subjective and dependant on the expertise and the

experience of the radiologist with a resultant dependence on the

gold standard histopathology of the tumour specimen (4).

Certain special MRI sequences such as Diffusion Weighted

Imaging (DWI), MR spectroscopy (MRS) may complement

the semantic features (5), and could be useful in differentiating

the two tumours but these special MR protocols are resource

intense and their use is limited due to lack of widespread

availability and associated cost escalations have practise

implications in high throughput cancer centres.

Tumor radiomics based on texture feature analysis of MR

images represents an abstract mathematical quantitative

approach whereby multiple individual imaging features not

easily discerned by the naked eye are processed by means of

sophisticated algorithms to reveal quantifiable indices (6).

Radiomics maximizes the number of quantitative image

features from digital images and as a result, can overcome

intratumoral heterogeneities in both the molecular and

histopathological assessment of various tumour histologies
02
using measurable values that contribute to tumor diagnosis,

pre-surgical grading, response to treatment, prognostication of

cancers and predicting gene mutation. Moreover, with

quantified analyses of images, it has also been incorporated

with various novel computer technologies, such as machine

learning and deep learning algorithms like deep convolutional

neural network (dCNN) (7–15)

Even before deep learning methods were available, majority

of ML based radiology studies used texture features extracted

from manually segmented tumour images followed by

application of conventional ML tools such as random forests

and support vector machines (15–17) The advent of advanced

computational methods like deep learning algorithms brought a

paradigm shift in the image based classification of tumours and

their biology (18). The development of the convolutional neural

network (CNN), that comprises of convolution and pooling

layers, has led to automation in identifying relevant image

features for various classification tasks (19).

Although, various ML tools like random forest or support

vector machine models and DL algorithms like CNN have been

used to classify PCNSL from GBM, the results have been

heterogeneous in terms of the specificity, sensitivity and accuracy

of the various computational methods in differentiating these

tumours precluding their use in clinical practice. Therefore, there

remains a need for systematic and thorough review of all the

existing literature that have looked into the classification aspect

PCNSL vs GBM by various ML and DL tools.

Thus, the purpose of this systematic review and metanalysis

was to estimate the diagnostic accuracy of ML-based radiomics

and DL models in classifying PCNSL and GBM in an endeavour
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to eventually help neurooncologists in their management

decisions upfront. In addition, we evaluated different

combinations of selection methods and classifiers, trying to

make comparison of models’ performances.
Methods

Literature review

This study was conducted in concordance with Preferred

Reporting Items for Systematic Reviews and Meta-Analysis

(PRISMA) guidelines (Figure 1). Quality of primary studies

was assessed using the QUADAS 2 tool (Figure 2).

Literature Search Strategy:

Eligible studies reporting on the diagnostic yield of machine

learning or big data in differentiating PCNSL from GBM were

identified through a systematic search of the medical literature

using a validated search strategy. An electronic search of

Medline via PubMed, EMBASE and Cochrane database was

conducted without any language restrictions from January 1990

till December 2021 to identify potentially relevant articles.

Different key-words including Medical Subject Heading

(MeSH) terms were combined using Boolean operations

‘AND’ and ‘OR,’ namely, “Magnetic Resonance Imaging”

[MeSH] OR “MRI” AND “primary central nervous system
Frontiers in Oncology 03
lymphoma” [MeSH] OR “brain lymphoma” OR “PCNSL”

AND “diagnosis” OR “accuracy” OR “yield” AND “radiomics”

OR “Machine learning” OR “deep learning” OR “Artificial

Intelligence” OR “AI.” The Cochrane Central Register of

Controlled Trials (CENTRAL) and Database of Abstracts of

Reviews of Effectiveness (DARE) were also searched

electronically from inception until December 2021. Electronic

search was further supplemented by hand-searching of review

articles, cross references, and conference proceedings.
Eligibility criteria

a. Selection of studies
All studies reporting on ML algorithms that aimed to

differentiate between GBM and PCNSL on MR imaging were

included. Studies that compared ML with radiologists were

excluded in this meta-analysis in order to maintain homogeneity,

and we intend to explore this in a subsequent paper. Articles were

also excluded if they were commentaries, editorials, letters, or case

reports Two reviewers (AG and JSG) extracted relevant data from

each selected article, including study characteristics and findings of

test results using a standardized data extraction sheet that was

verified independently by the third reviewer (A.M). Any

discrepancy was resolved by consensus. Quality of individual

primary study in the meta-synthesis was assessed using the
FIGURE 1

PRISMA 2009 Flow Diagram.
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QUADAS 2 quality assessment tool for studies that uses criteria

scored as ‘yes, unclear, or no’ risk of bias, and assigns overall quality

rating as ‘low, high, or unclear’ to each individual study.

Furthermore, we also used the Radiomic Quality score (RQS), a

quality assessment tool specifically developed to evaluate quality of

radiomics in neuro-oncology studies (20). Studies were scored upto

a maximum of 36, involving six key domains.

b. Type of participants
Patients of PCNSL & GBM with pathological confirmation

of disease. In addition, all the patients had DICOM MR images

of the tumour.

c. Diagnostic metrics
The diagnostic metrics included the Sensitivities and

specificities of all the included studies. If papers described

performance using receiver operating characteristic curves, we

back-calculated possible sensitivities and specificities.
Quality assessment

Quality of primary studies was assessed using the QUADAS

2 tool and the Radiomic Quality Score (RQS) by two
Frontiers in Oncology 04
independent reviewers [AG and JSG]. The QUADAS-2 tool is

recommended by the agency for healthcare research and

Quality, the Cochrane Collaboration and the United Kingdom

National Institute for Health and Clinical excellence in order to

assess the risk of bias among 4 domains (patient selection, index

test, reference standard and flow & timing). Any disagreement

between the two reviewers were solved by mutual consensus, and

then independently scored by a third reviewer (AD). Four main

domains including patient selection, index test, reference

standard, and flow and timing were evaluated and plotted for

various risk bias domains (Figure 2).
Statistical analyses

We performed a meta-analysis of the performance of ML

and DL algorithms in differentiating PCNSL from GBM.

Reference standard was pathologic confirmation on biopsy of

concomitant primary CNS lymphoma or GBM. Results for

studies pooled in the quantitative analysis were calculated as

proportions, with meta-analysis performed using the generalized

linear mixed model (random-effects model) to produce

summary estimates with 95% confidence intervals (CIs).All

statistical analyses were performed on R Studio version
FIGURE 2

Studies included in the meta-analysis with the quality of diagnostic accuracy studies (QUADAS) scores.
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3.6.1.The ‘meta’, ‘mada’ and R-packages were used to draw forest

plots. We also used the mada package, a freely available package

to construct hierarchical summary receiver operating

characteristic (HSROC) models, as recommended by the

Cochrane Collaboration for meta-analyses of diagnostic tests.

The ‘robvis’ package was used for QUADAS analysis. Balanced

accuracy was also calculated using the average of sensitivity and

specificity for all the studies. The I (2) was estimated to test level

of heterogeneity.
Results

Literature search

Seventy studies of interest were found, of which 38 were

duplicates. Of the remaining 32, seven were rejected based on

title and abstract. Of the twenty-five full-text manuscripts

retrieved, ten were selected for this meta-analysis after

considering the inclusion and exclusion criteria (Figure 1). The

total sample size in the 10 studies was 1311 and the overall

accuracy (9 studies), sensitivity, and specificity values of each

study was documented. There was no available accuracy value in

one of the studies (21), nor were we able to reverse calculate it

with the given information. 5 studies used a 3T MRI scanner,

while 3 studies used both 3T and 1.5 T. Two studies (22, 23) did

not provide details on the scanner used or the scanning protocol.

None of the studies had a prospective design.

All eligible studies were relatively recent, and conducted

between 2018 to 2021. 60% of the studies were conducted from

hospitals in Asia (China/South Korea). The metananalysis

included ten studies that compared PCNSL from GBM. A

summary of the general characteristics of included studies is

presented in Table 1, while the method-related information is

summarized in Table 2. All studies reported at least one of the

following: accuracy, sensitivity, specificity, or AUC (Table 3).

Half of the studies used SVM as part of their ML algorithm,

while 40% used CNN (23) (23–25), and one paper (26) used step

wise selection with unsupervised learning. All of the studies

performed some version of internal independent or internal

cross-validation to train their ML algorithms, but only one of the

studies externally validated their model (24).

Among 10 studies, seven studies were from single centre,

and 3 studies were from multicentre data source (25–27).
Risk of bias assessment

The QUADAS tool assessment of risk of bias in the included

studies are shown in Figure 2. In domain 1, 60% studies reported

well-documented image acquisition protocols or use of publicly

available image databases, with one study having a high risk of

bias and two others with unclear risk in accruing for patient
Frontiers in Oncology 05
selection. The patient selection for these trials was based on a

case-control design because outcomes were known prior to

implementation of ML.

Additionally, in the second domain (“index tests”), the study

designs for the papers examined had prior knowledge of the

reference standard prior to implementing the index test, which

introduces a high risk of bias. Hence, the authors decided to

evaluate only the results of validation/test data set to conduct the

statistical analysis in this study. Only one study was externally

validated (21), therefore, all the other included studies were

assigned a high risk of bias. As noted previously, future studies of

ML should attempt to remove this risk of bias as much as

possible, ideally by utilizing a prospective design and

external validation.

As judged in domain 3, the reference standard of histological

diagnosis was considered to provide an accurate classification of

the target condition, although this reporting could be improved

if the authors provided details regarding how the histological

samples were obtained and processed and the specific

histological characteristics that determined the diagnosis.

Finally, most of the studies apparently included all eligible

patients in the analysis and had clearly defined inclusion and

exclusion criteria, with a resultant low amount of bias in the

fourth domain, “flow and timing”.

Overall, a high risk of bias was estimated in the studies as

summarized in Figure 2. Consequently, the quality assessment

was limited regarding the applicability of ML based

radiomics analysis.
Assessment of the radiomics
quality score

The median RQS score of the 10 studies was 16.0, which was

44.4% of the ideal score of 36 (Table 4). The lowest score was 13

and the highest score was 18 (50% of the ideal quality score).

Compared with the ideal score, the RQS of the selected studies

was lowest in the high level of evidence domain and open science

and data domain (0%), followed by biological/clinical validation,

and feature reproducibility in image and segmentation.

Feature reduction was missing from the study with the

lowest score (28). Meanwhile, studies with the highest score

earned additional points by using validation based on a dataset

from another institute.
Subgroup analysis

Data extraction

Two of the ten studies (29) (30), utilized a single MRI

sequence acquired by either conventional imaging, while the

remaining studies implemented both conventional and
frontiersin.org
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TABLE 1 Summary of the study profile & methodology of the reviewed studies.

Sr. Author/ Patient cohort Classifier/algorithm used Internal External MRI used MRI
sequences

Image Segmentation
& Feature extraction

tool

Reference
Standard

test

Type of
study

T1 contrast
enhanced

Scale Invariant Feature
Transformation (SIFT)

Histopathology Retrospective
study

la T1W, T2W &
T1W contrast
enhanced

Pyradiomics Histopathology Retrospective
study

Not reported Patch based Sparse
representation method

Histopathology Retrospective
study

T1W contrast,
DWI, T2W

Pyradiomics Histopathology Retrospective
study

la MR perfusion
using DSC
images & DTI

3D slicer, intensity-based
feature extraction from MR
maps

Histopathology Single
Institutional
retrospective
study

T1W contrast lifeX Histopathology Single
Institutional
retrospective
study

T1W contrast,
T2 FLAIR, DSC

Segmentation done
semiautomatically by two
neuroradiologists

Histopathology Retrospective
study

la T1 Contrast,
DSC-PWI

3D Slicer, Time intensity
curve normalization

Histopathology Retrospective
study

T1 W contrast, &
FLAIR, ADC

Pyradiomics Histopathology Single
Institutional
retrospective
study

T1 Contrast Not Reported Histopathology Single
Institutional
retrospective
study

fusion tensor Imaging; DSC, Dynamic Susceptibility; ML , Machine learning; CNN, convolutional
n; SVM, Support Vector Machine; LOGISMOS, Layered Optimal Graph Image Segmentation for
NN, Convolutional neural network; LOOCV, Leave One Out Cross Validation.

G
u
h
a
e
t
al.

10
.3
3
8
9
/fo

n
c.2

0
2
2
.8
8
4
173

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

0
6

No Year/
country

validation
set

validation
set

for
ImaginPCNSL GBM

1 Chen (1) et
al/China/
2018

30 66 Convolutional neural network, Yes, cross
validation

Yes 3 Tesla

2 Xiao (2) et
al/2018/
China

22 60 Machine learning: Naïve Bayes (NB), SVM, LR,
Random Forest model

Yes ,10-fold
internal cross
validation

No 1.5 & 3 Te

3 Guoqing (3)
et al/2018/
china

32 70 Convolutional neural network Yes,
Independent set

No 3 Tesla

4 Kim (4) et
al/2018/ S
Korea

65 78 Logistic regression, SVM, Random Forest model No Yes,
Independent
set

3 Tesla

5 Shrot (5) et
al/2019/
Israel

12 41 Machine learning:
Binary SVM

Yes, Leave one
out cross
validation

No 1.5 & 3 Te

6 Chen (6) et
al/2020/
China

62 76 5 selections: Distance correlation, RF, LASSO, XG
boost, GBDT; 3 Classifiers: LDA, SVM, LR

Yes,
Independent set

No 3 Tesla

7 Park (7) et
al/Korea/
2020

95 165 Convolutional Neural network Yes, Internal
Validation set

Yes,
Independent
set

3 Tesla

8 Escoda (8)
et al /2020/
Spain

47 48 Logistic binary regression Yes,
Independent set

No 1.5 & 3 Te

9 Bathla (9) et
al /2021/
USA

34 60 Machine learning
SVM with Polynomial kernel, SVM with radial
kernel ,neural network, MLP, Random Forest
Model, GBRM, Adaboost

Yes (5 fold
cross
validation)

No Not
Reported

10 McAvoy
(10) et al/
2021/USA

135 113 Convolutional Neural network yes,
independent

No 3 Tesla

FLAIR, Fluid Attenuation & Recovery; MLP, Multilayer Perception; SVM, Support Vector Machine; GBRM, Generalised Boosted regression Model; DTI, Di
Neural network; RF, Random forest; LASSO, Least Absolute Shrinkage and Selection Operator; PCA, Principal Component Analysis; LR, Logistic Regressio
Multiple Objects and Services; MLP, Multilayer perceptron; SIFT, Scale invariant feature transform; mRMR, Minimum redundancy maximum relevance; C
g

s

s

s
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advanced perfusion and Diffusion Weightage Imaging (DWI)

sequences. An imbalance in the ratio of sample size between

PCNSL cohort and GBM cohort was observed in all the studies

with a ratio of almost 2:1 and 3:1 in favour of GBM cohort.

However, two of the studies had a balanced sample size between

PCNSL and GBM cohort (27, 29).
Frontiers in Oncology 07
Heterogeneity assessment

Significant heterogeneity was present amongst the included

studies regarding their scanning protocols, image sequences

selected for analysis, methods of drawing ROI, feature

engineering, and methodology of using ML/DL algorithms.
TABLE 2 Summary of the results of the reviewed studies.

Sr.
No.

Author/
Year/
country

Diagnostic metrics of the best performing
model from the validation set

Study limitations reported Study strengths
reported

Accuracy Sensitivity Specificity AUC

1 Chen (1) et
al/2018/
China

0.906 0.8 0.955 0.982 - Single MR sequence was used Calculation methods are fast

2 Xiao (2) et
al/2018/
China

0.82 0.78 0.91 0.9 - non enhancing & multiple lesions were excluded
- Different scanners were used for image acquisition
resulting in imaging protocol heterogeinity

- Image pre-processing
technique used

3 Guoqing (3)
et al/2018/
China

0.945 0.9 0.96 NA Not reported -Completely automated

4 Kim (4) et
al/2018/ S
Korea

0.947 0.966 0.929 0.956 - Retrospective study with patient selection bias
- MR images of validation & discovery cohort were
obtained from the same machine thereby may not be
generalizable to other MR machines
-Features were chosen empirically

Not reported

5 Shrot (5) et
al/2019/
Israel

NA 1.00 1.00 NA -ROI tracing was done manually leading to intra &
interobserver variability
-Small sample size
- Non enhancing part of the tumour was excluded
- Impact of each MR sequence on the classification model
not reported

Not reported

6 Chen (6) et
al/2020/
china

0.979 0.982 0.976 0.978 -Isolated evaluation of T1C images
-Diagnostic Performance of radiomics based machine
learning was not compared with other MR technology
-Small sample size
-No external validation

Not reported

7 Park (7) et
al/Korea/
2020

NA 0.95 0.76 0.89 -Diagnostic performance dropped in external data set due
to overfitting
- Spatial heterogeneity
- Differences in contrast preloading & Image acquisition
protocol results in variability of time signal intensity curves

Not reported

8 Escoda (8)
et al/2020/
Spain

0.93 0.93 0.92 NA -Retrospective nature of the study.
- Wide range of MR sequences

-Near Homogenous Imaging
protocol.
- Balancing of tumour types
- semi-automation in image
segmentation & co-
registration
- Objective approach to
classification process

9 Bathla (9)
et al /2021/
USA

0.934 0.97 0.871 0.977 Small sample size
-Absence of external validation set
-Did not assess deep neural networks

-Well documented Imaging
protocol
- use of feature selection
techniques, discrimination
and nested cross validation

10 McAvoy
(10) et al/
2021/USA

0.93 1 0.86 0.94
(GBM)

- Retrospective study with small number of patients
- Loss of data while exporting the image data sets

Not reported

0.94 0.87 1 0.95
(PCNSL)
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The forest plots for balanced accuracy, sensitivity, and specificity

were plotted based on the total sample size, and the forest plot

for accuracy was plotted based on 1051 samples (excluding the

study conducted by Park JE (21) as accuracy data was not

available). The I (2) was estimated to test the level of

heterogeneity; and since this was greater than 50%, random

effect model for meta-analysis was used.

A large difference between the confidence region and 95%

prediction regions in the Hierarchical Summary Receiver Operator

Curve (HSROC) plot curve represents the heterogeneity across the

studies in Figure 3. A forest plot was drawn to estimate the

heterogeneity in sensitivity, specificity, accuracy and balanced

accuracy as represented in Figures 4A–D. Significant

heterogeneity was found in both sensitivity (I (2) 83%, p < 0.01),

specificity (I (2) 87%, p ≤ 0.01) and accuracy (I (2) 65%, p ≤ 0.01).
Threshold effect assessment (HSROC)

The Spearman correlation coefficient between the sensitivity

and false-positive rate was − 0.16 (p = 0.66), indicating the

absence of a threshold effect. A threshold effect indicates a
Frontiers in Oncology 08
positive correlation between sensitivities and the false-positive

rate that leads to a “shoulder arm” plot in the summary receiver-

operating characteristic curve space. However, the visual

assessment of the HSROC indicates the absence of a threshold

effect as shoulder is absent in the HSROC space.
Data analysis

The HSROC based on a random effect model was applied to

account for both intra- and interstudy variances in analysing the

diagnostic accuracy of the ML and DL algorithms utilizing

radiomic features for classifying PCNSL from GBM. The area

under the curve (AUC) data available from 7 studies showed a

ranged between 0.89 to 0.98 in the validation data set indicating

high diagnostic performance.
Subgroup analysis

The pooled sensitivity, specificity, and accuracy were

combined using a random effects model because of the

heterogeneity across the reviewed studies in Figures 4A–D.
TABLE 3 Summary of the diagnostic metrics of all the studies included in the meta-analysis.

Author Year Sample Size (N) Accuracy (%) Sensitivity (%) Specificity (%) Balanced Accuracy (%) AUC (%)

Chen Y (1) 2018 96 90.6 80.0 95.5 87.8 98.2

Xiao DD (2) 2018 82 82.0 78.0 91.0 84.5 90.0

Wu G (3) 2018 102 94.5 90.0 96.0 93.0 NA

Shrot S (5) 2019 53 93.6 100 100 100 NA

Chen C (6) 2020 138 97.9 98.2 97.6 97.9 97.8

Park JE (7) 2020 260 NA 95.0 76.0 85.5 89.0

Escoda A (8) 2020 95 93.0 93.0 92.0 92.5 NA

Bathla G (9) 2021 94 93.4 97.0 87.1 92.1 97.7

McAvoy (10) M 2021 248 94.0 87.0 100 93.5 95.0

Kim Y (4) 2018 143 94.7 96.6 92.9 94.7 95.6
fronti
TABLE 4 Summary of Radiomics Quality Score (RQS) of individual studies.

Sr. No Name RQS score % RQS checkpoint 1
(image protocol quality)

RQS checkpoint 12 RQS checkpoint 3

1 Chen Y (1) (2018) 16 44.44% 1 1 14

2 Xiao DD (2) (2018) 16 44.44% 1 1 14

3 Wu G (3) (2018) 15 41.67% 1 1 13

4 Short S (5) (2019) 13 36.11% 1 1 11

5 Chen C (6) (2020) 17 47.22% 1 1 15

6 Park JE (7) (2020) 18 50.00% 1 1 16

7 Pons-Escoda A (8) (2020) 16 44.44% 1 1 14

8 Bathla G (9) (2021) 16 44.44% 1 1 14

9 McAvoy (10) M (2021) 16 44.44% 1 1 14

10 Kim Y (4) (2018) 17 47.22% 1 1 15
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In the subgroup analysis, the overall sensitivity of diagnosing

PCNSL was lower (92% (95% CI, 0.88, 0.95)) than the specificity

(94% (95% CI, 0.89, 0.97)). We did not find any significant

differences in sensitivity, specificity or accuracy based on sample

sizes less than or greater than 100.
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Discussion

This systematic review and meta-analysis evaluated the

efficacy of deep learning/machine learning based algorithms in

differentiating PCNSL from GBMs, a dilemma often
FIGURE 3

Hierarchical Summary Receiver Operator Curve (HSROC) plot displaying the diagnostic performance of radiomic based ML tools & DL tools in
differentiating PCNSL from GBM. Hierarchical Summary Receiver Operator Curve (HSROC) plot displaying the diagnostic performance of
radiomic based ML tools & DL tools in differentiating PCNSL from GBM. Each coloured triangle represents each of the studies in the meta-
analysis. The plotted curve is the regression line that summarizes the overall diagnostic accuracy. The pooled sensitivity and specificity estimate
is based on the assumption of conditional independence and the use of perfect reference standards. The “TP”, “FP”, “FN”, “TN” rates for the two
studies (Park JE 2020 and Shrot S 2019 studies) as the former study has no available accuracy value and the latter one has both sensitivity and
specificity equal to one.
B

C D

A

FIGURE 4

(A–D) Performance evaluation of the ML and DL algorithms of all the studies in distinguishing PCNSL from GBM as represented by the random
forest plots. (A) Forest plots of sensitivity. (B): Forest plots of accuracy. (C) Forest plot of balanced accuracy, (D) Forest plots of specificity.
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encountered with neuroradiologists and the neurosurgeons,

often requiring invasive biopsies to classify the above entities.

Apart from the dilemma of differentiating the above malignant

lesions, neuroradiologists often also have difficulty in

differentiating PCNSL from inflammatory conditions (multiple

sclerosis and tumifactive demyelination) often having

therapeutic implications. Therefore, having non-invasive

tools like radiomics and AI would help increase the diagnostic

ability of the neuroradiologists to differentiate not only

malignant from benign inflammatory conditions but also

classify malignant lesions like PCNSL and GBM which are

hitherto difficult to distinguish using radiological semantic

features. This could be further useful in patients where

histopathological examination cannot be done due to a

multitude of reasons such as deep location within the brain

and poor performance status.IN such a scenario, non- invasive

methods like radiomics and deep learning from the MR images

may help the clinician.

Although radiomics and deep learning algorithms have been

used for a multitude of neurological conditions (31–34) its use in

classifying malignant conditions and differentiating them is of

paramount importance as the therapy and prognosis changes

across the spectrum of brain tumours. The present study

highlights the use of ML and DL algorithms for discriminating

PCNSL and GBM on radiological imaging. We identified 10

studies that trained predictive models using ML or DL

algorithms to classify PCNSL from GBM against the reference

gold standard histopathology. All the studies, used classifiers

that trained on radiomic features extracted from MR images or

classifiers using deep learning algorithms like convolutional

neural network (CNN).

The pooled analysis of all the studies showed encouraging

results with ML or DL classifiers performing extremely well with

highest accuracy of 97.9% and the lowest of 82% in

differentiating PCNSL from GBM. The area under the curve

(AUC) ranged between 89%-98.2% among all the studies that

were reviewed. (Table 4 and Figure 4)

The diagnostic metrics from the pooled analysis of the

results of the 10 studies showed a high degree of concordance

in classifying PCNSL from GBM as against the reference

histopathology. However, these positive results must be

interpreted with caution as a multitude of factors such as small

sample size, heterogenous imaging protocols, patient selection

criteria into the training and the validation set may have led to

overfitting of the data at the time of model development.

Overfitting is common in radiomic studies involving machine

learning and deep earning classifiers that reduces its potential for

immediate incorporation into clinical practise and use it for

treatment decisions (29–31).

Therefore, ML and DL classifiers need to be trained in large

data sets using highly heterogenous population. Further, these

models (classifiers) show variations with subtle changes in the

methods of segmentation, pre-processing of MR images
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acquired from heterogenous MR machines. A previously

conducted systematic review and meta-analysis in 2018

included 8 studies which used ML based classifiers for

differentiating PCNSL from GBM. Seven of the eight studies

did not have any external validation except for one study in

which the ML classifier modelled on the training set was

validated on an external data set (32). Similar to the above

metaanalysis, our metaanalysis also had a single study that was

externally validated on a different data set. There has been a

spurt in publications on ML/DL models in classifying PCNSL

versus GBM since 2018, and we found a total of 24 articles

investigating role of ML and DL algorithms for classifying

PCNSL and GBM. In order to make the meta-analysis more

robust, we focussed on studies reporting on the performance of

their ML/DL models exclusively against the reference

standard (histopathology).

A recent systematic review from 23 studies also investigated

the role of DL & ML in differentiating PCNSL from all grades

(Grade-II-IV) of Gliomas (31). However, significant differences

exist in the methodology and the search strategy of our

metaanalysis. Moreover, our metaanalysis included only those

studies that used ML or AL for differentiating PCNSL from

Glioblastoma against the gold standard histopathology. By

combining all the studies, on DL/ML in differentiate ng

PCNSL from GBM, they were left with a heterogenous dataset

precluding any further mathematical analysis to derive a

meaningful data, and hence had to contend with only a

systematic review of the available literature.

However, at the very outset and literature search strategy

stage of our manuscript, we identified the heterogeneity in

methodology of the conducted studies, and realised they could

be broadly classified into 2 types- those comparing ML/DL

with histopathology as a gold standard, and then those

comparing ML/DL models with radiologists performance. We

found around 12 papers under each category, and analysed them

separately. This current manuscript deals with the performance

of ML/DL methods versus histopathology as a gold

standard. Hence, mathematical analysis in the form of

statistical tests for a meta-analysis were performed to evaluate

the proof of performance of advanced computing methods in

differentiating PCNSL from GBM and not other gliomas.

To summarise, ML and DL tools may complement the

radiologic features to differentiate PCNSL from GBM. These

tools may have the potential to assist radiologists in approaching

cases that may have features common to both PCNSL and GBM.

Presently these algorithms may have certain deficiencies,

however with refinement in the computing processes, ML/DL

based models will likely help the neurosurgeons improve the

quality of managing patients of brain tumours by optimizing the

use of invasive diagnostic procedures in the future, thereby

reducing the incidence of complications that compromise

patient quality of life and life expectancy while expediting

initiation of intervention.
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Strengths of the study

We assessed ML and DL performance in both internal and

external validation data sets which enhanced the credibility of

the review. Being able to compare both the analytic methods to

the gold standard histopathology in the test cohort and

validation cohort have produced fairly clear results.

Limitations of the Study

Application of ML in neuroradiology for solving the

dilemma of whether an image depicts GBM or PCNSL is

relatively new. There is currently a limited number of

publications that address this scientific inquiry. Our search

strategy for the present study only included limited databases

(PubMed, EMBASE & Cochrane database). All the studies that

were reviewed varied in terms of the imaging protocols used,

types of MRI machines used, MR sequences used (i.e., T1-

weighted, T2-weighted, diffusion-weighted, etc.), method of

tumour segmentation, tools for feature selection and reduction

and ultimately the types of classifiers used for training the image

datasets. Future studies that address distinguishing GBM from

PCNSL should prospectively evaluate the performance of their

model and also consider the utility of newer MRI techniques that

may improve differentiation of these two pathologies.

Additionally, our assessment of bias revealed inherent issues

with applying the QUADAS-2 to ML studies. Despite these

limitations, we maintain that assessment of bias is an

absolute necessity.
Future directions:

Prospective multicentre trials are the need of the hour to

generate more robust data so that results from an independent

external validation dataset are available. The inherent variability

across studies with regard to the process of conducting each step

leading to the radiomics model could be attributed to high bias

and heterogeneity, not necessarily underlying biologic effects,

standardization in image acquisit ion, segmentation

methodology, feature selection and classification, statistical

analysis, and the reporting format should be established

for reproducibility and the generalization of ML-based

radiomics studies (33). Essential steps for standardization

include optimizing the standard imaging acquisition process,

fully automating the process for segmentation and feature

engineering, reducing the redundancy of feature numbers,

enhancing the reproducibility of radiomics features, and

reporting the results transparently. The guidelines suggested

by the relevant professional societies, such as the Society of

Nuclear Medicine and Molecular Imaging, the Quantitative

Imaging Network, Radiology Society of North America,

and the European Society of Radiology that lead the

field in imaging methods, including radiomics, should be

considered (34).
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Conclusion

The systematic review of studies investigating ML & DL based

algorithms to differentiate PCNSL from GBM have demonstrated

encouraging results and certainly have the potential to aid

neurooncologists in taking preoperative treatment decisions in

the future leading to not only reduction in morbidities but also be

cost effective. It is likely that predictive analytics using ML or DL

based algorithms will help optimize diagnostic decision-making

process and individualise patient management. Although studies

had limited sample size, formal predictive analytics, using these

models may have the potential to improve clinician performance

complementing human expertise and experience with the

computational power. However, one must keep in mind the

pitfalls associated with overfitting the data due to limited image

data sets and resultant lack of training these algorithms to

maximize the generalizability and their utility. Therefore,

prospective multicentric trials with large data sets should be

initiated to train the models on large heterogeneous and real-

world data sets that account for the heterogeneity encountered in

acquisition of images in the real-world clinical practice.
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