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Colorectal cancer (CRC) is a common cancer of the digestive system that endangers
human health. Immunotherapy is widely used in the treatment of patients with cancer.
Some patients with dMMR/MSI-H CRC benefit from treatments that use immune
checkpoint inhibitors, but most CRC patients are not sensitive to immunotherapy.
Furthermore, internal resistance and immune escape lead to a reduced immunotherapy
response. Therefore, the development of an effective combination therapy to improve the
response rate to immunotherapy is a goal of cancer research. Natural products are
potential candidates for comprehensive cancer treatments due to their wide range of
immunomodulatory effects through multifactorial underlying mechanisms. In this review,
we summarize the challenges in the treatment of CRC and assess the immunomodulatory
effects of natural products and their active components. Our work suggests that natural
products represent potential options for combined CRC immunotherapy.
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INTRODUCTION

The incidence rate andmortality rate of colorectal cancer (CRC) are third and secondamongall diseases,
respectively, and CRC is characterized by a lack of obvious symptoms in the early stage and poor
prognosis in the advanced stage (1). The main treatments for CRC are surgery, chemotherapy,
radiotherapy, and targeted therapy. The emergence of immunotherapy has provided a transformative
newmethod for the comprehensive treatment of cancer. An important function of the human immune
system is to recognize and eliminate tumor cells, a process known as tumor immune surveillance, which
Abbreviations: CRC, Colorectal cancer; dMMR, defective DNA mismatch repair; MSI, Microsatellite instability; MSI-H,
Microsatellite instability High; NK cell, Nature killer cell; ICIs, Immune checkpoint inhibitors; PD-1, Programmed cell death 1;
CD274(PD-L1), Programmed cell death ligand 1; CTLA4, Cytotoxic T-lymphocyte associated protein 4; IHC,
Immunohistochemistry; PCR, Polymerase chain reaction; NGS, Novel next-generation sequencing; ORR, Overall response
rate; PFS, Progression-free survival; NCCN, National Comprehensive Cancer Network; VEGF, Vascular endothelial growth
factor; pMMR, proficient mismatch repair; MSS, Microsatellite stable; TMB, Tumor mutation burden; NSCLC, Non-small-cell
lung cancers; MDSC, Myeloid-derived suppressor cells; OS, Overall survival; PGE2, Prostaglandin E2; IL6, Interleukin 6;
AOM, Azoxymethane; DSS, Dextran sodium sulfate; TLR4, Toll-like receptor 4; NF-kB, Nuclear factor-kappa B; INFG (INF-
gamma), Interferon-gamma; TNF(TNF-alpha), Tumor necrosis factor-alpha; STAT3, Signal transducer and activator of
transcription 3.
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is mainly performed by antigen-presenting cells, T lymphocytes, B
lymphocytes and natural killer (NK) cells (2, 3). Cancer cells inhibit
the body’s immune system in variousways to avoid the surveillance
of the immune system, resulting in tumor immune escape (4, 5).
Tumor immunotherapy is a treatment method used to control and
eliminate cancer cells by restarting and maintaining the tumor
immune cycle and restoring the body’s normal antitumor immune
response. Tumor immunotherapy mainly involves immune
checkpoint inhibitors (ICIs), cellular immunotherapy and cancer
vaccines. At present, the administration of ICIs is the most widely
used tumor immunotherapy method. Among ICIs, the
representative (PDCD1,PD-1) inhibitor, its (CD274,PD-L1)
inhibitor, and cytotoxic T-lymphocyte associated protein 4
(CTLA4) restore the ability of immune cells to fight tumors by
counteracting the inhibition of the immune system by tumor cells.
At present, several ICIs targeting PDCD1(PD-1), CD274(PD-L1)
andCTLA4havebeenapproved for the clinical treatment of various
solid tumors, including MSI-H/dMMR CRC (4, 6, 7). However,
there are still many challenges in the treatment of CRC with ICIs.
MSI-H/dMMR tumors account for 5% of CRC cases, and some
patients can benefit from ICIs, but most CRC tumors are still in a
“cold” state. Therefore, it is necessary to findmethods to transform
“cold” tumors into “hot” tumors to make them more sensitive
to ICIs.

Natural products, including plants, mushrooms, bacteria,
animal metabolism products or organs and even mineral
substances, characterized by various structure and activities,
are well-known by the researchers gradually in recent years.
Some evidence show that natural products have potential
immunomodulatory effects and can play a synergistic role
when combined with ICIs. So it is more important to explore
the mechanisms of nature products for providing strongly
clinical evidence. In this review, we summarized the effects of
natural products on modulating macrophages, T cells, NK cells
and a combination of ICIs.
THE ADVANTAGES AND LIMITATIONS OF
ICIS FOR CRC TREATMENT

Currently, the main treatment for resectable CRC is surgery
combined with chemotherapy or targeted medicines. However,
metastatic CRC treatments remain challenging. According to
retrospective analyses, some patients benefit less from 5-FU
adjuvant chemotherapy (8, 9) because the molecular mechanism
of CRC is different, and it may lead to more heterogeneity.

In 1997, the National Cancer Institute first defined
microsatellite instability (MSI), which is a form of genomic
instability associated with defective DNA mismatch repair
(dMMR) in tumors; two mononucleotide repeats (BAT26 and
BAT25) and three dinucleotide repeats (D5S346, D2S123,
D17S250) were validated in the detection panel (10). MSI can
currently be assessed by immunohistochemistry (IHC),
including the expression of MSH2, MSH6, PMS2, MLH1 and
polymerase chain reaction (PCR); moreover, novel next-
generation sequencing (NGS) has become a new testing option.
Frontiers in Oncology | www.frontiersin.org 2
Intriguingly, investigators found that MSI-high (MSI-H) CRC is
associated with increased neoantigen load and immune
infiltration (11–14), which means that immune checkpoint
blockade may be an effective method of therapy.

Currently,MSI assessment can influence the selection of clinical
medications and predict outcomes in colorectal cancer (15, 16).
KEYNOTE-164, a phase II clinical trial, demonstrated that
pembrolizumab was effective in MSI-H-dMMR CRC; it displayed
a higher overall response rate (ORR) and improved progression-
free survival (PFS) (17). KEYNOTE-177, which enrolled patients
with stage IV MSI-H-dMMR CRC, demonstrated that the PFS in
the pembrolizumab group was prolonged by 8.3 months, with an
ORR of 43.8%, and there were fewer treatment-related adverse
events in the pembrolizumab group than in the chemotherapy
group (18, 19). The PDCD1(PD-1) inhibitor nivolumab showed
durable responses and disease control, and 51 patients with
metastatic MSI-H CRC had disease control for 12 weeks or
longer; these results were similar to the findings of the
CheckMate-142 study (20). Meanwhile, nivolumab plus the
CTLA4 inhibitor ipilimumab displayed effective responses: 80%
of the 119 patients had a disease control rate over 12%, and the
investigator-assessed ORR was 55% (21). Considering the dose-
dependent effect of ipilimumab, nivolumab combined with a low
dose of ipilimumab showed robust anddurable clinical benefit, with
a 69% ORR and 84% disease control rate until the data cutoff (22).
Based on the results of numerous clinical trials, the 2021 NCCN
guidelines suggest that patients with advanced or metastatic
CRC can use immunotherapy checkpoint blockade for
subsequent therapy.

Although the results of clinical trials on dMMR/MSI-H are
exciting, the response rates range between 30% and 50%,
suggesting that resistance and immune escape still exist (23–
25). More clinical trials have focused on the combination of
VEGF inhibitors and chemotherapy (26–28); most of the studies
are ongoing and the results are pending.
HOW TO MAKE ICIS MORE EFFECTIVE
FOR CRC

The incidence of dMMR CRC is approximately 5%, which is far
lower than that of proficient mismatch repair (pMMR) CRC
(29). The conventional treatment of pMMR/microsatellite stable
(MSS) CRC is systematic chemotherapy based on 5-fluorouracil
and platinum, and most of patients have lower responses to
immunotherapy due to intrinsic resistance. The mechanism may
involve low TMB, a lack of tumor antigens and a suppressive
microenvironment (30, 31). How to turn “cold” tumors into
“hot” tumors is currently a popular topic in academic research.

Some studies have shown that chemotherapy can improve
immunogenicity and enhance the efficacy of ICIs (32, 33).
Currently, some ongoing clinical trials are exploring chemotherapy
combined with angiogenesis medicine and ICIs. A protocol for
unresectable metastatic CRC was described in the AtezoTRIBE
study that enrolled patients receiving FOLFOXIRI plus
bevacizumab; some patients received sequential atezolizumab (34).
May 2022 | Volume 12 | Article 884423

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Dong et al. Natural Products Enhance Cancer Immunotherapy
A study of chemorefractory MSS mCRC included two cohorts: one
was pembrolizumab plus pemetrexed, and in the other oxaliplatin
was added for the dose escalation portion of the study (35). Although
the trials have not shown the endpoint and somedid not consider the
microsatellite status, they represent worthwhile attempts.

Meanwhile, antiangiogenic and multitarget drugs also display
synergistic sensitivity to ICIs. Innate immunity and immune
adoption can directly lead to tumor angiogenesis (36), and the
most widely studied VEGF family also drives angiogenesis to
promote immune escape and immune suppression (37).
Bevacizumab is the first antiangiogenic drug approved for
metastatic CRC, NSCLC, metastatic renal cell carcinoma, and
recurrent/metastatic cervical cancer (38, 39). Combining
bevacizumab with immunotherapy promoted T cell infiltration,
enhanced local immune activation and inhibited the expansion
of MDSCs in preclinical studies (40, 41). Likewise, the use of
bevacizumab combined with ICIs has been studied in many
clinical trials, such as those investigating NSCLC, recurrent
glioblastoma (42) and ovarian cancer (6, 43, 44); clinical trials
for CRC are still ongoing, especially for MSS/pMMR CRC (45–
47). In addition, multitarget antiangiogenic drugs show better
responses. An open-label, phase II trial that enrolled 25 CRC
patients demonstrated that a dose of regorafenib 80 mg can
increase sensitivity to nivolumab, and the median PFS was 7.9
months (48). Similarly, a case report showed that in an MSS
patient who received fruquintinib plus sindilizumab for six
cycles, the lymph nodes became fewer and smaller, and CA199
was decreased (49). In a phase II study of patients with advanced
refractory CRC, the median OS was 6.6 months for patients who
received durvalumab and tremelimumab compared with the
cohort who received supportive care, and the patients accepted
the continuation of treatment with TAS-102 or regorafenib after
disease progression (50). Not only the clinical report but also the
author-selected syngeneic MSS model demonstrated that the
combination of the two drugs could inhibit proliferation,
induce apoptosis and promote vascular normalization (49).
Hence, ICIs combined with antiangiogenic drugs may be a
promising method of MSS CRC treatment.

In addition, CRC has some mutations driven by RAS, BRAF,
EGFR, HER-2 and POLE, and most of them can impact
treatment and prognosis. For example, approximately 10% of
patients diagnosed with CRC harbor the BRAF mutation, which
is considered a poor prognostic factor, and one third of
mutations are associated with MSI (51–54). As shown in the
Checkmate-142 study, the ORR was 25% in the BRAF mutation
group and similar to that in the combined nivolumab and
ipilimumab group (21, 22). A case report suggested that a
patient harboring MSS and BRAF V600E mutations responded
well to nivolumab and bevacizumab, achieving more than 17
months of PFS (55). However, some studies have reported that
the BRAF mutation does not influence the response to
immunotherapy (56, 57), and combination therapy needs to be
further explored in large samples. Apart from the BRAF V600E
mutation, a common oncogenic mutation is RAS mutation,
especially KRAS mutation, which accounts for approximately
40% of CRC cases, and is related to poor prognosis and
Frontiers in Oncology | www.frontiersin.org 3
metastasis (58, 59). In addition, the KRAS mutation in CRC is
associated with immune suppression and immune infiltration
(60, 61). Some current clinical trials are aimed at investigating
these mutations. A phase I/II study enrolled CRC patients with
RAS mutations regardless of MSS status to assess the safety and
efficacy of the combination of durvalumab and tremelimumab
(62). Likewise, a phase II study focused CRC with RAS or BRAF
mutations and investigated the use of nivolumab combined with
FOLFOXIRI/bevacizumab (63). These studies demonstrate that
immunotherapy still has considerable potential for the treatment
of CRC mutations.
NATURAL PRODUCTS EXERT
MODULATING EFFECTS ON THE
IMMUNE SYSTEM IN CRC

In addition to using the above-mentioned methods, researchers
have paid attention to natural products. Natural products
include the active compounds in plants, mushrooms, bacteria,
animal metabolism products or organs and even mineral
substances. These products have been explored and used for a
thousand years. Some active compounds have proven antitumor,
antioxidant, and anti-inflammatory effects (64). However, there
are still a number of natural products that have adverse or toxic
effects; these products must be used properly or avoided. The
specific mechanism of natural products is still unknown and
requires further investigation. According to recent evidence,
natural products can directly regulate innate immunity and
adoptive immunity (65); they play a role in preventing tumor
development and modulating immunity (66–68). Thus, natural
products show promise as agents in immunotherapy.

First, natural products can influence the immunemicroenvironment
of early CRC in multiple ways, affecting M2 macrophage
polarization to M1 to exert an immunomodulation effect.
Isoliquiritigenin, a flavonoid derived from licorice, blocks M2
polarization in colitis-related tumorigenesis and inhibits the
development of colorectal cancer by downregulating PGE2/IL6
signaling (69). Apple polysaccharides not only prevent
the carcinogenesis induced by AOM/DSS in mice but also
modulate the M2 to M1 macrophage phenotype and
upregulate TLR4/NF-kB signaling (70). Most basic
experiments have adopted the AOM/DSS model or the CAC
model to indicate the mechanism by which natural products
affect macrophages (70–75). Taken together, these results show
that there are many natural products that play important roles in
inflammatory cancer transformation via different mechanisms,
and natural products will intervene in CRC development in the
near future.

Natural products can also influence T cells, NK cells and Treg
cells. Black raspberries can significantly inhibit CRC progression
and increase NK cells in tissues infiltrating the APC Min+/- DSS
and AOM/DSS models, and the results were validated in human
CRC tissue (76, 77). In addition, Ecklonia cava fucoidan (ECF)
not only stimulates NK cell activation and proliferation but also
May 2022 | Volume 12 | Article 884423

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Dong et al. Natural Products Enhance Cancer Immunotherapy
induces NK cell activation through DCs (78). Moreover, rice hull
polysaccharides (RHPS) can enhance NK cell activation and
induce the secretion of INFG (INF-gamma) and TNF(TNF-
alpha) in vitro; they also inhibit tumors in CT-26-bearing mice
and enhance NK cell activation in vivo (79). It is clear that
natural products demonstrate antitumor effects by influencing
NK cell activity.

Similarly, natural products can cause T cells to exert immune
modulating effects. Another well-known immunomodulatory
natural product, curcumin, may suppress the expression of
FOXP3 on Tregs and enhance the ability of T cells to kill tumor
cells and modulate multiple immune cytokines (80–83). A control
study revealed that the administration of curcumin can suppress
the transcription of the FOXP3 gene and convert Tregs to Th1 cells
by enhancing INFG (INF-gamma) production (84). In an in vivo
experiment, researchers selected a CT-26 mouse model to compare
curcumin and sildenafil combined with anti-PDCD-1(PD-1) and
showed that the tumor volume was smaller in the combined
treatment group (85). Based on preclinical research, curcumin is
a potential natural product, especially when combined with
immunotherapy. In addition, natural products can inhibit CRC
metastasis by regulating the tumor microenvironment. The natural
small molecule bigelovin may inhibit colorectal tumor growth by
regulating the tumor immune microenvironment, increasing the T
lymphocyte and macrophage populations, and inhibiting liver and
lung metastasis of CRC through the IL6/STAT3 pathway (86).
Furthermore, natural products can also upregulate IL-17 secretion
to stimulate T cell proliferation or differentiation. Gan cao
(Glycyrrhiza uralensis Fisch.) polysaccharides, especially those of
low molecular weight, can upregulate IL-17 and enhance T
lymphocyte proliferation (87). The author found that red wine
extract could inhibit tumor progression and affect T lymphocyte
cell differentiation into T helper 17 cells (88). Other studies have
shown that natural products can alleviate tumor growth and
modulate immunity by restoring intestinal barriers (89), inducing
DC maturation (90) and reducing the accumulation of myeloid-
derived suppressor cells (MDSCs) (91). It’s noteworthy that
quercetin and alantolactone not only can induce immunogenic
cell death and cell apoptosis for MSS CRC, but also can reduce
immunosuppressive cell population like MDSCs, Treg and so on.
This study adjusted nanoformulated codelivery, on the other hand
provided a basis for multi-drug combination of nature
products (92).

Natural products combined with ICIs demonstrate better
responses in patients, and this strategy may be a prospective
method for use in the clinic. Many studies have investigated
natural products other than curcumin. Atractylenolide I
significantly improves the cytotoxic effect of T lymphocytes on
tumor cells and promotes the antigen presentation of tumor
cells. Atractylenolide I has a synergistic effect in the treatment of
CRC when combined with immune checkpoint inhibitors (93).
Astragaloside IV can significantly induce M2 macrophages to
M1 polarization, decrease the production of anti-inflammatory
factors and increase proinflammatory INFG (INF-gamma) in
colorectal tumors (94). Meanwhile, astragaloside IV combined
with a PDCD1(PD-1) inhibitor exhibited a synergistic effect on
Frontiers in Oncology | www.frontiersin.org 4
inhibiting tumor growth and T cell infiltration. Inulin, which is
derived from dietary fiber, can significantly improve the systemic
antitumor efficacy of anti-PDCD-1(PD-1) therapy and effectively
slow tumor growth by altering the gut microbiome. Compared
with anti-PDCD-1(PD-1) alone, the synergistic use of inulin and
anti-PDCD-1(PD-1) significantly increased CT-26 GP70-
specific CD8+ T cells in mice. Interestingly, by transforming
inulin into inulin gel before its use in combination with anti-
PDCD-1(PD-1), the effect was improved (95). This suggests that
natural products have potential regarding changes in the forms
of administered medicines. Many experiments have simulated
the combination of natural products and ICIs (96–98). A
preclinical study was conducted that explored anti-PDCD-1
(PD-1) alone and in combination with natural products and
anti-CTLA4. High-dose vitamin C can decrease tumor volumes
combined with anti-PDCD-1(PD-1) and anti-CTLA4 and
enhance CD8+ T cell cytotoxic activity. This research was
conducted not only in CRC but also in breast cancer,
pancreatic cancer and melanoma with mismatch repair-
deficient tumors with a high mutational burden (99) (Table 1).

Natural products combined with ICIs had better results in
melanoma, lung cancer and breast cancer studies (100, 101), and
they can be gradually extended to the study of pancancer in
the future.
CONCLUSION AND PERSPECTIVES

Epidemiologic evidence show that the CRC incidence is strongly
related to interaction between the environment exposures and
gene alternations (102). Colorectal carcinogenesis includes three
major global genetic and epigenetic aberrations: chromosomal
instability (CIN), CpG island methylator phenotype (CIMP) and
MSI. Although gene factors may lead to the individual risk and
increase hereditary susceptibility, CRC are largely affected by diet
factors and lifestyle alterations (103), like smoking, alcohol,
obesity and so on (104–106). A study demonstrated that high-
fat-diet-induced obesity may impair CD8+T cell function in the
murine tumor microenvironment through the metabolic pathway
(107). Conversely lifestyle and diet factors can also affect gene
alternation to contribute to the onset of CRC. Similarly smoking
was associated with a 59% increased risk of CRC and strongly
related to MSI-H and KRAS wild type CRC in a large case-control
study which enrolled 4919 participants (108).

Base on the relationship between diet factors or lifestyle and
immunity, some researchers addressed a concept of molecular
pathological epidemiology (MPE) which could provide the better
understanding of environment-tumor-immune interactions (109).
Among them, the researches proposed several classes of substance
with immunomodulatory effects in CRC, including aspirin,
vitamin D, inflammatory diets and omega-3 polyunsaturated
fatty acids. Take an example for omega-3 polyunsaturated, a
higher intake of marine omega-3 polyunsaturated was associated
with the risk of CRC with different density FOXP3+ cells (110).
Since the introduction of immunotherapies, some patients have
benefited, but there are still crucial problems to be solved.
May 2022 | Volume 12 | Article 884423
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Preclinical studies have shown that natural products can exert
antitumor effects and modulate immunity by affecting T cells, NK
cells, and Tregs in CRC (Figure 1). If researches adopt the MPE
model and integrate the immunotherapies to the model in the
future, that will be a promising method which can provide more
accurate strategies for the treatment, especially the field of nature
Frontiers in Oncology | www.frontiersin.org 5
products which link to the environment and immune. Natural
products have some limitations; the ranges of safe doses remain
undetermined and adverse effects such as hepatotoxicity and renal
toxicity must be controlled. Natural products have the advantages
of being easy to obtain and widely used, and they have multiple
targets. Natural products have been proven effective in the early
TABLE 1 | Natural products exert modulating effects on the immune system in CRC.

Nature product Model Results Reference

Isoliquiritigenin AOM/DSS mice PGE2 ↓ IL6 ↓ (69)
Raw267.4 cell M2 polarization ↓

Mouse peritoneal macrophages p-STAT3 ↓ iNOS ↑
CLCX10 ↑

Apple polysaccharide AOM/DSS mice TLR-4 Myd88 p65 ↑ (70)
Raw267.4 cell

Vitexin AOM/DSS mice M1 ↑ (71)
CAC model TNF(TNF-alpha) IL-1b IL6 ↓

NO in tumor tissue ↑
b-Carotene AOM/DSS mice IL6 pSTAT3 ↓ (72)

U937 cells
Berberine AOM/DSS EGFR-ERK signaling ↓ (73)

APC Min/+ mice
Raw267.4 cell

Cardamonin Raw267.4 cell iNOS TNF(TNF-alpha)IL6 ↓ (75)
HCT-116 NF-kB ↓

Black Raspberries APC Min/+/DSS NK cells infiltration ↑ (76)
AOM/DSS

Human CRC tissues
Elkonia cava fucoidan CT-26 NK cells activation ↑ (78)

NK cells and DCs from C57BL/6 spleen INFG (INF-gamma) ↑
Rice hull polysaccharides NK-92 MI NK cells activation ↑ (79)

CT-26 INFG (INF-gamma) ↑
Curcumin Advanced CRC patients PBMC FOXP3+Treg ↓ (84)

INFG (INF-gamma) ↑
Curcumin CT-26 Tumor volume ↓ (85)
Bigelovin CT-26 T lymphocyte (86)

HCT-116 Macrophage population ↑
Glycyrrhiza uralensis Fisch. CT-26 IL-17 ↑ (87)

T lymphocyte proliferation ↑
Red wine extract CT-26 Th17 differentiation ↓ (88)

HCT-116
SW620
MC38

Dendrobium officinale polysaccharides AOM/DSS — (89)
Maitake Z-fraction Colon-26 mice — (90)
Juglone CT-26 INFG (INF-gamma) ↑ (91)

MDSCs MDSCs accumulation ↓
Quercetin and Alantolactone CT-26 MDSCs Treg IL-10 IL-1b TGF-b CCL-2 ↓ (92)

Orthotopic colorectal cancer model
Atractylenolide I MC38 CD8+ T cell ↑ (93)

MC38-OVA
OT-1 mice

Astragaloside IV CT-26 mice TGF-b IL-10 VEGF-a ↓ (94)
INFG (INF-gamma) IL-12 TNF(TNF-alpha) ↑

Inulin CT-26 mice SCFAs (feces) ↑ (95)
Induce stem-like Tcf+PD-1+T cell

Sanguisorbae Radix Humanized PD-L1 MC38 mice Infiltrated cytotoxic T cells ↑ (96)
Recombinant Jurkat T cells

Pectin MC38 mice Infiltrated cytotoxic T cells ↑ (97)
CRC patients fecal microbiota transplantation model Butyrate (feces) ↑

Andrographolide CT-26 mice CD8+ and CD4+ T cell function ↑ (98)
Fasl perforin ↑Granzyme B ↑

High-dose vitamin C CT-26 CD8+ T cell cytotoxic ↑ (99)
MC38
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stage of CRC, especially on the transformation of adenoma to
adenocarcinoma, and in advanced cancer stages, natural products
can inhibit tumor progression. Meanwhile, combining natural
products with ICIs can maximize the antitumor effects by acting
on multiple targets.

In summary, natural products can regulate the immune
system and enhance immuno-oncological effects, especially
when combined with ICIs, which will be a promising strategy
in the future that is gradually accepted into clinical practice.
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