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Radiotherapy is one of the important treatments for malignant tumors. The precision of
radiotherapy is affected by the respiratory motion of human body, so real-time motion
tracking for thoracoabdominal tumors is of great significance to improve the efficacy of
radiotherapy. This paper aims to establish a highly precise and efficient prediction model,
thus proposing to apply a depth prediction model composed of multi-scale enhanced
convolution neural network and temporal convolutional network based on empirical mode
decomposition (EMD) in respiratory prediction with different delay times. First, to enhance the
precision, the unstable original sequence is decomposed into several intrinsic mode functions
(IMFs) by EMD, and then, a depth prediction model of parallel enhanced convolution
structure and temporal convolutional network with the characteristics specific to IMFs is
built, and finally training on the respiratory motion dataset of 103 patients with malignant
tumors is conducted. The prediction precision and time efficiency of themodel are compared
at different levels with those of the other three depth prediction models so as to evaluate the
performance of the model. The result shows that the respiratory motion prediction model
determined in this paper has superior prediction performance under different lengths of input
data and delay time, and, furthermore, the network update time is shortened by about 60%.
The method proposed in this paper will greatly improve the precision of radiotherapy and
shorten the radiotherapy time, which is of great application value.

Keywords: radiotherapy, respiratory motion prediction, deep learning network, empirical mode decomposition,
temporal convolutional network
1 INTRODUCTION

When a patient with cancer undergoes radiation therapy, the fluctuating movement of chest and
abdomen caused by human respiratory motion makes the tumor unable to rest statically in the
planning target volume (PTV), which causes it impossible to ensure the coverage of tumor by simply
increasing the PTV area. Meanwhile, it is very likely for the organs at risk (OARs) around the tumor
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to be destroyed during radiotherapy, thus causing secondary
injury to the patients (1). Some studies have shown that, during
breathing, some muscles (such as the diaphragm) move 20–130
mm, the lungs move an average of 8–10 mm, and the liver moves
an average of 1–19 mm (2). Therefore, it is of great significance to
reduce the adverse effects of human respiratory movement in the
process of cancer treatment.

To address the problem of respiration-induced tumor
displacement, many clinical initiatives have been proposed,
including breath-holding techniques (3), passive compression
techniques (4), respiratory gating techniques (5), and real-time
tracking techniques (6). Breath-holding technique and passive
compression technique both reduce the impact by actively
controlling human respiration by itself or external equipment,
which is very convenient, but the mandatory control makes the
patient’s tolerance poor and is not suitable for patients with
pulmonary insufficiency. Respiratory gating technology tracks
the location of the tumor by monitoring the patient’s breathing
and adjusting the radiation instrument to match a specific
breathing cycle. Real-time tracking technology is currently one
of the best methods to track tumors and improve treatment
effects. It continuously adjusts the irradiation target area to track
tumors in real time through in vitro marker signals
(respiration laws).

Vedam et al. (7), Ozhasoglu and Murphy (8), and Fayad et al.
(9) verified the correlation between respiration and tumor
movement to varying degrees. CyberKnife, Exactrac, and Vero
system are respiratory motion tracking systems applied in
clinical practice. In the actual treatment, the machine system
establishes the motion relationship between marker signals and
tumor through the prediction model, so as to adjust the
radiotherapy target position. A certain time delay is required
during the adjustment process, which demands the
establishment of prediction delay system through the external
respiratory signal. The accuracy of delay prediction directly
determines the target position in radiotherapy. The CyberKnife
system has a system delay time of about 115 ms from data
acquisition, calculation of tumor location, to adjustment of the
radiation beam. The delay of Vero system is about 50 ms and that
of Varian MLC system is about 420 ms (10, 11). To compensate
for these delays, some prediction algorithm is used to calculate
the future position of the target.

Conventional time series prediction models have been
applied in the field of respiratory prediction, such as extended
Kalman filter algorithm based on Kalman filter (12) combining
with support vector machine (13), wavelet-based multi-scale
regression (14), recursive least squares algorithm (15), and an
autoregressive integrated moving average (ARIMA) model (16).
With the development of deep learning, it has brought new
possibilities to respiratory motion prediction. Deep learning can
effectively mine time series information and semantic
information, independently extract a large number of data
features, and improve the prediction accuracy. To compensate
for the system delay and improve the accuracy of respiratory
motion prediction, this paper proposes a multi-scale enhanced
time series convolution respiratory motion prediction model
Frontiers in Oncology | www.frontiersin.org 2
based on deep learning network. The main contributions are
as follows:

(1) A multi-scale enhanced convolution and temporal
convolution network (TCN) based on squeeze-and-
excitation is proposed to establish a deep convolution
neural network model for respiratory motion prediction.

(2) Aiming at the simplification of respiratory signal features,
EMD algorithm is used to decompose the original complex
sequence into several intrinsic mode functions (IMFs) with
different time scales so as to increase the network fitting
ability and improve the prediction precision.

(3) The underlying features of different receptive fields are
extracted by using a multi-scale convolution kernel, and
attention mechanisms are added to the feature space.

(4) The recurrent neural network (RNN) model is replaced by
the TCN, which has higher precision and time efficiency than
birectional long short-term memory (BiLSTM).
2 RELATED WORK

Deep learning is based on artificial neural network (ANN), which
has stronger adaptability in the case of irregular breathing model
and model. Some studies have shown (17, 18) that the ANN
structure has certain advantages in the prediction of respiratory
motion, especially when the respiratory signal is unstable and
non-linear.

Convolutional neural network (CNN) can deal with data
similar to grid structure through convolution operation and
perform exceedingly well in many fields such as time series
and image data; RNN has some advantages when learning the
non-linear characteristics of sequences. LSTM is one of the
classical algorithms of RNN series because of its introduction
of the gate mechanism to make the network have a certain
memory, so that the network can capture the long-distance
dependence of the sequence and better overcome the
disadvantage of gradient disappearance in RNN. This deep
learning mechanism allows the automatic construction of a
model from a problem or set of rules. When dealing with large
amounts of data, the model can adapt to input new data or
import new knowledge through other models, allowing it to solve
almost any real-world task (19). Wang et al. (20) established
BiLSTM network by composing forward and backward LSTM
and applied it in the experiment respiratory data of 103 patients
with malignant tumors. Through the experiment, they found
that the best prediction effect was obtained when seven-slice
BiLSTM was used, with an average absolute error of 0.074 mm
and a root mean square error (RMSE) of 0.097 mm at a delay
standard of 400 ms, which was three to five times higher than the
prediction precision of ARIMA and multi-layer perceptron
neural network (ADMLP-NN). Compared with traditional
prediction models, the deep learning network with higher
robustness can greatly improve the prediction precision, which
can be applied to data of different patients and reduce the
May 2022 | Volume 12 | Article 884523
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interference of delay time. However, deeper network will lead to
longer update time of prediction, which is not conducive to the
update of prediction model. The Bidirectional Gated Recurrent
Unit (Bi-GRU) rapid breathing prediction model was
constructed by Yu et al. (21) by using a variant of LSTM–
gating cycle unit (GRU), consequently reducing the time
efficiency by about 30% compared with the LSTM model,
which greatly improved the update time of the prediction
network. Therefore, deep learning will be an emerging force
driving progress in the field of respiratory motion prediction.

In general, the prediction accuracy of the model can be greatly
improved by training the model on the clinical data of a limited
number of patients (18, 22). However, when the model is applied
to new patient data, the prediction effect is greatly discounted,
and the generalization ability of the prediction model needs to be
improved. Each patient has different physical conditions and
respiratory states, and it is of great significance to design a
general model to predict the respiratory signals of different
patients (23). The establishment of a general model requires a
large amount of patient data as support, so deep learning has
good applicability, because deep learning has better learning and
analysis capabilities under a large amount of data.
3 MATERIALS AND METHODS

3.1 Respiratory Movement Data
The data used in this paper are a publicly available dataset
derived from the Institute of Robotics and Cognitive Systems,
University of Lubeck, Germany (24). This dataset contains the
respiratory data of 103 patients with horacoabdominal tumors,
with a total of 306 respiratory motion trajectories. Three markers
are installed on the chest and abdomen of each patient, and the
trajectory data of the markers moving along with the respiratory
movement were recorded. An optical tracking sampling
Frontiers in Oncology | www.frontiersin.org 3
instrument with a sampling frequency of 26 Hz is used for
sampling work.

3.2 Research Methods
In this study, we built a respiratory motion prediction model and
used in vitromarker signals to predict tumor motion trajectories.
Figure 1 shows the process of tumor motion and machine
positioning during radiotherapy. First, a tumor motion area in
the lungs that follows the patient’s breathing is determined, and
then, the tumor motion trajectory is further captured in this area.
Considering the problem of mechanical and computer delays,
the respiratory motion prediction model needs to determine the
trajectory of the tumor after a period of delay, and finally
perform radiotherapy to kill tumor cells.

The overall framework of the breathing motion prediction
method based on the deep CNN is shown in Figure 2, which is
mainly divided into two steps (1): data preprocessing and feature
extraction: abnormal detection and correction of respiratory
signals and extraction of features using EMD decomposition
signals (2); respiratory motion prediction model: a deep
respiratory motion prediction model composed of multi-scale
convolution neural network including SEnet attention
mechanism and TCN for the prediction of respiratory position
at different delay times from 200 to 500 ms.

3.2.1 Data Preprocessing
In order to extract more information features and reduce the
influence of interference information on prediction. First, the
integrated model Bagging is used to detect and correct the
abnormal interval, and then, the original series is decomposed into
several IMFs containing different time scales by EMD algorithm, and
finally, the dataset is divided as the input of depth prediction model.

3.2.1.1 Remove Outliers
Because of the long time of data acquisition, tumor patients
sometimes have actions such as coughing, sneezing, or speaking
A

B

FIGURE 1 | Schematic diagram of lung tumor motion tracking, (A) is the process of tumor localization (25). Each of (B) is a 4DCBCT (four-dimensional cone beam CT)
sequence image of tumor tracking at different stages in a respiratory process, obtained by the EELKTA Synergy XVI system in the University of Tokyo Hospital (26).
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during the acquisition process, which will greatly interfere the
stability of respiratory trajectory, resulting in relatively intensive
abnormal signals of respiratory data at a certain time segment.
Therefore, this paper uses Bagging to deal with abnormal signals.
Bagging mainly samples T sampling sets containing m training
samples, then trains a base learner on the basis of each sampling
set, and finally combines these base learners together (27).
Figure 3 shows a comparison diagram before and after
processing an abnormal signal.

3.2.1.2 Empirical Mode Decomposition
Complex time series data will reduce the prediction precision of
the prediction model, which will be alleviated to some extent by
and the introduction of some decomposition algorithms in the
pre-phase of data procession. Because the respiratory motion
signal is a complex time series with non-linear, non-stationary,
and univariate characteristics, when fitting this type of sequence
Frontiers in Oncology | www.frontiersin.org 4
with deep learning network, there are often problems such as
gradient disappearance or explosion, and it is impossible to
accurately identify the slight change characteristics of a certain
time scale (28). Considering the multi-scale characteristics of
time series, Fourier spectrum analysis and wavelet analysis are
usually used to decompose the data to predict the better learning
characteristics of the model. However, the limitations of these
methods limit the operation of the prediction model to a certain
extent, and empirical mode decomposition (EMD) can
adaptively decompose complex signals. Compared with the
above methods, EMD can more accurately reflect the original
physical characteristics and local performance.

EMD decomposition is based on the following assumptions
(29): the data have at least two extreme values (maximum and
minimum); the local time–domain characteristics of the data are
uniquely determined by the time scale between extreme points; if
the signal is not extreme but contains an inflection point, then it
A B

FIGURE 3 | Schematic diagram of outlier correction and comparison, (A) is a segment of the original respiratory signal, which contains an abnormal state in a
certain time interval, (B) shows the result of the respiratory signal after the outlier correction algorithm. Compared with the original signal, it can be seen that the part
containing outliers has been successfully corrected, and the rest remain unchanged.
FIGURE 2 | The overall framework of respiratory motion. Use EMD to fully extract the features of the respiratory motion signal and learn the features by building a
prediction model based on deep learning, so as to achieve accurate prediction.
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can be differentiated once or more to obtain the extreme value.
As for the given raw signal, x(t) (t = 1,2…n),the EMD algorithm
decomposition is described as follows:

• Extraction of the maximum and minimum values of x(t): the
upper and lower envelopes Xmax(t),Xmax(t) are formed by
using the cubic spline difference to calculate their mean
values m1:

• Extraction details:

ht  =  m(t) −m1 (1)

• Judgment of whether ht IMF formation conditions: If it meets,
then an IMF will be derived and the remaining volume r(t) = x
(t)-h(t) will be in lieu of (t) ; if not, then ht will be in lieu of x
(t).

• Repetition of the above steps: When the standard deviation
(0.2-0.3) is met the iteration will be ended.

• After the decomposition process, can be replaced by the
following formula:

x tð Þ =  o
n

j=1
hj(t) + rn(t) (2)

In this formula, n is the number of IMF; hj (t) (j = 1.2,…n) are
IMFs; and rn(t) is the final residual error, which indicates the
central trend of x(t).

For the generalization ability of the model, this paper uses the
clinical respiratory data of 103 patients in the database and
randomly selects a continuous signal (the total length of each
Frontiers in Oncology | www.frontiersin.org 5
signal is 10,000, about 7 min) from 306 respiratory trajectories as
the model sample set. As shown in Figure 4, a series of length
10,000 is decomposed into nine IMF components and one
residual (Res), and the physical meaning of each component of
the IMF, whose order is divided according to the frequency from
high to low, represents each frequency component of the raw
signal. Because of the large amount of noise at high frequencies,
the first two high-frequency IMF componets (IMF0,IMF1) are
removed, and the remaining components will input the physical
characteristics of the raw signal and into the prediction model.
Because EMD is an adaptive decomposition, the respiratory data
series of different patients will be decomposed into different
amounts of IMF. Before being input into the network, it is
necessary to supplement the number of IMFs of each original
series in the whole database. The supplemented IMF
components are filled with 0, so as to achieve a unified
number of IMFs of each patient’s respiratory series.

3.2.1.3 Division of Preprocessed Data
The training set, validation set, and test set are partitioned
among the filtered IMF components. As shown in the division
diagram Figure 5, the original sequence P = (p1,p2,…,pi,…,pi+n)
is divided in a ratio of 6:2:2. In addition, the training set is
indicated as Ptrain , Ptrain = [p1,p2,…,pn]

T ; the valiadation set is
denoted as Pvalid , Pvalid = [pj,…, pj+n]

T; and the test set is denoted
as Ptest , Ptest = [pj,…, pj+n]

T. Take Ptrain as an example, form p-1
topn all sequences are isometric sequences, and each sequence
contains the original sequence (X1,X-2,…,Xn) and the delay time
of the predicted value (t1,…,tn).
FIGURE 4 | Schematic diagram of IMFs and Res decomposed by EMD.
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Network model input: After decomposition of the original
sequence X, IMFs correspond to part of Ximfs, Ximfs = [Ximf1,
Ximf2,…, Ximf1, Ximfi+n]

T, which is a stationary sequence
containing multidimensional features. Target prediction value
(label): observation point (w1, w2,…,wn) after delay time t is the
target prediction value, which is sampled from the original
sequence and does not contain IMFs information. According
to the equipment sampling frequency of 26 Hz, the
corresponding delay time at ti = 3,5,10, and 13 is about 100,
200, 400, and 500 ms, respectively.

3.2.2 Respiratory Motion Prediction Model
The deep convolution neural network model proposed in this
paper for respiratory motion prediction includes three major
parts. First, multi-scale convolution layers are used to extract
features in parallel to find the optimal local sparse structure of
the convolution network and obtain timing information fully.
Second, the addition of a SEnet-based attention mechanism to
the convolved feature channel increases the sensitivity of the
model to the channel feature and automatically learns the
importance of the different channel features. Last, TCNs are
used to grasp long-time dependent information and assign each
convolutional feature to a causal relationship, thereby predicting
respiratory motion signals for a future period of time.

3.2.2.1 Squeeze and Exception Module
CNN has the ability of characterization learning, translates
invariant classification of input information according to the
hierarchical structure, and fuses spatial and channel information
in the local receiving domain of each layer of network to
construct local features. A squeeze-and-excitation module is
proposed on the basis of CNN by Hu et al. (30), which
improves the CNN characterization ability by improving the
spatial coding quality at the feature level and clearly establishing
the interdependence between convolutional feature channels.
Frontiers in Oncology | www.frontiersin.org 6
3.2.2.2 Temporal Convolutional Network
The main characteristics of TCN include adopting a one-
dimensional fully convolutional networks (FCNs) (31)
to receive input sequences of any length as inputs and map
them into output sequences of equal length at the same time;
each time is calculated simultaneously, not serially on the time
sequence, to improve the network operation efficiency; causal
convolution is used, so that each convolution layer is causally
related, which means that information “leakage” will not occur
from future to the past. Briefly: TCN = 1D FCN + Causal
convolutions (32).

3.2.2.2.1 Causal Convolutions. If the input sequence is shown
as X = (x1.x2,…,xr), then the prediction yt of the moment t can
only be obtained through x1 to xt-1, which is input before
moment t as what has been shown in the left half of Figure 6A. If
the filter is defined as F = (f1,f2,…,fk) and K is the number of
filters, then the causal convolution at time xt is as follows:

F ∗Xð Þ xtð Þ = o
K

k=1

fkxt−K+k (3)

There is a big defect in causal convolution. If a more distant
xt-n is needed as input to enlarge the receptive field, then a large
number of convolution layers are needed, which increases the
network depth and easily causes problems such as gradient
disappearance and poor fitting effect.

3.2.2.2.2 Dilated Convolutions. Dilated convolution can be
used to solve the above problems; meanwhile, it is also
the convolution used by the TCN network. To obtain larger
receptive field, the dilated convolution (d) introduces the concept
of dilation factor, which allows the input interval adoption
during the convolution. Adding to the dilation factor gives
sequence X dilated convolution at xt at which the expansion
factor is d:
FIGURE 5 | Schematic diagram of training set, verification set, and test set classification. The original data at each end are decomposed by EMD to form multiple
IMFs, and the data of equal length are intercepted as the feature input.
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Fd ∗Xð Þ xtð Þ  =  o
K

k=1

fk xt−(K−k)d (4)

The right half of Figure 6A shows that d = 1 at input is a
common convolution, with d = 2 for the first hidden layer and d = 4
for the second hidden layer, and the expansion factor increases
exponentially by 2 as the network layer increases.

3.2.2.2.3 Residual Connections. The residual connection is
added to the TCN network, which allows the network to transmit
information across layers and solves the problems of gradient
disappearance or explosion of deep network, and learning the
overall transformation of input X changes into learning the
partial modification of input X. In the TCN, residual blocks are
used to replace convolution layers, which include dilated con-
volution with two layers and non-linear mapping. In addition, a
WeightNorm and Droput regularization network is used in each
layer, with a linear rectification function (Relu) as the activation
function as shown in Figure 6B.

3.2.2.3 Network Layer of Respiratory Motion
Prediction Model
The main body of respiratory motion prediction model is
composed of multi-scale enhanced CNNs layer (CNN_SEnet)
and a TCN layer. As shown in Figure 7, first, a multi-scale
convolution channel is composed of a convolution layer
containing different convolution kernels, and the sizes of each
convolution kernel in each channel are 3 × 1, 5 × 3, and 7 × 5,
respectively, with a step size of 1 and a convolution filter of 16.
Setting convolution kernels at different scales allows the model to
learn different local features in the sequence. For example,
smaller convolution kernels can extract local subtle features
and are more sensitive to instantaneous changes in the
sequence; larger convolution kernels mainly extract local trend
features and can control the overall features at a certain time
scale. The input of the prediction model is Ximfs = [Ximf1, Ximf2,
Frontiers in Oncology | www.frontiersin.org 7
…, Ximf1, Ximfi+n]
T, in which the length of Ximfn is the IMFs

containing a certain time length, about 100 to 400, and the width
is the IMFs with different frequency components formed by the
original sequence after EMD decomposition, about 10 to 15. Its
length–width ratio gap is so large that the convolution kernel size
is no longer set as the conventional 3 × 3 or 5 × 5 but set the
convolution kernel of the above size, which can highlight the
time–domain characteristics when the frequency–domain
characteristics are ensured. Each scale channel contains a
convolution layer of three above parameters for adequately
extracting feature information in the sequence.

Second, to enhance the information representation ability of
CNNs layer, SEnet attention mechanism is added after each
CNNs channel, and the weight coefficient of each channel after
convolution is learned, so that the model has more
discrimination ability for the characteristics of each channel.
Its network parameters are detailed in the literature. The
activation function Relu and the maximum pooling layer with
a 2 × 2 window are then performed for extracting important
features and discard irrelevant features.

Then, the output of the three scale channels is combined
through the connecting layer to form a richer information
feature. Afterward, the causal relationship of each feature can
be found out through the TCN layer, and the future information
is predicted through the historical information feature. The
number of filters in this module is set as 32; the convolution
kernel size is 3; the dilation factor grows by 2n; the number of
stacks of residual blocks is 1, and the activation function is Relu.
Last, the predicted target values were obtained through Flatten
layer and full junctional layer.
3.2.3 Evaluation Criteria
In this paper, the mean absolute error (MAE), RMSE, and R2
determination coefficient (R2_score) are used as evaluation
indexes of respiratory prediction algorithm. MAE is the mean
A B

FIGURE 6 | FCN architecture. The left half of (A) is a causal convolution schematic and the right half is a dilated convolution schematic, and (B) is the TCN
residual block.
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of the absolute value of the deviation between all individual
observed value and the arithmetic mean. It is defined as follows:

MAE  =  
1
No

N

i=1
yi − y∗ij j (5)

The RMSE is the square root of the ratio of the square of the
deviation of the predicted value from the true value to the
number of observations n, and it is defined as follows:

RMSE  =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N

i=1
yi − y∗ið Þ2

s
(6)

R2_score is the overall fit of the regression equation, and the
closer the value of R2 is to 1, the better the fit of the regression
equation to the observed value is, which can be defined as
follows:

RMSE  =  1 −oi yi − y∗ið Þ2

oi �yi − y∗ið Þ2 (7)

In this equation, N is the number of data points; y is the actual
respiratory motion trace; y* is the trajectories of respiratory
motion prediction; andoi(�yi − y∗i )

2 is a benchmark model in the
field of machine learning.
4 RESULTS AND DISCUSSION

4.1 Results
Table 1 and Figure 8, respectively, show the experimental results
of the proposed EMD-SEnet-TCN multi-channel depth
prediction model in this paper; in addition, the prediction
results in this paper are all calculated according to the
following parameters: epochs = 100, batch size = 128,
optimizer = Adam, and learning rate = 0.001. Judging from the
results, although the prediction precision decreases with the
increase of delay time (ti), the prediction accuracy is still
ensured to some extent; when the length of model input data
is increased, the network does not present gradient explosion or
disappearance problems, which indicates that the proposed
algorithm in this paper has the ability to overcome long-
Frontiers in Oncology | www.frontiersin.org 8
distance dependence and can make full use of historical
information to predict the future information.

To verify the higher prediction precision of the model in this
paper, a comparison is made with the Deep BiLSTM model
proposed by Wang et al. (20) with the same dataset. Figure 9
shows the comparison of these two algorithmic models under the
same parameters (Xi = 50, ti = 1.5, and 10). It can be seen from
the figure that the prediction precision of the algorithm proposed
in this paper is better at different delay times under the MAE and
RMSE evaluation indexes.

Because of the limitations of different input samples,
preprocessing operations, and experimental platforms under
different models, to illustrate the superiority of this model
more clearly, a comparison among three depth prediction
models is conducted, including multi-convolution combined
with BiLSTM network (CNN-BiLSTM), multi-channel
convolution combined with TCN model (CNN-TCN), and
multi-channel convolution combined with BiLSTM based on
EMD (EMD-CNN-BiLSTM). Table 2 shows the performance
comparison results of the proposed algorithm (EMD-
SEnetTCN) with the above three models at Xi = 100 and delay
times at 80, 150, 240, 300, 400, 450, and 520 ms (ti = 2, 4, 6, 8, 10,
12, and 14).

As shown in Figure 10, the prediction precision of each
model is high, and there is no significant difference when the
delay time is shorter than 240 ms. The MAE and RMSE are about
0.72% ~ 0.18% and 0.21% ~ 0.28%, respectively. When the delay
time exceeds 240 ms, the better performance of EMD-SEnet-
TCN becomes more and more obvious. To meet the clinical
requirements, 400 ms is used as the standard delay time.
Compared with CNN-TCN, the precision decrease of MAE
and RMSE are by 13.7% and 9.2%, respectively, whereas for
R2_score, the precision increases by 2%. The difference between
TABLE 1 | Results of respiratory prediction algorithm.

Input Length (Xi) Latency (ms) MAE (mm) RMSE (mm) R2 (None)

50 120 (ti = 3) 0.009022 0.022503 0.989431
100 200 (ti = 5) 0.016584 0.031588 0.979483
200 400 (ti = 10) 0.035926 0.053782 0.941398
400 500 (ti = 13) 0.048367 0.068925 0.908258
May 2022 |
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these two models is whether EMD is used or not. Judging from
the results, EMD is very effective for improving the precision of
the model. Compared with CNN-BiLSTM, the precision values
of MAE and RMSE decreased by 15% and 18.3%, respectively,
whereas the precision value of R2_score increased by 1.4%;
compared with EMD-CNN-BiLSTM, the precision values of
MAE and RMSE decreased by 8.4% and 9.1%, respectively,
whereas the precision value of R2_score increased by 1%, of
MAE decreased by 8.4%, of RMSE decreased by 9.1%, and of
R2_score increased by 1%. The prediction precision of this
model is very close to that of this paper due to the similar
structure of the two depth models and the difference lies in TCN
and BiLSTM. EMD-SEnet_TCN not only has higher precision
but also improves of prediction update time. The results show
that, compared with other prediction models, the model in this
paper has excellent performance at different delay times, and the
prediction model performance will be further improved with the
increase of delay time.

Figure 11 shows the prediction update time of different depth
models in seconds per epoch. Although EMD-CNN-BiLSTM is
slightly inferior to the model proposed in this paper in terms of
Frontiers in Oncology | www.frontiersin.org 9
prediction precision, the update time has reached 10 s per epoch,
which is much longer than the update time of EMD-SEnet_TCN
(2 s per epoch), failing to meet the clinical requirements; whereas
the update time of CNN-TCNs is the shortest, only 1 s per epoch,
without meeting the standard of prediction pricision; as for other
prediction models, all perform poorly in terms of precision or
update time. In general, the prediction model proposed in this
paper greatly reduces the average update time with the guarantee
of high prediction precision, so that the network can predict the
target value quickly and accurately.

The input data length of the model affects the prediction
precision to a certain extent. Generally, to lower the prediction
error, the input data segment should be located near the target
prediction value because the farther the distance is, the weaker
the correlation is. In addition, if the data is too long, then there
will be problems such as increased training time of the prediction
model and gradient disappearance or explosion. To study the
effect of different lengths of input data on the prediction results,
the prediction errors of different data with lengths of 50, 100,
200, 400, and 600 at a delay time of 400 ms (ti = 10) are
compared. The results are shown in Figure 12.
FIGURE 8 | Actual breathing trajectory and predicted trajectory. Model delay time is 400 ms.
FIGURE 9 | Model performance comparison.
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With the increase of input data (Xi) the prediction errors of
different models increase, among which the gradient of CNN-
BiLSTM disappears at Xi = 600 and both MAE and RMSE
increase abnormally; EMD-CNN-BiLSTM and CNN-BiLSTM
have better prediction precision when Xi is small, but the
prediction error increases rapidly when Xi is big; CNN-TCN
has a more stable prediction error fluctuation at different Xi

whereas that of MAE and RMSE are big; comparing the above
Frontiers in Oncology | www.frontiersin.org 10
three models, EMD-SEnet_TCN displays excellent prediction
performance in that it can cope with sequence information of
various lengths and ensure certain prediction precision.

4.2 Discussion
Choosing different optimizer (Op) and learning rate (Lr) will affect
the prediction results of deep prediction model. The optimizer is
used to update and calculate the network parameters affecting the
training and output of model, so that they approximate or reach
the optimal value to minimize (or maximize) the loss function. The
learning rate determines whether the objective function can
converge to the local minimum value and when it can converges
to the minimum value. The appropriate learning rate can make the
target function converge to the local minimum value at appropriate
time. SGD is a relatively commonly used optimizer, in which noise
will be added when the gradient is randomly selected, and the
update weight value does not reach the global optimum, which
makes the accuracy rate decrease; Adagrad adopts an adaptive
learning rate optimization algorithm to update the low-frequency
parameters greatly while update the high-frequency parameters less;
Adadelta is an improvement of Adagrad because it has an
exponential decay average; RMSprop changes the gradient
accumulation of Adagrad into an exponentially weighted moving
average, improving the effect under non-convex settings; Adam
combines the momentum advantages of RMSprop with SGD to
form an optimizer with better performance.

Different optimizers display differently in various tasks, and it
is not necessarily that the more advanced the version is, the
better its results are. To select a better optimizer, the comparison
of different optimizers is performed in Table 3. The learning rate
controls the update speed of model parameters–Lr is too small, it
will greatly reduce the network convergence rate and increase the
training time; if it is too large, then it will lead to parameters
oscillating on both sides of the optimal solution. Table 3 below
shows the prediction model performance results of different sizes
of learning rates (0.1, 0.01, 0.001, and 0.0001).
FIGURE 10 | Model performance comparison under different depths and different evaluation criteria. Under different predictive evaluation indicators, the performance
of this model is compared with the other three models. The blue represents the model of this paper, the solid line represents the MAE indicator, and the dashed line
represents the RMSE indicator.
TABLE 2 | Results comparison of different respiratory prediction models.

Prediction model Latency (ms) MAE (mm) RMSE (mm) R2 (None)

EMD-SEnet-TCN 80 0.008797 0.01814 0.993157
150 0.016442 0.026901 0.985422
240 0.021495 0.033960 0.975841
300 0.028391 0.042698 0.960636
400 0.031789 0.0491499 0.951819
450 0.038560 0.058295 0.928711
520 0.045638 0.064746 0.910043

CNN-BiLSTM 80 0.013164 0.020244 0.994183
150 0.015645 0.021739 0.989963
240 0.026275 0.032612 0.966891
300 0.040191 0.051979 0.939334
400 0.044840 0.060412 0.917064
450 0.051416 0.071154 0.890039
520 0.059593 0.080446 0.857721

CNN-TCN 80 0.007193 0.009572 0.997983
150 0.020939 0.028718 0.985953
240 0.022003 0.031190 0.978862
300 0.029881 0.045487 0.961351
400 0.040356 0.054568 0.932332
450 0.048732 0.070259 0.893678
520 0.054356 0.077895 0.869860

EMD-CNN-BiLSTM 80 0.010331 0.022604 0.989376
150 0.017215 0.025713 0.986681
240 0.0257432 0.038429 0.969060
300 0.029316 0.045936 0.954440
400 0.037918 0.054366 0.937525
450 0.040603 0.060994 0.911850
520 0.048301 0.065581 0.907710
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All the results in Table 3 are based on EMD-Senet-TCN
prediction model with epochs = 100, batch size = 128, Xi = 100,
ti = 10 (400 ms). From Table 3, it can be seen that Op uses Adam.
MAE and RMSE are the smallest and their prediction is the most
accurate. Although Adadelta is an advanced version of Adagrad, it
is not very effective when applied under the prediction model in
Frontiers in Oncology | www.frontiersin.org
)
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this paper. The different learning rate settings were all obtained
under Op = Adam, and the best result was obtained when Lr =
0.001, where when Lr = 0.01, the learning rate is too large to result
in a model that could not converge and the regression coefficient
was negative. It can be seen that the model in this paper uses Op =
Adam and Lr = 0.001 to the best prediction results.
5 CONCLUSION

Respiratory motion brings great difficulties to the treatment of
thoracoabdominal tumors, and respiratory motion prediction
models are extremely important for precision radiotherapy. In
this paper, a depth prediction model (EMD-SEnet-TCN) is
proposed for the application of respiratory motion signals in
radiation therapy for patients with cancer. The method was
validated by using respiratory motion signals from multiple
patients with malignant tumors in the database of the Institute of
FIGURE 12 | Comparison of prediction results of input data with different lengths. Blue represents the model of this article.
FIGURE 11 | Average update time of different prediction models. The number at the top of the bar graph represents time, and the color of wheat represents the
model of this article.
TABLE 3 | Effect of different parameters (Op, Lr) on EMD-SEnet_TCN.

Parameters MAE (mm) RMSE (mm) R2 (None

Op = SGD 0.087130 0.116361 0.702972
Op = Adam 0.035789 0.051499 0.941819
Op = Adagrad 0.049455 0.069139 0.895137
Op = Adadelta 0.166532 0.200430 0.118740
Op = RMSprop 0.039013 0.060148 0.910473
Lr = 0.1 0.308492 0.375175 −2.08768
Lr = 0.01 0.037244 0.053731 0.936662
Lr = 0.001 0.034789 0.049149 0.951819
Lr = 0.0001 0.041593 0.057317 0.927934
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Robotics and Cognitive Systems, University of Lübeck, Germany.
The results of this paper show that (1) the depth prediction model
method proposed in this paper is superior to other benchmark
models in terms of delay prediction precision and time update
efficiency (2); it verifies that the decomposition of complex
respiratory motion signals by using EMD can further improve
the prediction precision of the prediction model (3); the multi-scale
CNN containing attention mechanisms has a better feature
extraction ability for finite IMFs of respiratory motion signals.
This work solves one of the major challenges for precise prediction
of the state of patient respiratory motion signals, and in medical
practice, the proposed method has important practical significance
for precision radiation therapy.

The present study has some limitations. The first one is the
correlation between the external respiratory signal and the internal
tumor motion. In order for our technique to be applied clinically,
another model needs to be designed to realize the correlation
analysis in the future. The second is that whether the prediction
technology in this paper achieves clinical application is the key to
future research. On the basis of complying with legal and ethical
requirements and respecting patient privacy, it is very important
to determine a medical analysis platform that applies the deep
learning framework in the future.
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Url Phishing Detector: A Convolutional Neural Network Approach. Comput
Networks (2020) 178:107275. doi: 10.1016/j.comnet.2020.107275

20. Wang R, Liang X, Zhu X, Xie Y. A Feasibility of Respiration Prediction Based
on Deep Bi-Lstm for Real-Time Tumor Tracking. IEEE Access (2018)
6:51262–8. doi: 10.1109/ACCESS.2018.2869780

21. Yu S, Wang J, Liu J, Sun R, Kuang S, Sun L. Rapid Prediction of Respiratory
Motion Based on Bidirectional Gated Recurrent Unit Network. IEEE Access
(2020) 8:49424–35. doi: 10.1109/ACCESS.2020.2980002

22. Tang S, Andres B, Andriluka M, Schiele M. Multi-person Tracking by
Multicut and Deep Matching. Computer Vision - {ECCV} 2016 Workshops -
Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part
{II} (2016) 9914:100–11. doi: 10.1007/978-3-319-48881-3\_8

23. Teo TP, Ahmed SB, Kawalec P, Alayoubi N, Bruce N, Lyn E, et al. Feasibility
of Predicting Tumor Motion Using Online Data Acquired During
Treatment and a Generalized Neural Network Optimized With Offline
Patient Tumor Trajectories. Med Phys (2018) 45:830–45. doi: 10.1002/
mp.12731

24. Ernst F. Compensating for Quasi-Periodic Motion in Robotic Radiosurgery.
Berlin, Germany: Springer Science & Business Media (2011).

25. Shumeng H, Shanda M, Wei W, Dongshan F. Lung Tumor Motion
Tracking Method and Clinical Evaluation Based on Dual-Energy X-Ray
Fluoroscopic Imaging. J Tianjin Med Univ (2020) 26:6. doi: 10.1109/
TKDE.2016.2609424

26. Pohl M, Uesaka M, Demachi K, Chhatkuli RB. Prediction of the Motion of
Chest Internal Points Using a Recurrent Neural Network Trained With Real-
Time Recurrent Learning for Latency Compensation in Lung Cancer
Radiotherapy. Computer Med Imaging Graphics (2021) 91:101941. doi:
10.1016/j.compmedimag.2021.101941

27. Oza NC, Russell SJ. 2005 IEEE International Conference on Systems, Man and
Cybernetics. Online Bagging and Boosting (2001) 3:2340–5. doi: 10.1109/
ICSMC.2005.1571498
Frontiers in Oncology | www.frontiersin.org 13
28. Perais A, Seznec A. Eole: Combining Static and Dynamic Scheduling Through
Value Prediction to Reduce Complexity and Increase Performance. ACM
Trans Comput Syst (TOCS) (2016) 34:1–33. doi: 10.1145/2870632

29. Huang NE, Shen Z, Long SR, WuMC, Shih HH, Zheng Q, et al. The Empirical
Mode Decomposition and the Hilbert Spectrum for Nonlinear and non-
Stationary Time Series Analysis. Proc R Soc London. Ser A: Mathe Phys Eng Sci
(1998) 454:903–95. doi: 10.1098/rspa.1998.0193

30. Hu J, Shen L, Sun G. Squeeze-And-Excitation Networks. In: 2018 {IEEE}
Conference on Computer Vision and Pattern Recognition, (CVPR) 2018,
Salt Lake City, UT, USA, June 18-22, 2018. Computer Vision Foundation /
(IEEE) Computer Society (2018) 7132–41. doi: 10.1109/CVPR.2018.
00745

31. Long J, Shelhamer E, Darrell T. Fully Convolutional Networks for
Semantic Segmentation. In: (IEEE) Conference on Computer Vision and
Pattern Recognition, {CVPR} 2015, Boston, MA, USA, June 7-12, 2015.
(IEEE) Computer Society (2015) 3431–40. doi: 10.1109/CVPR.2015.
7298965

32. Bai S, Kolter JZ, Koltun V. An Empirical Evaluation of Generic Convolutional
and Recurrent Networks for Sequence Modeling. arXiv (2018) abs/1803.01271.
doi: 10.48550/arXiv.1803.01271
Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Shi, Han, Zhao, Kuang, Jing, Cui and Zhu. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
May 2022 | Volume 12 | Article 884523

https://doi.org/10.1016/j.eswa.2006.09.023
https://doi.org/10.1016/j.eswa.2006.09.023
https://doi.org/10.1088/1361-6560/aa7cd4
https://doi.org/10.1016/j.comnet.2020.107275
https://doi.org/10.1109/ACCESS.2018.2869780
https://doi.org/10.1109/ACCESS.2020.2980002
https://doi.org/10.1007/978-3-319-48881-3\_8
https://doi.org/10.1002/mp.12731
https://doi.org/10.1002/mp.12731
https://doi.org/10.1109/TKDE.2016.2609424
https://doi.org/10.1109/TKDE.2016.2609424
https://doi.org/10.1016/j.compmedimag.2021.101941
https://doi.org/10.1109/ICSMC.2005.1571498
https://doi.org/10.1109/ICSMC.2005.1571498
https://doi.org/10.1145/2870632
https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.48550/arXiv.1803.01271
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Respiratory Prediction Based on Multi-Scale Temporal Convolutional Network for Tracking Thoracic Tumor Movement
	1 Introduction
	2 Related Work
	3 Materials And Methods
	3.1 Respiratory Movement Data
	3.2 Research Methods
	3.2.1 Data Preprocessing
	3.2.1.1 Remove Outliers
	3.2.1.2 Empirical Mode Decomposition
	3.2.1.3 Division of Preprocessed Data

	3.2.2 Respiratory Motion Prediction Model
	3.2.2.1 Squeeze and Exception Module
	3.2.2.2 Temporal Convolutional Network
	3.2.2.2.1 Causal Convolutions
	3.2.2.2.2 Dilated Convolutions
	3.2.2.2.3 Residual Connections

	3.2.2.3 Network Layer of Respiratory Motion Prediction Model

	3.2.3 Evaluation Criteria


	4 Results And Discussion
	4.1 Results
	4.2 Discussion

	5 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


