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Ovarian cancer has the highest mortality rate of gynecologic malignancy. 18F-FDG
positron emission tomography (PET) adds an important superiority over traditional
anatomic imaging modalities in oncological imaging but has drawbacks including false
negative results at the early stage of ovarian cancer, and false positives when inflammatory
comorbidities are present. Aminopeptidase N (APN, also known as CD13) and integrin
avb3 are two important targets overexpressed on tumor neo-vessels and frequently on
ovarian cancerous cells. In this study, we used subcutaneous and metastatic models of
ovarian cancer and muscular inflammation models to identify 68Ga-NGR-RGD, a
heterodimeric tracer consisting of NGR and RGD peptides targeting CD13 and integrin
avb3, respectively, and compared it with 18F-FDG. We found that 68Ga-NGR-RGD
showed greater contrast in SKOV3 and ES-2 tumors than 18F-FDG. Low accumulation
of 68Ga-NGR-RGD but avid uptake of 18F-FDG were observed in inflammatory muscle. In
abdominal metastasis models, PET imaging with 68Ga-NGR-RGD allowed for rapid and
clear delineation of both peritoneal and liver metastases (3-6 mm), whereas, 18F-FDG
could not distinguish the metastasis lesions due to the relatively low metabolic activity in
tumors and the interference of intestinal physiological 18F-FDG uptake. Due to the high
tumor-targeting efficacy, low inflammatory uptake, and higher tumor-to-background
ratios compared to that of 18F-FDG, 68Ga-NGR-RGD presents a promising imaging
agent for diagnosis, staging, and follow-up of ovarian tumors.

Keywords: positron emission tomography (PET), ovarian cancer, CD13, integrin avb3, dual-receptor targeted
INTRODUCTION

Ovarian cancer has the highest mortality rate of all gynecologic malignant cancers, with more than
80% of patients presenting with advanced disease (1). Due to their silent nature of the disease,
patients often present with advanced stages at first diagnosis, which will result in 29-75% of patients
succumbing to ovarian cancer within 5 years. However, if diagnosed at stage I (ovary defined), the
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5-year survival rate exceeds 90% (1, 2). Therefore, it’s a research
priority to improve early detection and prevention, as a better
prognosis correlated with early stage at diagnosis.

Functional imaging plays an essential role in the management of
ovarian cancers. In particular, with the development and promotion
of PET/MRI (3, 4) with excellent soft tissue contrast and digital PET
scanner (5, 6) with higher sensitivity and diagnostic performance
than analog PET, functional imaging will reduce radiation dose,
enhance the diagnostic confidence and ensure the better strategies
for patient management and personalized treatment, showing a
wider clinical application prospect. 18F-FDG positron emission
tomography/computed tomography (PET/CT) imaging, as the
most frequently used functional imaging method in oncological
imaging, adds an important superiority over traditional anatomic
imaging modalities by providing functional information about
cellular glucose metabolism. However, 18F-FDG PET is not
recommended for the primary detection of ovarian cancers with a
relatively low level of sensitivity (52-58%) and specificity (76-78%)
(1, 7, 8), which might be due to tumor size and cystic or mucinous
histological features with no/low metabolic activity in tumors (9,
10). Besides, it is limited by several pitfalls, such as higher ovarian
glucose metabolism during menstruation and midcycle, physiologic
accumulation in several benign diseases, as well as its imprecise
distinction between cancerous growths and acute inflammation
lesions (11–14). Novel PET agents targeting biological tumor
features, including cell proliferation, angiogenesis, hypoxia,
metabolism, and receptor overexpression, are pursued in
preclinical researches to better detect early malignant lesions,
evaluate the heterogeneity of biological features, and monitoring
treatment response more accurately (10, 15–19).

Angiogenesis plays a prominent role in tumor growth, invasion
and metastasis by providing abundant oxygen, nutrients, and
metastatic conduits (20). aminopeptidase N (APN, also known as
CD13) and integrin avb3 are two key regulators involved in tumor
angiogenesis and tumor progression. They are overexpressed on
the tumoral neo-endothelial cells during angiogenesis as well as
cancerous cells, regarded as two important hallmarks of tumor
angiogenesis (21–24). There are several studies have focused on the
imaging and/or treatment of ovarian tumors by targeting CD13
(25, 26) or integrin avb3 (27, 28). However, these angiogenesis-
related factors, including CD13 and integrin avb3, are usually
differentially expressed in ovarian tumor tissues and cell lines due
to the heterogeneity and genetically instability of the disease (29,
30), making it a very challenging approach to find “the optimal
target”, and may also be one of the reasons for drug resistance of
cancer to monotherapy. Therefore, an alternative approach is to
develop a complementary receptor-targeting agent for the
detection and treatment of tumors.

Previously, we developed a CD13 and integrin avb3 dual-
receptor targeted radiotracer, 68Ga-NGR-RGD, which
demonstrated promising results in PET imaging of breast
cancers with superior imaging efficacy than monomeric 68Ga-
NGR and 68Ga-RGD (31). Furthermore, the physiological uptake
of 68Ga-NGR-RGD is low in most normal organs, except
kidneys, which may make this dual-receptor targeted tracer
supplement or even be superior to 18F-FDG PET/CT in the
Frontiers in Oncology | www.frontiersin.org 2
early diagnosis and staging of ovarian tumors. In this study, we
aim to evaluate the value of 68Ga-NGR-RGD in PET/CT imaging
of ovarian tumors. In addition, we also investigated its potential
application in distinguishing tumors and inflammation. Routine
18F-FDG imaging was also conducted as a control group in all
prepared mice models.
MATERIALS AND METHODS

Synthesis of NGR-RGD and Radiolabeling
NGR-RGD was synthesized and radiolabeled using our
previously developed method (31). Briefly, 150 µL sodium
acetate buffer (0.25 M, pH 6.8) and 2 µL NGR-RGD (2 mM)
were added to the tube containing 500 µL 68GaCl3 in 0.05 M HCl
(150-200 MBq) and mixed. The final pH of the radiolabeling
solution was approximately 4.0. Then, the mixture was heated at
95°C for 5 min. The radiolabeling field of the product 68Ga-
NGR-RGD was determined by radio-HPLC. 68Ga was produced
with a 68Ge/68Ga generator (Isotope Technologies Garching
GmbH, Garching, Germany). Peptides were obtained
commercially from Chinapeptide (Shanghai, China) or Gl
Biochem (Shanghai, China).

Cell Culture
Human ovarian cancer cells, SKOV3, ES-2, and OVCAR4 were
derived from our own laboratory preservation and cultured in
GibcoDulbecco’s Modified Eagle Medium/Nutrient mixture F-12
(DMEM/F12; Gibco, Carlsbad CA, USA), supplemented with
10% fetal bovine serum (FBS; Sciencell, Carlsbad CA, USA), 100
mg/mL streptomycin and 100 mg/mL penicillin (Solarbio,
Shanghai, China) at 37°C in a humidified incubator with
5% CO2.

Western Blot Analysis
Cancer cells were harvested, and total protein concentration was
measured with the BCA protein assay kit (Aidlab, Beijing,
China). After denaturation and separation by SDS-PAGE,
proteins were transferred to a polyvinylidenefluoride (PVDF)
membrane. Next, the blots were incubated with primary
antibodies (1:500 anti-CD13, 1:1000 anti-Integrin alpha V, and
1:1000 anti-Integrin beta 3; Abcam, Cambridge MA, USA), and
Glyceraldehyde-3-phosphate dehydrogenase (1:10000 GAPDH;
Sungene, Tianjin, China). Next, the membrane was incubated
with goat anti-rabbit IgG/HRP (diluted 1:20000; Sungene,
Tianjin, China). The membrane was scanned by enhanced
chemiluminescence (ECL kit, Beyotime) and analyzed using
Quantity One software (Bio-Rad, Hercules CA, USA).

In Vitro Cell Uptake and Blocking Studies
Cells in logarithmic phase were harvested and counted using a
cytometer (Cellmeter Mini, Nexcelom Bioscience LLC, Lawrence
MA, USA). Cells were seeded in a 24-well plate at 2×105 cells per
well 24 h in advance. 74 kBq 68Ga-NGR-RGD in 50 µL PBS were
added to each well and incubated at 37°C for 30 min, 1 h and 2 h.
For blocking study, cells were pretreated with one hundred times
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excess of non-radioactive NGR-RGD or NGR + RGD 15 min in
advance. At the end of each time point, supernatant was
collected, and cells were washed twice with pre-cooled PBS
(wash 1) before lysed with 1 N sodium hydroxide; then each
well was washed twice with pre-cooled PBS (wash 2). Cells,
supernatant and wash solutions were subjected to radioactivity
analysis using an automatic gamma counter (2470 WIZARD;
PerkinElmer, Waltham MA, USA). The percentage of
radioactivity taken up by the cells was calculated according to
Equation 1, wherein Cpm represents decay-corrected
radioactivity counts per minute.

% radioactivity uptake =

Cpm Cellsð Þ + Cpm Wash 2ð Þ½ �= Cpm Cellsð Þ + Cpm Supernatantð Þ + Cpm Wash 1ð Þ + Cpm Wash 2ð Þ½ � � 100

(Equation 1)

Animal Models
All animal studies were carried out according to the regulations
and standards of the Institutional Animal Care and Use
Committee of Tongji Medical College of Huazhong University
of Science and Technology. Subcutaneous SKOV3 or ES-2
tumors were engrafted into 4-6 weeks-old female BALB/C
nude mice obtained from Beijing HFK Bioscience Co. Ltd
(Beijing, China). For implantation, 5×106 cancer cells in 100
µL PBS were subcutaneously injected into the right shoulder of
each mouse. The mice were subjected to the following
experiments when tumor size reached 8-10 mm. For mouse
muscular inflammation models, 20 mL turpentine oil (Aladdin,
China) was injected into the right thigh muscle of each mouse
using a 29-gauge hypodermic needle. Turpentine oil caused
visible redness and swelling within 3 h after injection and the
inflammation mice were subjected to PET/CT scans at 24 h after
injection of turpentine oil.

For abdominal metastasis models, SKOV3 or ES-2 cells were
harvested and resuspended in a mixed solution (50% Matrigel,
Corning and 50% PBS). Next, 5×106 tumor cells in 200 µL were
injected into intra-peritoneal cavity (1, 32, 33). About 20 days
later, the mice underwent PET/CT imaging.

Animal PET/CT Imaging
and Biodistribution
PET/CT imaging was performed on the lnliView-3000B small
animal PET/SPECT/CT (Novel Medical, Beijing, China).
Overnight fasted tumor-bearing and inflammation mice
received intravenous (i.v.) injection of 2.4-3 MBq 18F-FDG.
Animals were then returned to anesthesia induction box and
subsequently anesthetized with 2.0% isoflurane delivered in
100% air. PET/CT scans were performed at 1 h after injection.
The day after 18F-FDG imaging, the PET/CT-based protocol for
68Ga-NGR-RGD imaging were conducted, including intravenous
injection of the 68Ga-NGR-RGD solution (4-5.5 MBq) and
identical procedures. For abdominal metastasis groups, PET/
CT were performed at 1 h p.i. of 18F-FDG or 68Ga-NGR-RGD.
Images were quantified via region-of-interest (ROI) analysis.

Following the terminal PET/CT scan, mice were sacrificed,
and organs of interest were harvested, weighed, and g-counted
Frontiers in Oncology | www.frontiersin.org 3
(2470 WIZARD; PerkinElmer, Waltham MA, USA) to validate
the imaging data. The tracer accumulation of tissues and organs
were noted by the percentage of injected dose per gram of tissue
and corrected for radioactive decay (%ID/g).

Immunohistochemistry Analysis
Tumors were extracted, fixed in 4% paraformaldehyde, and then
dehydrated and embedded in paraffin. Fixed tumor tissue sections
(5 mm) were deparaffinized, rehydrated and permeabilized in
EDTA buffer (pH 9.0). The sections were blocked for
nonspecific binding by adding 3% hydrogen peroxide and 10%
normal goat serum. Sections were incubated with primary
antibodies at 4°C overnight (anti-avb3, 1:100; anti-CD13, 1:100;
anti-CD31, 1:2000, Abcam, Cambridge MA, USA). Then sections
were further stained with secondary antibody (HRP-labeled goat
anti-rabbit IgG, diluted 1:50) at room temperature for 25 min, and
then incubated with 3,3’-diaminobenzidine (DAB, Beyotime,
Hangzhou, China) for 5 min. Last, slides were counterstained
with hematoxylin (Beyotime), dehydrated, covered, and observed
under light microscopy.

Statistical Analysis
Quantitative data were described as the mean ± standard deviation
(SD). Statistical analysis was performed using student t-test and
p-values < 0.05 were considered statistically significant.
RESULTS

CD13 and Integrin avb3 Expression in
Ovarian Tumor Cell Lines
Expression levels of CD13 and integrin avb3 in three ovarian
tumor cell lines were determined viaWestern blot, with GAPDH
used as an internal control (Figures 1A, B). Strong integrin avb3
band intensity was observed in SKOV3 and OVCAR4 cell lines
and strong CD13 staining was found in ES-2 cell line, indicating
the high expression of CD13 and/or integrin avb3 in ovarian
tumor cell lines.

Uptake Profile of 68Ga-NGR-RGD in
Ovarian Tumor Cells
To demonstrate the specificity of NGR-RGD for ovarian tumor cells,
we conducted the cell uptake andblocking studiesof 68Ga-NGR-RGD
in SKOV3, OVCAR4, and ES-2 ovarian tumor cells. High uptake of
68Ga-NGR-RGDwas observed in these three ovarian tumor cellswith
a gradually increasing trend over time (Figure 1C). On the contrary,
minimal uptake of 68Ga-NGR-RGD by SKOV3 and ES-2 cells was
detected when pretreated with excess amounts of non-radiolabeled
NGR-RGD or NGR+RGD (Figure 1D).

PET/CT Imaging and Biodistribution of
68Ga-NGR-RGD in Subcutaneous Tumors
Next, we performed the PET/CT scan in SKOV3 and ES-2
tumor-bearing mice and turpentine oil-induced muscular
inflammation mice using 18F-FDG and 68Ga-NGR-RGD. As
May 2022 | Volume 12 | Article 884554

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Long et al. 68Ga-NGR-RGD PET for Ovarian Tumor
shown in Figure 2A, 68Ga-NGR-RGD clearly delineated both
SKOV3 and ES-2 ovarian tumors, and the tumor contrast of
68Ga-NGR-RGD PET imaging was greater than that of 18F-FDG.
On the contrary, the uptake of 68Ga-NGR-RGD in inflammatory
muscle was minimal, while avid uptake of 18F-FDG in them
was observed.

The quantitative data were obtained from the region-of-
interest (ROI) analysis. Consistent with the PET images, 68Ga-
NGR-RGD showed significantly higher tumor-to-muscle (T/M)
and tumor-to-liver (T/L) ratios, with values of 2.71 ± 0.21 and
1.05 ± 0.04 for SKOV3-bearing mice and 2.78 ± 0.34 and 1.43 ±
0.16 for ES-2-bearing mice (n=4; all p<0.05), as compared to low
T/M and T/L ratios of 18F-FDG (0.92 ± 0.22 and 0.92 ± 0.04 for
SKOV3, 1.03 ± 0.47 and 0.97 ± 0.26 for ES-2) (Figures 2B, C).
We also quantified the tracer uptakes in inflammatory muscles
and compared them with tumors. The uptakes of 68Ga-NGR-
RGD in inflammatory muscles were much lower than tumors;
however, their 18F-FDG uptakes were much higher (Figure 2D).
And as expected, the tumor-to-inflammatory muscle ratios of
68Ga-NGR-RGD in SKOV3 and ES-2 were significantly higher
than that of 18F-FDG (all p<0.001) (Figure 2E).

Biodistribution studies of 68Ga-NGR-RGD were conducted at
1 h post injection to validate the PET analysis. 68Ga-NGR-RGD
uptake in SKOV3 and ES-2 xenografts were 0.68 ± 0.03%ID/g
and 0.70 ± 0.17%ID/g, respectively (Figure 3A). And high
tumor-to-muscle and tumor-to-liver ratios were recorded in
both ovarian tumors (Figure 3B), consistent with PET imaging
studies, further indicating the utility of 68Ga-NGR-RGD in the
diagnosis of ovarian cancer.
Frontiers in Oncology | www.frontiersin.org 4
Immunohistochemistry Staining in
Tumor Tissues
SKOV3 tumor sections showed high expression of integrin avb3
and moderate CD13, and ES-2 tumor sections showed abundant
CD13 and moderate integrin avb3 (Figure 3C). The staining of
endothelial marker CD31 (cluster of differentiation 31) was also
conducted to evaluate the angiogenesis of tumors. BothSKOV3and
ES-2 tumors displayed neovascularity. Immunohistochemical
results of tumor tissues were consistent with western blot results.
PET Imaging and Biodistribution in
Metastatic Models
To further investigate the potential application of 68Ga-NGR-
RGD in detecting metastases, SKOV3 and ES-2 abdominal
metastatic models were established by injecting tumor cells
intraperitoneally to simulate peritoneum implantation
metastasis of ovarian cancers. As shown in Figure 4, peritoneal
metastases could be easily delineated from 68Ga-NGR-RGD
PET/CT imaging in both ovarian tumor models. However, 18F-
FDG PET showed limited value in detecting these metastatic
lesions, which was limited by the relatively low uptake in tumors
and high background signals. In the images of 68Ga-NGR-RGD
(Figures 4A, C), several focal uptakes were found in the
abdominal space of both SKOV3 and ES-2 group mice,
suspected to be the peritoneal implantations; while in the
images of 18F-FDG (Figures 4B, D), several strips with high
signal were observed in abdomen. Surgical explorations were
done on the same mice after scanning, finding reddish-white
A B

DC

FIGURE 1 | Evaluation of binding affinity of 68Ga-NGR-RGD to ovarian tumor cells. (A) Western blot analysis of expression of CD13, integrin av and integrin b3 in
three ovarian tumor cell lines, with GAPDH used as internal control. (B) The semi-quantitative analysis was conducted through the integrated optical density ratio of
CD13, integrin av and integrin b3 to GAPDH. (C) Uptake of 68Ga-NGR-RGD in SKOV3, OVCAR4 and ES-2 ovarian tumor cell lines at 0.5 h, 1 h, 2 h. (D) Uptake of
68Ga-NGR-RGD in SKOV3 and ES-2 cells with or without blocking dose of NGR-RGD or NRG + RGD at 2 h. Cell uptake and blocking assays showed the
68Ga-NGR-RGD displayed specific binding to ovarian tumor cell lines. **p < 0.01, ***p < 0.001. Data are expressed as mean ± SD (n = 4).
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nodules with a slightly firm texture in all these groups
(Supplementary Figure 2). The nodules were extracted for
further evaluation, along with muscle, large intestine, small
intestine, spleen, and kidney. The nodular tissues (3-6 mm)
were confirmed to be 68Ga-NGR-RGD-avid but 18F-FDG-
nonavid by ex-vivo PET imaging. High radioactivity
accumulation was found in kidney, indicating that the tracer
was mainly excreted via kidney. Other tissues in the abdominal
cavity such as intestines and spleens showed low signals,
indicating that the high signal focuses in PET images were the
tumor metastases; whereas, uptake of 18F-FDG was high in large
intestine, suggesting the high signal regions in the image were
not metastases but intestinal physiological uptake. Additionally,
there were some liver metastases found in ES-2 abdominal
models (Figure 4E). The liver metastases of ovarian tumor
showed a strong uptake of 68Ga-NGR-RGD but a similar low
uptake of 18F-FDG as healthy liver, which further demonstrated
that 68Ga-NGR-RGD has excellent metastasis detection
efficiency of small peritoneal implants and liver metastases
over 18F-FDG. The hematoxylin-eosin (HE) staining confirmed
that the lesions on the liver were metastatic tumors (Figure 4F).

Ex-vivo biodistribution studies showed 2.11 ± 0.67%ID/g and
0.97 ± 0.23%ID/g tumor uptake of 68Ga-NGR-RGD in the
SKOV3 and ES-2 abdominal metastasis models, respectively
(Figure 5 and Supplementary Table 1). Tumor uptakes of
SKOV3 metastases were higher than SKOV3 subcutaneous
tumors, which might be attributed to a better blood supply and
the smaller metastasis size (34). Higher tumor-to-muscle (T/M)
and tumor-to-liver (T/L) ratios were recorded in 68Ga-NGR-
RGD group, consistent with the results of s.c. tumor models
(Supplementary Figure 3). More specifically, tumor-to-small
Frontiers in Oncology | www.frontiersin.org 5
intestine (T/SI) and tumor-to-large intestine (T/LI) ratios of
68Ga-NGR-RGD in abdominal metastasis models were
significantly higher than that of 18F-FDG (p<0.01), which was
consistent with PET imaging (Figure 5C).
DISCUSSION

CD13 and integrin avb3 are two important angiogenic factors
involved in the regulation of tumor angiogenesis and tumor
progression and several related targeted tracers were developed
for the detection of ovarian cancers, with proven specific and
sensitive targeting ability to ovarian cancers (22–25). However,
due to the high heterogeneity, and genetical instability of ovarian
cancer leading to a progressive increase in the number of
different angiogenic factors as the cancer progress to advanced
stages (20, 29, 30, 35, 36), the single-receptor targeted imaging
strategies may only cover a limited subset of the patients. Owing
to the dual-receptor binding property, improved in vivo kinetics,
and increased circulation half-life, heterodimer tracers
are expected to be more sensitive than single receptor-targeted
tracers, especially when only one receptor type is overexpressed
in a tumor model (31, 37, 38). In this study, we investigated the
ability and potential of our recently developed dual CD13 and
integrin avb3 targeted tracer 68Ga-NGR-RGD, as a tumor-
specific PET imaging agent, for the early diagnosis and staging
of ovarian tumors. 68Ga-NGR-RGD exhibited sharp contrasts in
subcutaneous ovarian xenografts and metastases, higher tumor-
to-background ratios, and in addition, high capability for
distinguishing tumor from inflammatory tissue which is
A B

D E

C

FIGURE 2 | PET/CT imaging and quantitative analysis of 68Ga-NGR-RGD and 18F-FDG in subcutaneous ovarian cancer models and inflammation models.
(A) Representative static small PET/CT images of 68Ga-NGR-RGD and 18F-FDG in SKOV3 and ES-2 xenograft mice and turpentine oil-induced muscular
inflammation mice at 1 h post radiotracer injection. White arrows indicated tumors and yellow arrows indicate the inflammatory muscles. (B, C) Tumor-to-muscle
(T/M) and tumor-to-liver (T/L) ratios among 68Ga-NGR-RGD and 18F-FDG imaging in SKOV3 (B) and ES-2 (C) xenograft mice. (D) Quantification of 68Ga-NGR-
RGD and 18F-FDG uptake in SKOV3 and ES-2 tumors and inflammatory muscle. (E) Tumor-to-inflammatory muscle (Tumor/Inflammatory M) ratios. *p < 0.05,
**p < 0.01, ***p < 0.001. Data are expressed as mean ± SD (n = 4).
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superior to 18F-FDG, suggesting it has great potential to provide
an enhancement to the standard diagnostic imaging of
ovarian cancer.

Here, three ovarian tumor cell lineswere selected and confirmed
to express high level of integrin avb3 and/or CD13, indicating the
possibility of dual-receptor targeted tracer for the detection of
ovarian tumors. In vitro studies showed high uptake of 68Ga-
NGR-RGD in three ovarian cancer cell lines, and blocking studies
showed significant decrease tracer uptake, validating the specific
binding of our radio-tracer towards integrin avb3 and CD13 on
ovarian tumor cells. Both SKOV3 and ES-2 subcutaneous
metastatic tumors were clearly visualized by 68Ga-NGR-RGD
PET imaging at 1 h post tracer injection, although SKOV3 cells
expressed a high level of integrin avb3 but relatively low level of
CD13, and ES-2 expressed a high level of CD13 but low integrin
avb3. These PET imaging results suggested a broad application of
68Ga-NGR-RGD in the detection of ovarian tumors with improved
tumor-targeting efficacy and sensitivity. Specifically, we could
readily identify the location of small peritoneal implants and liver
metastases (3-6 mm) in SKOV3 and ES-2 abdominal metastatic
models. These results demonstrated the utility of 68Ga-NGR-RGD
for the sensitive detection of integrin avb3 and/or CD13 positive
ovarian tumors.
Frontiers in Oncology | www.frontiersin.org 6
When compared with 18F-FDG, greater contrast of
subcutaneous and metastatic tumors was observed in 68Ga-
NGR-RGD PET imaging of SKOV3 and ES-2 ovarian tumor
models with significantly higher tumor-to-background ratios (T/
M and T/L). In addition, the overall abdominal background
uptake of 68Ga-NGR-RGD with exception of urinary system was
relatively low, so small metastases could be clearly delineated and
easily differentiated from background uptake of surrounding
tissues. However, 18F-FDG accumulated heavily in the large
intestine due to physiological intestinal uptake, which often
makes it difficult to distinguish between normal intestinal
uptake with adjacent abdominal or pelvic tumor or nodal
uptake (39–42). Moreover, in turpentine oil-induced muscular
inflammatory lesions (Supplementary Figure 1), high uptake of
18F-FDG was observed in inflammatory cells (neutrophils and
macrophages) and granulation tissues, which showed similar
histology and FDG-avid features to the reported studies (43–45),
mimicking a false-positive lesion of 18F-FDG PET. In contrast to
18F-FDG, 68Ga-NGR-RGD showed low accumulation in
inflammatory muscles. Therefore, the false-positive results in
physical uptake of surrounding tissues and inflammatory
changes detected by 18F-FDG can potentially be avoided using
68Ga-NGR-RGD as a more tumor-specific imaging agent.
A B

C

FIGURE 3 | Biodistribution data of 68Ga-NGR-RGD in ovarian xenograft mice and immunohistochemistry analysis of tumor tissue sections. (A) Biodistribution of
68Ga-NGR-RGD in SKOV3 and ES-2 subcutaneous ovarian tumor models at 1 h after injection (n = 4). (B) Tumor-to-muscle (T/M) and tumor-to-liver (T/L) ratios of
68Ga-NGR-RGD in SKOV3 and ES-2 xenograft mice. (C) Immunohistochemistry staining of CD13, integrin avb3 and CD31 in SKOV3 and ES-2 tumor sections. Scale
bar = 50 mm.
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There aremany potential applications that probably profit from
PET imaging targeting CD13 and integrin avb3. With the great
contrast of small tumors and higher tumor-to-background ratios
than 18F-FDG, 68Ga-NGR-RGD could provide significant
additional information, such as the relationship between tumor
lesionswith adjacent tissues anddistantmetastases, for determining
TNM staging and optimal treatment options, so it suggests that
68Ga-NGR-RGD is a potential candidate to be added to the workup
and treatment planning of patients with ovarian tumors. In
addition, anti-angiogenesis therapy has been regarded as a new
Frontiers in Oncology | www.frontiersin.org 7
era for tumor treatment in recent years, and targeting the tumor
neovascularization, including CD13 and integrinavb3, has become
a widely accepted therapeutic strategy in clinic (46, 47). The
heterodimer strategy may also help with the development of
therapy molecules, allowing for selection of responders and
treatment response monitoring during and after therapy.

One limitation of this study is that only two types of tumor
models were used, while ovarian tumors are highly heterogeneous
with complex tumor components (48). Future work will evaluate
tumor uptake of 68Ga-NGR-RGD in other types of tumor models,
A B

D

E F

C

FIGURE 4 | Radiological-surgical correlation of abdominal metastatic models. (A–D) Representative static PET/CT images of 68Ga-NGR-RGD and 18F-FDG in
SKOV3 and ES-2 abdominal ovarian metastasis models at 1 h post injection. In 68Ga-NGR-RGD PET/CT imaging, several metastatic lesions with strong uptake were
found in the peritoneal space [(A, C), white circle]. In 18F-FDG PET/CT imaging, there were several stripe high uptake foci (B, D). Surgical exploration was done in
the same animal after PET/CT imaging. Diffuse reddish-white nodules with a slightly firm texture were seen in the peritoneal space. Ex vivo PET imaging of excised
tissues was performed. The small metastases showed relatively high 68Ga-NGR-RGD uptake and low 18F-FDG uptake. H, heart; B, bladder; T, tumor; M, muscle; LI,
large intestine; SI, small intestine; Sp, spleen; K, kidney. Scale bar = 10 mm (E) ES-2 hepatic metastases (Hepatic M) showed strong uptake of 68Ga-NGR-RGD, but
a similar low uptake of 18F-FDG as healthy liver. (F) HE staining confirmed that the lesion on liver was tumor tissue. Scale bar = 250 mm or 100 mm.
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especially patient-derived xenograft models, with a various
expression of CD13 and integrin avb3. Currently, 68Ga is usually
produced by an in-house 68Ge/68Ga generator, andone elution could
provide a dose enough for 2-5 patients based on the specification of
the generator. Therefore, we believe the final cost of a 68Ga-tracer
scan will be acceptable and should be close to routine 18F-FDG PET
scans (after considering the cyclotron and its maintenance). Clinical
studies evaluating the safety andefficacyof thedual-receptor targeted
tracer in humans are ongoing, which will be free of charge for the
patients enrolled, and we will report relevant data in the future.

In conclusion, 68Ga-NGR-RGD demonstrated a promising
application for early diagnosis, staging, and follow-up of ovarian
cancer, as it showed high tracer uptake, sharp contrasts in
subcutaneous xenograft and metastases, and higher tumor-to-
background ratios in ovarian tumor models with different
expression levels of CD13 and integrin avb3, demonstrating
superior diagnostic values than 18F-FDG PET/CT. Meanwhile,
in vivo PET imaging studies showed significantly lower
accumulation of 68Ga-NGR-RGD in inflammatory lesions
as compared to 18F-FDG, suggesting the potential of 68Ga-NGR-
RGD for di ffe rent ia t ing between tumor and non-
tumor inflammation.
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FIGURE 5 | Biodistribution for the validation of PET/CT results. Biodistribution of 68Ga-NGR-RGD in SKOV3 and ES-2 (A) abdominal metastatic ovarian tumor
models and 18F-FDG in SKOV3 and ES-2 (B) metastatic models at 1 h after tracer injection. (C) Metastatic tumor lesions showed avid 68Ga-NGR-RGD uptake with
a significantly higher tumor-to-small intestine (T/SI) and tumor-to-large intestine (T/LI) comparing to 18F-FDG. **p < 0.01. Data are expressed as mean ± SD (n = 4).
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