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Objective: To compare the performance of abbreviated breast magnetic

resonance imaging (AB-MRI)-based transfer learning (TL) algorithm and

radionics analysis for lymphovascular invasion (LVI) prediction in patients with

clinically node-negative invasive breast cancer (IBC).

Methods: Between November 2017 and October 2020, 233 clinically node-

negative IBCs detected by AB-MRI were retrospectively enrolled. One hundred

thirty IBCs from center 1 (37 LVI-positive and 93 LVI-negative) were assigned as

the training cohort and 103 from center 2 (25 LVI-positive and 78 LVI-negative)

as the validation cohort. Based on AB-MRI, a TL signature (TLS) and a radiomics

signature (RS) were built with the least absolute shrinkage and selection

operator (LASSO) logistic regression. Their diagnostic performances were

validated and compared using areas under the receiver operating curve

(AUCs), net reclassification improvement (NRI), integrated discrimination

improvement (IDI), decision curve analysis (DCA), and stratification analysis. A

convolutional filter visualization technique was used to map the response areas

of LVI on the AB-MRI.

Results: In the validation cohort, compared with RS, the TLS showed better

capability in discriminating LVI-positive from LVI-negative lesions (AUC: 0.852

vs. 0.726, p < 0.001; IDI = 0.092, p < 0.001; NRI = 0.554, p < 0.001). The

diagnostic performance of TLS was not affected by the menstrual state,

molecular subtype, or contrast agent type (all p > 0.05). Moreover, DCA

showed that the TLS added more net benefit than RS for clinical utility.
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Conclusions: An AB-MRI-based TLS was superior to RS for preoperative LVI

prediction in patients with clinically node-negative IBC.
KEYWORDS

magnetic resonance imaging, lymph nodes, breast neoplasms, radiomic analysis,
transfer learning
Introduction

Lymphovascular invasion (LVI) is a well-recognized risk

factor for disease recurrence and shorter survival in patients with

invasive breast cancer (IBC), especially those with negative

lymph nodes (1–3). Furthermore, it is a potential biomarker

associated with chemoresistance in neoadjuvant chemotherapy

(4, 5) and axillary nodal metastasis in early-stage breast cancer

(6). Although these observations indicated that predicting LVI

preoperatively might facilitate individualized and precise

treatment for patients with IBC, the preoperative identification

of LVI remains a challenge in clinical practice.

Magnetic resonance imaging (MRI), which can characterize

the entire lesion with high spatial resolution, is increasingly

studied with LVI assessment in IBC (7–9). However, the time

consumption and high cost of the conventional breast MRI

protocol hinder its broader use. Thus, a new way to increase

access to breast MRI is needed. Abbreviated breast MRI (AB-

MRI) is being proposed as an alternative to the full protocol

because it reduces the image acquisition time, interpretation

complexity, and examination costs while maintaining equivalent

breast cancer detected ability (10–13). With the increasing use of

AB-MRI, a large number of breast cancer were detected.

Whether these breast cancers can be further staged

preoperatively based on AB-MRI has attracted more and more

concerns because using a one-stop imaging modality to detect

and diagnose preoperative stage breast cancer would be cost-

effective. Recent studies have shown that AB-MRI is effective in

diagnosing breast cancer and mapping the local extent of the

tumor (14, 15), and AB-MRI-based radiomics was preliminarily

used for LVI assessment (16). However, the diagnostic

performance was only moderate. It is needed to develop a

more accurate and effective approach for LVI prediction in

patients with IBC.

Radiomics is a promising tool for the characterization of

breast cancer by extracting quantitative features, but the main
nvasive breast cancer;

aging; TLS, transfer

election operator; RS,

, net reclassification

ent.

02
drawbacks of using traditional radiomics analysis are time-

consuming lesion segmentation and hard-coded feature

extraction (17). Compared with traditional radiomics, a

convolutional neural network (CNN) algorithm extracts

features by using hierarchical convolution operations from the

raw medical image and does not require precise tumor

delineation (18). Furthermore, it has the advantage of

automatically learning and hierarchically organizing task-

adaptive image features, tending to reflect the high-

dimensional association between images and clinical issues

(19). However, the success of CNN largely depends on large

training datasets (20). When the available datasets are small,

transfer learning (TL) may be an alternative effective feature

extraction method (21–23). Despite the convenience and

advances in technology, the efficiency of a TL algorithm based

on AB-MRI in predicting LVI remains unclear.

Hence, the purpose of this study was to evaluate the

performance of an AB-MRI-based TL algorithm and compare

it with that of radiomics for LVI prediction in patients with

clinically node-negative IBC.
Materials and methods

Patients

A schematic illustration of the study design is presented

in Figure 1.

The ethics committee approved this retrospective study of

two participating centers with a waiver for informed consent.

Between November 2017 and October 2020, the study

enrolled consecutive women with new IBC detected by AB-

MRI and clinically lymph node-negative in the study. These

patients underwent AB-MRI for breast cancer screening or

problem resolving. The inclusion criteria were as follows: (a)

underwent AB-MRI and have enhanced lesions on MR image;

(b) lesions diagnosed as invasive ductal carcinoma based on

pathologic evaluation of surgical specimens; (c) time interval

between surgery (mastectomy or lumpectomy) and MRI

examination: <2 weeks. The exclusion criteria were as follows:

(a) biopsy performed before AB-MRI (n = 58); (b) received

neoadjuvant chemotherapy (n = 30) or radiotherapy (n = 55)
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FIGURE 1

Schematic of the study design. (A) The image acquisition and ROI delineation, where the ROI segmentation for radiomics on the left and ROI acquisition
for the transfer learning on the right. (B) Radiomics feature and transfer learning feature extraction. (C) Feature selection and a signature building.
(D) Independent validation and comparison of models. ROI, region of interest; AB-MRI, abbreviated breast magnetic resonance imaging; LVI,
lymphovascular invasion; RS, radiomics signature; TLS, transfer learning signature; ROC, receiver operating characteristics; AUC, area under curve.
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before MRI examination; (c) node-positive diagnosed on

preoperative ultrasonography (n = 37): rounded hypoechoic

node, complete or partial effacement of the fatty hilum, focal or

diffuse cortical thickening (≥5 mm), complete or partial

replacement of the node with an ill-defined or irregular mass,

extra-hilar blood vessel flow on color Doppler images, or

microcalcifications in the node; (d) MR image with obvious

artifacts (n = 15); (e) diagnosed as benign tumors, high-risk

lesions, pure ductal carcinoma in situ or special types of

invasive breast carcinoma at final pathologic evaluation (n =

69). Finally, a total of 233 patients (age range: 30–79 years; 62

LVI-positive and 171 LVI-negative) were included. Patients

from center 1 were assigned as the training cohort (37 LVI-

positive and 93 LVI-negative), and patients from center 2 were

the external validation cohort (25 LVI-positive and 78

LVI-negative).
AB-MRI acquisition and
pathologic assessment

The AB-MRI protocol included a pre- and early postcontrast

phase using a 3D T1 gradient echo with a fat saturation

sequence. Detailed AB-MRI parameters are listed in Table S1.

The early postcontrast images were used for image analysis. In

patients with multiple breast cancers, only the largest lesion was

selected for analysis.

All of the surgical specimens were examined by two senior

pathologists with 16 and 13 years of experience in breast

pathology, and the pathologic evaluations are provided in

Supplementary A1.
Development of a radiomics
signature (RS)

An RS was developed with the following steps: region of

interest (ROI) acquisition, feature extraction, feature selection,

and model construction. The ROI was manually segmented by a

professional radiologist (reader 1, with 11 years of experience in

breast imaging). Reader 2 (with 15 years of experience in

abdominal imaging) randomly chose 30 patients from the

training cohort and performed tumor segmentation for inter-

reader agreement analysis. Based on the ROI, 10,402 radiomics

features were extracted using the in-house software developed

with MATLAB 2016 (Mathworks, Natick, MA, USA), including

first-order, shape-based, and texture features. Then, the Mann–

Whitney U test was used to compare the between-group

differences of each radiomics feature in the LVI-positive and

LVI-negative groups, and intra-class correlation coefficients

(ICCs) were used to evaluate the reproducibility and stability

of the radiomics features. The specific process is presented in

Supplementary A2.
Frontiers in Oncology 04
A least absolute shrinkage and selection operator (LASSO)

logistic regression was used to build an RS using a linear

combination of features based on the selected features. The

features with nonzero coefficients were considered valuable

predictors for predicting the LVI status, and the tuning

parameter was selected by 10-fold cross-validation for the

radiomics method. Finally, the output of the RS was labeled as

the radiomics score (R-score).
Development of a transfer
learning signature (TLS)

The development of a TLS consisted of two steps: TL

features extraction and classification layer training. The first

step is the training of feature extraction network. In order to

avoid an overfitting of the model, the TL strategy (24) was used

to train feature extraction network. The network was first pre-

trained using the ImageNet dataset (n = 1.3 million), and the

parameters obtained in the pre-training step are taken as the

initial parameters of the network. The AB-MRI images were

then used to fine-tune the parameters in the network. A total of

11264 TL features were extracted by the network, and the details

of feature extraction and selection are presented in

Supplementary A3.

Based on the TL feature, the differences of the transfer

learning signature (TLS) between the LVI-positive and LVI-

negative groups were assessed using the Mann–Whitney U test.

The second step is the classification layer training based on the

LASSO logistic regression; the training process was similar to

that of RS.
Visualization of the TLS

For investigating the interpretability of the TLS, the

convolutional filter was visualized with gradient-weighted class

activation mapping (Grad-CAM) (25), which could produce a

localization map highlighting the import regions for

classification target. By visualizing the filter, we explored the

association between the TL feature and LVI status.

Given an ROI image, each convolutional filter generated a

response map showing all the corresponding feature patterns

extracted from the lesion. A valuable convolutional filter should

have different responses to different types of lesions. Thus, the

visualization of the response map for convolutional filters in

different lesion groups was helpful to understand the TLS.
Comparison of the TLS AND RS

We compared the TLS with the RS to comprehensively

evaluate the performances of the models.
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ROC analysis was performed for the training cohort and

external validation cohort to evaluate the diagnostic

performance of the TLS and RS. The following parameters

were calculated: the area under the curve (AUC), sensitivity,

specificity, accuracy, positive predictive value (PPV), and

negative predictive value (NPV). The AUCs of the TLS and RS

were compared using the DeLong test. In addition, to compare

the classification ability of the DLS and RS, the net

reclassification index (NRI) and integrated discrimination

improvement (IDI) were calculated. Decision curve analysis

(DCA) was used to estimate the clinical utility of the TLS and

RS. Moreover, a stratified analysis was performed on the

menstrual state, molecular subtype, and contrast agent type.
Statistical analysis

All statistical tests were performed using R3.0.1 (http://www.

rproject.org). All radiomics features were extracted with Matlab

2016, and the TL features were extracted with Python 3.6.

LASSO was performed using the “glmnet” package, and the

ROC curve analysis was performed using the “pROC”.

Clinicopathologic characteristics between the LVI-positive and

LVI-negative groups were compared using chi-squared test or

Mann–Whitney U test. p Values <0.05 were considered

indicative of a statistically significant difference.
Results

Clinicopathologic characteristics

As shown in Table 1, in the training and validation cohorts,

only the pathological size of the invasive component and sentinel

lymph node status were statistically different between the LVI-

positive and LVI-negative groups (all p < 0.01), while other

characteristics showed no significant difference (p = 0.072–0.876).
Performance of the RS

A total of 2,994 features with a significant difference (p < 0.05)

and intraclass correlation coefficient (ICC) values greater than 0.75

were used in the LASSO logistic regression. In the LASSO logistic

regression, 14 features with nonzero coefficients (Figures 2A, B)

were selected as valuable predictors to build the RS by calculating

the R-score. The R-score calculation formula and selected features

are presented in Supplementary A4.

As shown in Table 2, the AUC of the RS was 0.850 (95% CI:

0.777–0.906) in the training cohort and 0.726 (95% CI, 0.629–

0.809) in the validation cohort.
Frontiers in Oncology 05
Performance of the TLS

In order to differentiate the LVI-positive and LVI-negative

groups in the training cohort, 2,907 features were selected

according to the Mann–Whitney U test with p < 0.05. With

LASSO logistic regression, 28 TL features with nonzero

coefficients (Figures 2C, D) were selected as valuable

predictors to build the LVI status-related TLS to calculate the

TL-score. The TL-score calculation formula and the selected

deep learning features are presented in Supplementary A5.

Table 2 shows that the AUC of the TLS was 0.911 (95% CI:

0.844–954) in the training cohort and 0.852 (95% CI, 0.769–

0.915) in the validation cohort.
Interpretability of the TLS

In order to further understand the association between TL

features and LVI status, we extracted two filters, including a

positive filter and a negative filter (the first column in Figure 3).

Based on the filters, the TL model generated an attention map

indicating the importance of each part of the lesion. The results

showed that the positive filter had strong responses to LVI-positive

lesions and weak responses to those that were LVI-negative.

Similarly, the negative filter had strong responses to LVI-negative

lesions and was nearly shut down in those that were LVI-positive.
Comparison of the TLS AND RS

The ROC analysis showed that the TLS yielded a higher AUC

value than the RS (0.852 vs. 0.726, p < 0.01; Table 2 and Figure 4).

The IDI and NRI demonstrated that, compared with the RS, the

TLS achieved better capability in discriminating LVI-positive

from LVI-negative lesions (IDI = 0.092, p < 0.001; NRI = 0.554,

p < 0.001). DCA illustrated that within the threshold probability

range of 0.01 and 0.95, the TLS gained a greater net benefit than

the RS (Figure 5). Stratified analysis showed that the performance

of the TLS was not affected by the menstrual state, molecular

subtype, and contrast agent type (all p > 0.05; Supplementary A6).
Discussion

Preoperative prediction of LVI might provide useful

information in the management of neoadjuvant chemotherapy

and axillary surgery in IBC patients with clinically negative

nodes (4–6). As AB-MRI is increasingly applied in breast

cancer screening or lesion diagnosis, more and more breast

cancers were detected by AB-MRI first. Part of these IBC

patients only undergo AB-MRI without the full protocol.
frontiersin.org
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Thus, we try to investigate whether LVI status can be assessed

simultaneously when IBC is detected on AB-MRI. The current

study developed a TLS and an RS based on AB-MRI to predict

LVI in IBC patients with clinically negative nodes. Their
Frontiers in Oncology 06
diagnostic performances were validated and compared in an

external cohort. Our results showed that the TLS had a better

discriminating ability between LVI-positive and LVI-negative

lesions than the RS. The satisfied diagnostic performance
TABLE 1 Clinicopathologic characteristics.

Training cohort (n = 130) Validation cohort (n = 103)

LVI-positive
(n = 37)

LVI-negative
(n = 93)

p LVI-positive
(n = 25)

LVI-negative
(n = 78)

p

Clinical characteristics

Age (years) 0.103 0.072

≤ 40 14 (37.8%) 22 (23.7%) 10 (40.0%) 17 (21.8%)

> 40 23 (62.2%) 71 (76.3%) 15 (60.0%) 61 (78.2%)

Tumor location 0.714 0.876

Upper-outer quadrant 13 (35.1%) 35 (37.6%) 10 (40.0%) 28 (35.9%)

Upper-inner quadrant 6 (16.2%) 18 (19.4%) 5 (20.0%) 14 (17.9%)

Lower-outer quadrant 8 (21.6%) 15 (16.1%) 3 (12.0%) 15 (19.2%)

Lower-inner quadrant 5 (13.5%) 18 (19.4%) 5 (20.0%) 12 (15.4%)

Central area 5 (13.5%) 7 (7.5%) 2 (8.0%) 9 (11.5%)

MRI features

Lesion type 0.362 0.457

Mass 33 (89.2%) 77 (82.8%) 23 (92.0%) 65 (83.3%)

NME 4 (10.8%) 16 (17.2%) 2 (8.0%) 13 (16.7%)

Internal enhancement 0.801 0.577

Homogeneous 2 (5.4%) 8 (8.6%) 1 (4.0%) 8 (10.3%)

Not homogeneous 35 (94.6%) 85 (91.4%) 24 (96.0%) 70 (89.7%)

Mass shape 0.604 0.653

Round or oval 6 (18.2%) 11 (14.3%) 2 (8.7%) 10 (15.4%)

Irregular 27 (81.8%) 66 (85.7%) 21 (91.3%) 55 (84.6%)

Mass margin 0.851 0.730

Circumscribed 5 (15.2%) 9 (11.7%) 3 (13.0%) 5 (7.7%)

Not circumscribed 28 (84.8%) 68 (88.3%) 20 (87.0%) 60 (92.3%)

Tumor size on MRI, cm (mean ± SD) 3.1 ± 1.0 2.6 ± 0.9 0.147 2.9 ± 0.9 2.5 ± 0.7 0.202

Pathological characteristics

Pathological size of the invasive component, cm (mean ± S.D.) 2.7 ± 1.0 1.8 ± 0.8 <0.001* 2.4 ± 1.0 1.7 ± 0.9 <0.001*

Sentinel lymph node status <0.001* <0.001*

Positive 23 (62.2%) 13 (14.0%) 18 (72.0%) 9 (11.5%)

Negative 14 (37.8%) 80 (86.0%) 7 (28.0%) 69 (88.5%)

Histological grade 0.423 0.656

I 3 (8.1%) 9 (9.7%) 1 (4.0%) 6 (7.7%)

II 21 (56.8%) 62 (66.7%) 15 (60.0%) 50 (64.1%)

III 13 (35.1%) 22 (23.6%) 9 (36.0%) 22 (28.2%)

Molecular subtype 0.186 0.198

Luminal A 13 (35.1%) 46 (49.4%) 8 (32.0%) 30 (38.5%)

Luminal B 9 (24.3%) 27 (29.0%) 7 (28.0%) 33 (42.3%)

HER2 positive 8 (21.6%) 10 (10.8%) 5 (20.0%) 8 (10.3%)

Triple negative 7 (18.9%) 10 (10.8%) 5 (20.0%) 7 (8.9%)
frontie
*p < 0.05.
LVI, lymphovascular invasion; NME, non-mass enhancement.
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FIGURE 2

Features selected by the LASSO method. (A) Adjustment (l) selection by 10-fold cross-validation for the radiomics method. Binomial deviance
(y-axis) was plotted log(l) (x-axis). The dotted lines were drawn at the optimal value of l, where the model provided its best fit. The optimal
values of l and log(l) were 0.0503 and -2.990, respectively. (B) Radiomics feature characteristics of the LASSO coefficient curve. The dashed
vertical line was defined with the optimal l, where 14 optimal radiomics features with nonzero coefficients are indicated. (C) Adjustment (l)
selection by 10-fold cross-validation for the transfer learning method. Binomial deviance (y-axis) was plotted log(l)(x-axis). The dotted lines
were drawn at the optimal value of l, where the model provided its best fit. The optimal values of l and log(l) were 0.0241 and -3.730,
respectively. (D) Transfer learning feature characteristics of the LASSO coefficient curve. The dashed vertical line was defined with the optimal l,
where 28 optimal transfer learning features with nonzero coefficients are indicated.
TABLE 2 A performance summary of RS, NTLS and TLS in the training and validation cohorts for preoperative identification of lymphovascular
invasion status in patients with invasive breast cancer.

method AUC (95% CI) Sensitivity Specificity Accuracy PPV NPV

Training cohort RS 0.850 (0.777-0.906) 0.865 (32/37) 0.710 (66/93) 0.754 (98/130) 0.543 (32/59) 0.930 (66/71)

TLS 0.911 (0.844-0.954) 0.865 (32/37) 0.839 (78/93) 0.846 (110/130) 0.681 (32/47) 0.940 (78/83)

NTLS 0.748 (0.631-0.882) 0.838 (31/37) 0.602 (56/93) 0.669 (87/130) 0.456 (31/68) 0.903 (56/62)

External validation cohort RS 0.726 (0.629-0.809) 0.680 (17/25) 0.846 (66/78) 0.806 (83/103) 0.586 (17/29) 0.892 (66/74)

TLS 0.852 (0.769-0.915) 0.760 (19/25) 0.846 (66/78) 0.825 (85/103) 0.613 (19/31) 0.917 (66/72)

NTLS 0.614 (0.552-0.731) 0.800 (20/25) 0.500 (39/78) 0.573 (59/103) 0.339 (20/59) 0.886 (39/44)
Frontiers in Oncology
 07
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TLS, Transfer learning signature; NTLS, Non-transfer learning signature; RS, radiomics signature; AUC, area under curve; PPV, positive predictive value; NPV, negative predictive value;
CI, confidence interval.
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suggested that AB-MRI not only could detect breast cancer but

could also be effective in predicting LVI status simultaneously

when transfer learning algorithm was introduced.

In our study, two clinicopathologic characteristics, i.e.,

pathological size of the invasive component and sentinel

lymph node metastasis, were significantly different between

LVI-posi t ive and LVI-negat ive les ions . These two

characteristics were determined after surgery and provided no
Frontiers in Oncology 08
preoperative value. Therefore, they were not incorporated into

the radiomics and TL model for the preoperative prediction of

LVI. Notably, sentinel lymph node metastasis was more frequent

in the LVI-positive group, which indicated that a sentinel lymph

node biopsy could not be omitted in LVI-positive patients

despite clinically negative nodes. Accordingly, preoperative

identification of the LVI status might be helpful in clinical

decision-making with sentinel lymph node biopsy (26).
FIGURE 3

Attention map visualization of LVI-positive and LVI-negative lesions. The first row shows the first postcontrast images from two LVI-positive
lesions and two LVI-negative lesions. The second and third rows show the attention maps of the input tumor images. The positive filter has a
strong response to LVI-positive lesions, and the negative filter has a strong response to LVI-negative lesions. LVI, lymphovascular invasion.
BA

FIGURE 4

ROC curves of the prediction models. (A) Training cohort. (B) External validation cohort. RS, radiomics signature; TLS, transfer learning signature.
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Previous studies have investigated preoperative LVI

prediction with various imaging modalities. Digital

mammography was reported to be insufficient in predicting LVI

(27). Ultrasound, especially the elastic heterogeneity value

achieved high sensitivity but mediocre specificity (28). MRI is

the most common modality used for LVI assessment in breast

cancer. Multiparametric MRI based radiomics has yielded

satisfied diagnostic performance (29). However, the time

consumption and high cost hinder the broader use of the

multiparametric MRI. In this case, AB-MRI based radiomics

was initially applied to LVI evaluation in breast cancer, while

the diagnostic performance was only moderate (16). The RS in

that study yielded a similar AUC value to the present study in the

validation cohort (AUC: 0.752 vs. 0.726). The results of the

previous and current studies indicated the feasibility of AB-

MRI-based radiomics for LVI evaluation. However, the

performance of RS was slightly below satisfaction for clinical

use. The possible reason is that the radiomic features extracted

from a fixed set cannot completely and accurately reflect the subtle

differences between LVI-positive and LVI-negative lesions. In

addition, manual lesion delineation is extremely labor-intensive

and time-consuming, limiting the clinical application of

radiomics. Accordingly, an advanced machine learning

approach is needed to improve diagnostic accuracy and reduce

image processing complexity.

In contrast, the TL algorithm is a candidate method to

automatically learn to capture useful features on images without

manual tumor segmentation (18, 19). It has become a promising

tool in the studies of breast imaging, such as breast cancer
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screening (30), cancer risk stratification (31), lesion classification

(32), and axillary lymph node metastasis predictions (33). Thus,

we applied a TLS in LVI prediction. As expected, compared with

the RS, the TLS improved the diagnostic performance significantly

in the validation cohort (AUC: 0.726 vs. 0.852). Similarly,

performance improvement with TL was also observed in other

breast imaging studies, such as breast lesion classification (17) and

lymph node metastasis prediction (34). The results suggested that

TLS can mine more relevant image features to reflect the high-

dimensional association between images and clinical issues. These

image features were generated and extracted using multiple layers

of self-learning units in the TL method. They were different from

visual subjective findings or radiomic features. Furthermore, in

order to further verify the effectiveness of the proposed method,

we construct a TL model (BotELM) based on the bottleneck

transformer network (BotNet) and extreme learning machine

(ELM), we validated it on external validation cohort

(Supplementary Table S1). The experimental results again prove

that the TL model BotELM improved the diagnostic performance

significantly based on AB-MRI compared with the RS (AUC:

0.760 vs. 0.726), while the AUC of BotELM is lower than TLS in

external validation cohort.

Moreover, we visualized the TLS via a convolutional filter

visualization technique to further understand the instinctual

relationship between deep learning features and LVI. For the

positive filter, the attention map illustrated that the tumor and

peritumor areas were two high-response locations in LVI-positive

lesions, while they were not in the LVI-negative lesions. In

contrast, the negative filter had strong responses to LVI-negative
FIGURE 5

Decision curve analysis for prediction models. The solid gray line represents the assumption that all patients were involved in the LVI-positive
group, while the black line represents the assumption that no patients were involved. The threshold probability was the point where the
expected benefit of the treatment and treatment avoidance were equal. The results showed that the net benefit of the TLS was greater than that
of the RS (range, 0.01–0.95). RS, radiomics signature; TLS, transfer learning signature.
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lesions and was nearly shut down in lesions that were LVI-

positive. To some extent, this supported the effectiveness of

the model.

However, it is important to point out that the performance

of CNN without transfer learning (NTLS) was poor in the

validation cohort (Table 2), even compared with the

traditional RS (AUC: 0.614 vs. 0.726). The main reason for

this result is that the CNNmethod works well only when enough

labeled training data is available (35), while the labeled training

data is small in the clinical practice. Thus, in order to ameliorate

the effect of small labeled training data, the use of TL strategy is

ubiquitous. How different TL strategies affect the performance of

CNN is our next research content.

There were several limitations in our study. First, the sample

size was relatively small, especially the training cohort, which did

not meet the traditional CNN modeling requirement. To

overcome this shortage, we pretrained the network with TL. The

model based on a transfer learning strategy can avoid overfitting in

a training dataset, which reduces the amount of data required for

modeling. Nevertheless, the generalization of a TLS still needs to be

validated in other centers. Second, multiparametric MRI-based

TLS performance was not investigated as the purpose of the study

is to investigate whether LVI status can be assessed simultaneously

when IBC is detected on AB-MRI. The included patients only

underwent AB-MRI for breast cancer screening or lesion

diagnosis. However, full diagnostic protocol should be compared

with an AB-MRI for LVI prediction in prospective studies. Finally,

our study was based on the construction of a two-dimensional slice

feature model, and the performance of the three-dimensional

features remains to be further studied.

In summary, the TLS was superior to the RS for LVI

prediction in IBC patients with clinically negative nodes. The

proposed AB-MRI-based TLS could potentially serve as an easy-

to-access and easy-to-use approach to assist individual breast

cancer treatments.
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