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University of Belgrade, Serbia

Reviewed by:
Hodaka Fujii,

Hirosaki University, Japan
Ki Hyun Nam,

Pohang University of Science and
Technology, South Korea

Ana Podolski-Renic,
Institute for Biological Research “Siniša
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Cancer is one of the leading causes of death worldwide. Several treatments are available
for cancer treatment, but many treatment methods are ineffective against multidrug-
resistant cancer. Multidrug resistance (MDR) represents a major obstacle to effective
therapeutic interventions against cancer. This review describes the known MDR
mechanisms in cancer cells and discusses ongoing laboratory approaches and novel
therapeutic strategies that aim to inhibit, circumvent, or reverse MDR development in
various cancer types. In this review, we discuss both intrinsic and acquired drug
resistance, in addition to highlighting hypoxia- and autophagy-mediated drug resistance
mechanisms. Several factors, including individual genetic differences, such as mutations,
altered epigenetics, enhanced drug efflux, cell death inhibition, and various other
molecular and cellular mechanisms, are responsible for the development of resistance
against anticancer agents. Drug resistance can also depend on cellular autophagic and
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hypoxic status. The expression of drug-resistant genes and the regulatory mechanisms
that determine drug resistance are also discussed. Methods to circumvent MDR,
including immunoprevention, the use of microparticles and nanomedicine might result
in better strategies for fighting cancer.
Keywords: multidrug resistance, cancer, immuno-prevention, microRNA, intracellular and extracellular ATP
1 INTRODUCTION

Cancer is an emerging and rarely curable disease, and nearly two
million new cases of cancer were diagnosed in 2020, increasing
the overall burden on society (1). The identification of both
affordable and efficient cancer treatments remains an important
goal for both researchers and clinicians. Currently,
chemotherapy is viewed as one of the most promising cancer
treatments modalities for reducing the cancer burden. However,
chemotherapy fails in nearly 90% of cases because tumor cells
develop resistance against the anticancer agent, resulting in
increased cancer invasion the progression to metastases, which
increases the difficulty of treating cancer effectively (2).
Depending on the cancer type, some preventive measures and
treatments are not readily available in developing countries, and
even developed countries experience difficulties with cancer
treatments due to the increasing development of resistance
against chemotherapeutic agents and targeted therapies. Several
factors, including genetics, micro RNAs (miRNAs), and long
noncoding RNAs (lncRNAs), contribute to the development of
multidrug resistance (MDR) in cancer cells (3–6). MDR genes
play significant roles in the development of drug resistance.
S tud i e s hav e id en t ifi ed fou r g ene s in the MDR
family, including two genes (MDR1 and MDR2) expressed
in humans. MDR1 (also known as ABCB1 or ATP Binding
Cassette Subfamily B Member 1) encodes P-glycoprotein (P-gp),
a Ca2+-dependent efflux pump that has been associated with the
development of resistance against anthracyclines, vinca alkaloids,
actinomycin D, and paclitaxel resistance (7–9). Using MDR
cDNAs, a gene transfer experiment examined the effects of
enhanced P-gp expression under the control of various
eukaryotic promoters, which introduced MDR in cultured cells
previously sensitive to chemotherapeutic agents (10, 11).

Understanding the molecular mechanisms that result in the
development of drug resistance is an increasingly important
issue, which has been approached through the comprehensive
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genomics analysis of MDR cancer cells, including the epigenetics
associated with drug resistance and the identification of MDR
genes. Certain conditions, such as hypoxia and autophagy, in
cancer cells are also known to contribute to drug resistance and
reduced drug efficacy (12–15). According to a World Health
Organization (WHO) report from 2019, cancer is currently the
second-leading cause of death worldwide. Globally, an estimated
9600 thousand deaths are attributed to cancer worldwide,
representing 1 in every 6 deaths (16). Many cancer treatment
mechanisms have been developed, and drug-sensitive cancer
cells can be killed using conventional chemotherapeutic
anticancer agents, which typically act by causing DNA damage
using highly toxic and non-specific mechanisms (17, 18).
However, to overcome drug resistance in cancer cells, the
identification of drugs that can be delivered to specific
molecular targets is necessary to improve the specificity and
precision of the treatment. Several ongoing studies are exploring
potentially effective anticancer drugs (19–21). Although many
anticancer drugs exhibit remarkable efficacy during primary
treatment, drug resistance often develops in many cancer
patients as treatment progresses (19, 21). Studies have found
that 30%–55% of patients with non–small cell lung cancer
(NSCLC) experience relapse, followed by death (22). Another
study reported that one year after surgery, and associated
chemotherapy, 50%–70% of ovarian adenocarcinomas recur
(22, 23). Approximately 20% of pediatric acute lymphoblastic
leukemia cases recur (24).

Immunoprevention is another outstanding potential approach
for cancer treatment, including MDR cancer (25), based on the
activation of the patients’ immune systems. Preventive vaccines
are the most successful approaches for cancer prevention, but
other agents have been explored, including immunomodulators
and antibodies. Immunoprevention aims to prevent cancer
development, and studies are ongoing to determine the potential
for applying the underlying mechanism of Immunoprevention to
cancer types that are not associated with infectious agents (26).
Studies exploring the limitations of Immunoprevention strategies
for cancer treatment have revealed that MDR represents a
common limitation across all cancer treatment modalities.
Understanding the mechanisms that underlie the development
of MDR in cancer may identify potential strategies for overcoming
this limitation, improving the efficacy of cancer treatments. Some
alternative approaches are also being explored, such as blocking
the activity of cancer-derived microparticles (MPs), the use of
nanoparticles for the targeted delivery of anticancer drugs, the
development of nanomedicines, and the use of clustered regularly
interspaced short palindromic repeats (CRISPR)/CRISPR-
associated (Cas)9 technology to overcome the development of
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MDR (27–29). This review highlights several mechanisms that
lead to MDR development, including the role of epigenetics, in
addition to MDR regulators and mutational effects. This review
also provides an overview of current approaches and
advancements in the fight against MDR, including the
identification of MDR biomarkers, Immunoprevention and its
limitations, alternative therapeutic approaches, and treatment-
related risk factors for the development of drug resistance in
cancer. This review will provide future researchers with a
comprehensive update on the current state of research regarding
MDR in cancer.
2 MULTIDRUG RESISTANCE IN CANCER

In the field of cancer treatment, MDR is defined as the ability of
cancer cells to survive treatment with a variety of anticancer
drugs (30), similar to the concept commonly applied to antibiotic
treatment. Cancer patients can be treated with two types of
treatment: local and systemic. Radiation and surgery are
considered local treatments, whereas chemotherapy, hormone
therapy, and targeted therapy are considered systemic treatments
(31). Systemic treatments are especially effective against
metastatic or late phase cancers. Growing evidence
suggests that MDR is mediated by the increased efflux of
Frontiers in Oncology | www.frontiersin.org 3
chemotherapeutic drugs, which reduces the drug absorption by
cancer cells (32). The mechanism of MDR may also be mediated
by the release of drugs outside of the cells. MDRmay develop due
to oncogene mutations, changes in the tumor microenvironment
(TME), tumor heterogeneity, target site mutations, or epigenetic
changes (33, 34) (Figure 1).

2.1 Characterization of Resistance in
Cancer
Drug resistance in cancer is an intimate occurrence that results
when cancer becomes tolerant of pharmaceutical treatment (18).
An extensive range of factors contributes to the development of
resistance against anticancer drugs, including genetic mutations,
altered epigenetics, enhanced drug efflux, and various changes in
other molecular and cellular mechanisms, including the
activation of specific signaling pathways (18, 35–37). Growing
evidence suggests that to effectively treat cancer patients, the
mechanisms underlying the development of drug resistance in
patients must be analyzed (30, 38). During the progression of
cancer treatment, the risk of MDR increases over time (30).
Cancer cells evolve daily to manage insults and survive, which
can make cancer treatment challenging (18, 22, 30, 32).
Understanding the biochemical and genetic aspects that
contribute to MDR in cancer may improve drug design,
leading to the development of novel treatment options for
FIGURE 1 | Schematic presentation of possible drug resistance mechanisms in cancer. Cancer cells develop resistance to anticancer agents (drugs) through
various mechanisms, such as diminished drug uptake, enhanced drug efflux, improved DNA damage repair, resistance to cellular senescence (apoptosis
suppression), alteration of drug metabolism, alteration of the drug target, epigenetic changes, and target gene amplification. These mechanisms act either individually
or in combination, leading to the development of single or multidrug resistance in cancer cells (M, methylation; dM, demethylation).
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cancer patients (39). Multiple potential mechanisms have been
identified by various studies as contributing to MDR, which can
be categorized according to their features (Figure 2). Drug
resistance can occur due to the activation of both intrinsic
(pre-existing) or acquired (induced by drugs) mechanisms, and
both types of factors play significant roles in the development of
drug resistance.

2.1.1 Intrinsic and Acquired Drug Resistance
Intrinsic resistance refers to pre-existing resistance mechanisms
present in a patient prior to drug administration, resulting in
reduced treatment potency. Studies suggest that intrinsic
resistance can be caused by (a) inherited genetic alterations
that result in most of the tumor cells having reduced responses
to chemotherapy and target drugs; (b) unresponsive
subpopulations, such as cancer stem cells, which determine
tumor diversity and can reduce the efficacy anticancer agents;
or (c) anticancer drug removal through the activation of intrinsic
pathways (40). Cancer cell proliferation and programmed cell
death-related genetic alterations may also contribute to intrinsic
drug resistance in cancer cells (40). Intrinsic resistance decreases
the initial efficacy of drug treatment, independent of any prior
exposure to the therapeutic agent (41). Inherent genetic
mutations, such as those found in triple-negative breast cancer
cells; tumor heterogeneity; and pre-existing subpopulations, cells
Frontiers in Oncology | www.frontiersin.org 4
in which intrinsic pathway activation promotes proliferation and
the presence of cancer stem cells, serve as a defense barrier
against the toxicity of anticancer drugs, contributing to intrinsic
drug resistance (41, 42). For example, intrinsic cisplatin
resistance was identified in gastric cancer patients with human
epidermal growth factor receptor 2 (HER2) overexpression (43).
HER2 overexpression upregulates the Snail transcription factor,
triggering morphologic changes analogous to the epithelial–
mesenchymal transition (EMT), resulting in cancer cell
resistance against cisplatin therapy (43, 44). In addition,
HER2/Snail double-positive patients have an even lower
cisplatin response rate than single-positive patients (41). A
team of researchers showed that Slug and Snail mediated EMT
and promoted self-renewal and resistance to p53-induced
programmed cell death (44).

Genotypic alterations comprise mutations, chromosomal
rearrangements, gene amplifications, transposable elements, gene
deletions, gene translocations, and miRNA modifications, and
genomic instability in cancer can lead to intercellular genetic
heterogeneity (18). In addition, epigenetic factors involving
mRNA, transcriptomic, and proteomic heterogeneity can also be
affected by genotypic alterations (42). Genetic differences can also
be reflected by differences in the cell cycle, non-specific
dissimilarities among cells, or ordered arrangements of cells
under cancer stem cell theory (36, 45, 46). Eventually, these
FIGURE 2 | Various potential mechanisms contribute to multidrug resistance. Many internal and external factors have been associated with the development of
multidrug resistance in human cancer cells through either direct or indirect effects. Drug efflux, changes in cellular drug levels, drug inactivation, altered epigenetic
states, epithelial–mesenchymal transition (EMT), the tumor microenvironment, DNA damage repair, cancer stem cell propagation, and immune system evasion are
well-studied mechanisms thought to contribute to MDR through various signal transduction pathways, either independently or in combination.
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changes manifest as tumor heterogeneity, which is considered to
represent the combination of intrinsic factors. Extrinsic factors can
also affect the response to treatment, including pH, hypoxia, and
paracrine signaling interactions between stromal and other tumor
cells (47, 48). Acquired resistance refers to the reduction
in anticancer agent potency following repeated drug
administrations. Acquired resistance can be induced by (a) the
activation of a second proto-oncogene, which serves as a newly
occurring driver gene; (b) the modification of drug targets to
reduce recognition; and (c) changes in the TME (41). Novel
genetic mutations can induce resistance and regeneration in
previously consolidated tumors. A genomic study showed a
discrepancy in eight AML patients, revealing that novel genetic
mutations are responsible for tumor resistance and regeneration
(49). New mutations or altered expression patterns were
associated with the development of acquired resistance against
targeted therapy. Imatinib, a tyrosine kinase inhibitor (TKI) that
targets BCR-ABL, is typically used to treat chronic myeloid
leukemia, and 20%–30% of patients develop resistance after
treatment (50). The secondary T315I point mutation that
develops in BCR-ABL is believed to be an underlying
mechanism of acquired resistance (50, 51). Chemotherapeutic
drugs are cytotoxic to cancerous cells, causing DNA damage
that likely increases the rate of novel mutations (41). The TME
has also been associated with acquired chemoresistance. Cancer
cells release exosomes carrying miRNAs that are used to
communicate with tumor-associated macrophages and other
cancer cells, creating a link between the TME and cancer cells (52).

2.1.2 ATP and ATP-Mediated Drug Resistance
Two types of ATP exist in the body, intracellular and
extracellular, both of which play crucial roles in cancer cell
survival, growth, and resistance (53). ATP acts as a biological
currency and plays a significant and necessary role in the survival
and development of both cancer cells and normal cells in the
body (54). One study reported that cancer cells have higher
intracellular ATP levels are than normal cells due to a
phenomenon known as the Warburg effect, in which cancer
cells display enhanced glucose uptake and aerobic glycolysis,
resulting in increased ATP production (55, 56). Moreover,
cancer cells with acquired resistance are present with even
higher intracellular ATP levels than their parental cell lines
(31, 57). Thus, ATP and ATP-mediated transporters and
signaling pathways are thought to play influential roles in the
development of drug resistance.

2.1.2.1 Intracellular ATP Promotes Drug Resistance
Intracellular ATP levels vary between cancer cells and normal
cells due to the Warburg effect (56, 58). In colon cancer cell lines,
the ATP levels in chemo-resistant cell lines were two-fold higher
than those in their drug-sensitive parental cell lines (59). The
ATP-binding cassette (ABC) transporter families are well-known
ATP-dependent transporters that move nutrients and soluble
compounds throughout the cell. Based on the pattern of
substrate translocation, ABC transporters are classified into
importers or exporters (60). ABC exporters and importers have
been shown to have the same transport process, due to their
Frontiers in Oncology | www.frontiersin.org 5
structural likenesses (61). The core of all ABC transporters (both
ABC importers and exporters) consists of the following
components: two nucleotide binding domains (NBDs), and
two transmembrane domains (TMDs) or membrane spanning
domains (MSDs). Additionally, there are a number of
extracellular soluble substrate binding domains (SBDs) in some
ABC importers, which are not required by the ABC exporters
(62). MSDs are usually responsible for substrate identification
and translocation, while NBDs are responsible for ATP binding
and hydrolysis (61). Nonetheless, the SBDs of ABC importers on
the extracellular portion helps in capturing and delivering the
transported substrate to the MSDs (61). A recent study identified
three members in the ABC transporter family: P-gp, multidrug
resistance protein 1 (MRP1)/ATP Binding Cassette Subfamily C
Member 1 (ABCC1), and breast cancer resistance protein
(BCRP)/ABC subfamily G member 2 (ABCG2) (63). P-gp is a
well-known multidrug membrane transporter that transports
chloride outside of the cell, where it binds with a wide range of
chemotherapy agents (e.g., doxorubicin [DOX], vinblastine, and
taxol). After binding with chemotherapeutic drugs, ATP
becomes hydrolyzed, resulting in an alteration in the P-gp
structure, releasing the drug into the extracellular space. The
transporter returns to its initial structural conformation through
a second ATP hydrolysis step, causing drug efflux (64, 65). The
application of a glycolysis inhibitor to diminish intracellular ATP
levels can alert resistant cancer cells (57). Research has reported
that increased energy storage is necessary for treatment-resistant
cell lines, protecting them from environmental stress and
xenobiotics. In addition, intracellular ATP plays a metabolic
role in the acquired resistance against chemotherapy drugs.
Therefore, a necessary condition for resistant cancer cells is
elevated levels of intracellular ATP (41, 56). Another study
reported that in ovarian adenocarcinoma cells, cisplatin
resistance was associated with increased intracellular ATP
levels (57). These studies suggest that the metabolic
contributions of intracellular ATP have significant impacts on
acquired drug resistance against chemotherapeutic drugs.

2.1.2.2 Extracellular ATP Promotes Drug Resistance
Growing evidence suggests that extracellular ATP levels could
vary by 103–104 times in various cancer cells compared with
normal tissues (54, 56, 66). One study examined the effects of
eight cancer agents, including drugs used for targeted therapy
and available chemotherapeutic drugs, in five cancer cell lines
originating from different organs and found that increased
intracellular ATP levels improved cancer cell survival (41).
A549 NSCLC with increased ATP levels showed increased
resistance against sunitinib (54). In addition, cancer cells can
internalize extracellular ATP through macropinocytosis and
other endocytic mechanisms, contributing to a 1.5-2 times
increase in intracellular ATP levels relative to normal cells (54,
56). Drug resistance mechanisms can also result in the enhanced
internalization of extracellular ATP. Increased intracellular ATP
levels increase the activation of RTKs, preventing the binding of
TKIs and inducing RTK-mediated signaling, eventually
culminating in drug resistance (41, 54, 56). Extracellular ATP
also affects the activity and expression level of the ABC
June 2022 | Volume 12 | Article 891652
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transporter, resulting in the increased efflux of anticancer agents,
promoting drug resistance (41, 54). One study reported that ATP
levels are associated with purinergic receptor signaling, which
promotes cell growth and propagation and contributes to drug
resistance (66–68). Cells internalize anticancer drugs primarily
through one of three transport mechanisms: 1) passive transfer;
2) facilitated diffusion; and 3) activate the transport (18, 69).
Cytotoxic agents can also enter cells using the three ABC
transporter molecules in the direction of the concentration
gradient; however, drugs internalized into cells using a high
concentration gradient typically require active transport (70, 71).
Many membrane-localized transporters belong to a family of
solute carrier (SLC) transporters. Drug absorption can be
reduced either through reduced drug binding affinity or
reduced transporter activity. Some chemotherapeutic drugs use
specific transporters to enter cells (72), and any mutations in
these transporters can inhibit uptake and decrease drug
absorption. For example, methotrexate resistance among
patients with acute lymphoblastic leukemia (ALL) generally
occurs due to gene mutations in human reduced folate carrier
(hRFC) (73). A point mutation at nucleotide 133 in the hRFC
gene results in a lysine to glutamic acid substitution in the first
transmembrane domain of hRFC protein that reduces its drug
binding affinity. As discussed, both intracellular and extracellular
ATP levels play significant roles in the development of cancer
drug resistance (73). In addition to the various members of the
ABC transporter family, various intrinsic factors, such as p53
loss-of-function, decreased topoisomerase II (Topo-II)
expression, and bcl-2 oncogene upregulation can promote
overall drug resistance (74), as illustrated in Figure 3.
Moreover, Lung resistance protein (LRP) is found in
cytoplasmic vaults and is responsible for the sequestration of
anticancer agents into acidic vesicles from the cytoplasm.
Although the majority of vaults are found in the cytoplasm, a
subset of vaults are found in the nuclear membrane or nuclear
pore complex. LRP has the capacity to transfer substrates from
the nucleus to the cytoplasm due to the likelihood of LRP
localisation in these vaults (74). As a result, the sequestered
drugs were unable to cause DNA damage. Additionally, LRP can
be used to exocytose anticancer medications from cells via acidic
vesicles holding the trapped anticancer agents (74). Additionally,
LRP and P-gp may be regulated in a similar manner via p53 (74).
Extracellular ATP can alter ABC transporter expression levels
(74), and glucose transporter 1 expression is also related to
extracellular ATP levels. Studies have proposed that the
involvement of the phosphoinositide 3-kinase–AKT pathway
(P2X7-induced) and hypoxia-inducible factor 1a-dependent
signaling (53, 66) in the enhancement of cancer cell survival
and the development of drug resistance.
3 MOLECULAR MECHANISMS OF
CANCER DRUG RESISTANCE

Depending on the tissue of origin, the oncogene activation
pattern, the activation of tumor suppressors, and differences in
Frontiers in Oncology | www.frontiersin.org 6
gene expression associated with the mutator phenotype of most
cancers, cancer cells from a patient can present with widely
different genetic backgrounds, and each cancer can express a
different array of drug-resistant genes (75). Although cancer cells
within a tumor are clonally derived, tumors are characterized by
a massive degree of heterogeneity with regard to drug resistance
(76). Surprisingly, the primary mechanism underlying MDR in
cultured cancer cells is the expression of an energy-dependent
drug efflux pump, P-gp, a multidrug transporter (11, 77). In
humans, P-gp is the product of the MDR1 gene (7) and was
among the first identified members of the enormous family of
ATP-dependent transporters known as the ABC transporter
family (72). Research has revealed that MDR1/P-gp cannot
account for all instances of MDR, suggesting that other drug
resistant transporters may also contribute to this phenomenon,
such as MRP1 (ABCC1) (72, 78) and BCRP (ABCG2) (79). In
humans, MDR1 and MDR2 (a phosphatidylcholine transporter)
are expressed in the liver, and defects disrupt the ability to
produce bile, resulting in progressive cirrhosis (66–68, 80). P-gp,
MRP1, and BCRP are the three most implicated transporters in
cancer drug resistance. The molecular mechanisms of cancer
cells play pivotal roles in the conceptualization of cancer drug
resistance and increasing research has led to an improved
understanding of the molecular mechanisms that underlie
cancer drug resistance. Research has identified some genetic
mechanisms that might result in the development of drug
resistance against targeted therapies, which may include
secondary mutations, either upstream or downstream of
effector activation, and could result in the bypass of certain
biological pathways, in addition to epigenetic changes (Figure 4).

Molecular alterations in a target protein can also result in
acquired drug resistance, such as crizotinib resistance in lung
adenocarcinoma, which occurs due to a secondary mutation
(G2032R) in the reactive oxygen species (ROS) proto-oncogene 1
(ROS1) kinase domain (75). Crizotinib is a TKI commonly used to
treat malignancies associated with anaplastic lymphoma receptor
tyrosine kinase (ALK), ROS1, and MET proto-oncogene (MET)
(81). Similarly, a secondary EGFR mutation in the ectodomain,
S492R, results in cetuximab resistance by preventing the EGFR
antibody from binding its target site in colon cancer (82). Genetic
alterations can also result in signaling protein deregulation, either
upstream or downstream of the therapeutic target, resulting in
acquired resistance. Research on EGFR-mutant cancer cell lines
revealed that gefitinib resistance was associated with an oncogenic
mutation in phosphatidylinositol-4,5-bisphosphate 3-kinase
catalytic subunit alpha (PIK3CA). Moreover, erlotinib resistance
can develop due to EGFR mutations, as demonstrated in EGFR-
mutant tumor samples (54, 83). Another proposed mechanism that
was recently identified was pathway repetition and oncogenic bypass
for targeted anticancer drugs. Secondary RTK activation was
reported due to an oncogenic bypass mechanism, resulting in
resistance against the primary TKI (84). In addition, EGFR-TKI–
resistant squamous lung cancers were associated with the activation
of the bone morphogenetic protein signaling pathway (40). Many
bypass mechanisms are achieved through feedback loops (85). The
examples of immune evasion discussed above represent pathway-
June 2022 | Volume 12 | Article 891652
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dependent mechanisms in which cancer progresses due to the
sustained activation of or compensation for a targeted signaling
pathway. Pathway-independent mechanisms have also been
identified, increasing tumor resistance through EMT, disruption
in TME, and angiogenesis moderation. Resistance developed in
NSCLC due to the activation of AXL receptor tyrosine kinase (AXL)
and the induction of EMT in response to EGFR-targeting anticancer
drugs (86). However, another study found that AXL is not necessary
for intrinsic resistance maintenance and suggested that the reduced
expression of melanocyte inducing transcription factor (MITF) and
the overexpression of nuclear factor kappa B (NF-kB) may
moderate melanoma resistance to mitogen-activated protein
kinase (MAPK) pathway inhibitors (87). Cancer cells can become
protected from cytotoxic agents by manipulating the TME, which
allows cancer cells to develop acquired resistance, resulting in disease
relapse. Studies have shown that the development of innate
resistance against RAF kinase inhibitors involves human growth
factor (HGF) secretion, which has a considerable impact on the
TME (88). The inhibition of BRAF (a TME component) stimulates
melanoma-associated fibroblasts, resulting in focal adhesion kinase
Frontiers in Oncology | www.frontiersin.org 7
(FAK)-dependent melanoma survival signaling (89). Epigenetic
changes also play pivotal roles in acquired resistance. Studies of
epigenetic changes can help define strategies for understanding the
limitations of general chemotherapy and targeted therapy. For
example, an experiment in PC9 (lung cancer cell lines) cells using
an EGFR inhibitor resulted in the development of resistance in
sensitive cells, which might be due to a transitional epigenetic state.
In addition, the administration of a histone deacetylase inhibitor was
able to improve resistance (90). Cisplatin resistance develops in
many cancer cells due to DNA methylation, based on the outcomes
of DNA methylation and RNA expression profiling (86, 91).
Another study found that epigenetic regulators are responsible for
the variable responses of different tumors to chemotherapies.
Research examining the treatment of solid tumors has explored
epigenetic therapies as potential options (92, 93).

4 EXPRESSION OF RESISTANCE GENES

The study of resistance genes can identify the limitations and
shortages of cancer immunoprevention strategies. Thus,
FIGURE 3 | An overview of drug resistance mechanisms in cancer cells using ABC transporter, LRP, Bcl-2, and Topo ll. The ATP-binding cassette (ABC)
transporter is an ATP-activated transporter. In general chemotherapy, cells express ABC transporters to remove foreign molecules (e.g., xenobiotics, anticancer
agents, etc.) from the intracellular environment. P-glycoprotein (P-gp), multidrug-resistant protein 1 (MRP-1), and breast cancer resistance protein (BCRP) are the
predominant members of the ABC transporter family. Lung resistance protein (LRP) resides in vaults (cytoplasmic) and contributes to the exocytosis of foreign
molecules, including anticancer drugs. Research also revealed that the upregulation of bcl-2 (an anti-apoptotic factor acted upon by anticancer agents that activate
the normal apoptosis process), p53 loss-of-function of p53, and the downregulation of topoisomerase II (Topo-II) also decrease cell apoptosis to increase the
resistance of cancer cells to anticancer drugs (74).
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studying the expression of resistance genes can elucidate the
molecular mechanisms that underlay cancer resistance,
including their functional roles in cancer cells and normal cells
and the conditions under which they are expressed. Much
research has focused on understanding the variety of genes
that might affect a cancer patient’s samples. By exploring
multiple cancer samples, many resistant genes have been
identified as oncogenes that amplify the cancer state.

The expression of resistance genes in cancer patients can
induce cancer immunoprevention resistance. Multiple genes
have been significantly associated with resistance to cancer
treatment, as shown in Table 1.
5 ROLE OF EPIGENETICS IN CANCER
DRUG RESISTANCE

Epigenetics is the study of heritable phenotypic changes that
occur without altering the DNA sequence. Epigenetic
remodeling mechanisms have been identified as potential
contributors to the development of drug resistance in cancer
treatment (30, 41). DNA methylation, histone alterations,
chromatin rearrangement, and modifications associated with
Frontiers in Oncology | www.frontiersin.org 8
noncoding RNAs (ncRNAs) are all examples of epigenetic
modifications (30, 41, 85). For example, DNA demethylation
in an oncogene promoter region activates oncogene expression,
leading to the development of resistance (30, 41). According to
the study by Ohata et al., a drug-resistant hepatocellular
carcinoma (HCC) cell line was associated with an H3
modification in the promoter region. In G-actin monomer
binding protein thymosin b4 (Tb4), it is reinforced DNA
methylation (112). In vivo study showed that the vascular
endothelial growth factor inhibitor sorafenib was ineffective
against an HCC cell line due to the excessive expression of
Tb4 (112). Moreover, drug resistance has also been induced in
response to chromosome remodeling, ncRNAs, comprised of
miRNAs and lncRNAs (113, 114). MiRNAs are tiny ncRNA
molecules comprised of 17–25 nucleotides that bind to the
periphery of the 3-untranslated region (UTR) of selected
mRNAs (115). MiRNAs regulate post-transcriptional gene
expression by binding complementary mRNA, causing mRNA
degradation and the repression of protein synthesis (18).
LncRNAs are also involved in distinct gene expression
regulation mechanisms by inhibiting transcription activators
that bind to DNA sequences in required genes. Thus, lncRNAs
and miRNAs can induce cancer drug resistance by regulating
FIGURE 4 | A schematic presentation of pathway-dependent and pathway-independent drug resistance mechanisms in cancer cells. In pathway-dependent (black)
mechanisms, a possible target receptor becomes activated, either through overexpression or a secondary mutation (for instance, the kinase domain and ectodomain
mutation of epidermal growth factor receptor (EGFR) or the overexpression of a truncated version of the target receptor). In addition, gain-of-function mutations in
downstream components (e.g., PIK3CA, BRAF, KRAS, etc.) or loss-of-function mutations (PTEN, a well-known inhibitor of the downstream pathway) can proliferate
downstream pathways. Other possible pathway-dependent molecular mechanisms include bypass activation, leading to the amplification of other isoforms. Pathway-
independent (red) mechanisms generally involve epigenetic changes. The epithelial–mesenchymal transition (EMT) in cancer tissues and the tumor microenvironment plays
a vital role in developing resistance against cancer treatment. (M, methylation; dM, demethylation; TKI, tyrosine kinase inhibitors; RTK, receptor tyrosine kinase).
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TABLE 1 | Key molecular function and mechanism of gene expression of resistance genes.

Resistant
genes

Sites of expression Functions Role Mechanism Reference
(s)

ABCB1/
MDR1

Expressed broadly in
the adrenal
(RPKM=76.0), small
intestine (RPKM=43.0)
and 8 other tissues

Encodes
permeability
glycoprotein (P-
gp)
Involved in the
efflux of drugs
such as
colchicine, taxol,
vincristine,
daunorubicin,
irinotecan etc.
It aids in the
elimination of
xenobiotics and
other drug

It functions as a
mediator in the
development of
anticancer drug
resistance

Human ABCB1/MDR1 was isolated from the adrenal and it was found
that cDNA, isolated from KB-C2.5, was associated with a Gly-to-Val
substitution at position 185, in the predicted cytoplasmic loop between
TM2 and TM3.This mutation increased colchicine resistance and
decreased vinblastine resistance.

(94, 95)

ABCC1 Pervasive expression in
testis (RPKM: Reads
Per Kilobase of a
transcript, per Million
mapped reads = 13.5),
esophagus (RPKM =
9.9), and 25 other
tissues

Encodes multi-
drug resistance-
associated
protein 1 (MRP1).
Transportation of
drugs means
responsible for
drug efflux
Encodes
membrane
glycoprotein with
190 kDa and
1531 amino acids

Chemotherapeutic
resistance

The promoter region of the ABCC1 gene carries the AP-1 site, which
makes a complex with c-jun/junD. Correlation between the expression of
ABC transporters and MAPK may lead to a cancer chemo-resistance
pathway

(96, 97)

ABCC2 Expressed in the liver
(RPKM=24.9), small
intestine (RPKM=18.6),
and three other tissues

Transport
lipophilic
substrates with
sulfate,
glutathione,
glucuronate
It can regulate the
pharmacokinetics
of many drugs.
ABCC2 has a
function in
endogenous
metabolites like
biliary secretion.
Transport variety
of xenobiotics

Chemotherapeutic
resistance

In TE14 and TE5 cell lines, ABCC2 appearance was higher and showed
powerful resistance to CDDP. ESCC cell lines that contain more ABCC2
show more resistance to CDDP than lower containment of ABCC2. To
confirm the role of ABCC2 in drug resistance, the ABCC2 gene was
silenced with siRNAs into the TE14 cell line raised reactivity to CDDP

(98–100)

ABCC5 Expressed in the
stomach (RPKM=10.1),
spleen (RPKM=6.9, and
24 other tissues

Capable of
shifting nucleotide
analogs
Preparedness for
carrying
methotrexate
Transport
exogenous
glutamate
analogs

Resistance to
thiopurine
anticancer drugs

Paclitaxel is a chemotherapeutic drug against neck and head cancer.
Fork headbox (FOX) molecules are responsible for paclitaxel drug
resistance. A molecular study reveals that ABCC5 with FOXM1 was
highly expressed in nasopharyngeal carcinoma cells that were paclitaxel-
resistant. ABCC5 gene transcription is controlled by binding of FOXM1 at
the FHK consent pattern of the promoter

(101, 102)

ABCG2 Expressed broadly in
the kidney
(RPKM=44.7), placenta
(RPKM=44.0) and 23
other tissues

ABCG2 encodes
breast cancer
resistance protein
(BCRP)
It fuctions as a
xenobiotic
transporters to
exclude

Involved in
resistance to
mitoxantrone,
daunorubicin and
doxorubicin

Increased ABCG2 expression has been linked to cancer stem cells. The
proximal miRNA response element (MRE) of ABCG2 is located in the 3’-
UTR of ABCG2 mRNA in various cancer cell lines. Interestingly, it was
found that this putative MRE of ABCG2 was lost in drug resistant cells
and, therefore, the drug resistant cancer cells can evade ABCG2 mRNA
degradation and protein synthesis repression mediated by miRNAs,
leading to over-expression of ABCG2

(103–105)

(Continued)
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protein expression (41). Histone modifications may alter the
chromatin framework (116). Histone acetyltransferases (HATs)
mediate histone acetylation events that result in chromatin
unwinding, whereas histone deacetylases (HDACs) result in
deacetylation events that result in chromatin binding (116,
117). Histone-modifying enzymes and DNA methylation–
targeting epigenetic drugs have shown promising results in
clinical studies. For example, DNA methylation is inhibited by
genistein which is a promising cancer treatment (118).
Epigenetic drugs demolish precursor cells in the tumor and
reduce cancer recurrence rates (117).
Frontiers in Oncology | www.frontiersin.org 10
6 REGULATION OF MULTIDRUG
RESISTANCE

Despite substantive improvements in anticancer chemotherapy
strategies over recent decades, occurrences of MDR have become
a great hindrance in the progression of cancer chemotherapies.
MDR, which describes the development of resistance to multiple
therapeutic agents (119), can develop due to inherent cellular
characteristics or be acquired during or after chemotherapy (120,
121). The occurrence of MDR is the product of a sophisticated
and multi-factorial process involving a variety of molecular
TABLE 1 | Continued

Resistant
genes

Sites of expression Functions Role Mechanism Reference
(s)

xenobiotics from
brain
Involved in brain-
to-blood efflux
It plays a vital role
in the multidrug
resistance
phenotype of
several cancer
cell lines

Bcl-2 Expressed broadly in
the thyroid
(RPKM=21.9), spleen
(RPKM=9.1), and 20
other tissues

By halting cell
death, Bcl-2
multiplications
total cell number.
They could
modify the shape
and energetics of
mitochondria
At the time of viral
infections, Bcl-2
may modify innate
immunity

Involved in
resistance to
chemotherapeutics
and glucocorticoids

Bcl-2 is an integral part of the mitochondrial and ER membranes. Bcl-2 is
the cardinal pro-survival member that belongs to Bcl-2 ancestry. Bcl-2 is
capable of binding to the inositol triphosphate receptors, and besides,
Bcl-2 confiscates BH3. Membrane glycoprotein complexes work instead
of membrane calcium channels that impaired calcium-mediated
apoptosis. Overexposed Bcl-2 is also responsible for chemotherapy
resistance

(106, 107)

EGFR Expressed broadly in
the placenta
(RPKM=36.6), skin
(RPKM=15.6), and 22
other tissues

EGFR increases
the cell
endurance
pathway by both
kinase-dependent
and kinase-
independent
mechanisms
Ligand-operated
EGFR triggers the
proliferation of
cells.
Ligand
Mediated
EGFR hinders
autophagy

Involved in
propagating cells

Binding with argonaute two and phosphorylate this protein via EGFR
results in tumor suppressor miRNAs’ retardation, promoting cancer cell
durability.
EGFR hinders autophagy directly through the phosphorylation of a critical
subunit of autophagy initiation complex Beclin-1

(108, 109)

TP53 Expressed in the spleen
(RPKM=13.2), lymph
node (RPKM=13.1), and
25 other tissues

Encodes p53
protein
Regulates cell
growth
Restore DNA
damage
Control
metabolism of
cancer
Control cell death

Increase resistance
to cisplatin,
doxorubicin,
gemcitabine,
tamoxifen and
cetuximab

Cancer-deduced p53 mutants are known as TP53 mutate gene.
Approximately among 74% of missense mutations, 80% of them occur in
the DNA-binding domain (DBD) of the p53
Two types of p53 mutants are known: DNA-contact mutants and
conformational mutants
Most of the p53 mutants lose track of native-type function, and some
p53 mutants have been obtained GOF (gain-of-functions) that move up
chemo-resistance

(110, 111)
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mechanisms. Although no precise biomarkers or underlying
mechanisms for MDR have been identified, some principal
mechanisms have been identified that are involved in this
process, including the overexpression of MDR transporters,
defects in the apoptotic machinery, the induction of
autophagy, altered drug metabolism, modifications of the drug
target, and disruptions in homeostatic redox states (122). Recent
studies have suggested that cancer stem cells (123), miRNAs
(122), and cytokines (124) play significant regulatory roles in the
development of MDR by modulating numerous biological
processes. Therefore, cancer stem cells, miRNAs, and cytokines
may represent promising biomarkers that can be used to identify and
circumvent the development of MDR in cancer chemotherapies.

6.1 Multidrug Resistance Regulation by
Cancer Stem Cells
Cancer stem cells are a sub-population of cancer cells with the
unique abilities to regenerate and differentiate. Cancer stem cells
are cancer progenitors and drive the malignancy of many cancer
phenotypes, including MDR. A recent study showed that cancer
stem cells could be obtained from the human gastric carcinoma
cell line SGC-7901 by utilizing the chemotherapy drug
vincristine (VCR) (125). This study also suggested that cancer
stem cells display mesenchymal properties, including the
upregulation of mesenchymal markers and the downregulation
of epithelial markers. Matrigel-based differentiation assays
showed that cancer stem cells could form tube-like 2-
dimensional and lumen-like 3-dimensional structures,
resembling the differentiation that occurs in gastric crypts
(125). Furthermore, drug sensitivity analyses and cancer
xenograft studies indicated that the obtained cancer stem cells
display MDR characteristics and remarkable in vivo
tumorigenicity (125). Another experiment on small cell lung
carcinoma demonstrated that the CD133 expression was
associated with the development of chemoresistance and
increased tumorigenicity in both in vivo and in vitro studies.
The CD133 expression level in cancer stem-like cells were shown
to increase in human and mouse models after chemotherapy,
which was later substantiated clinically by the longitudinal
isolation of specimens from chemotherapy-treated patients.
These findings suggest that CD133+ cancer stem cells in small
cell lung carcinoma display tumorigenicity and chemoresistance
properties (126), suggesting a direct relationship between MDR
development and cancer stem cells. Existing evidence suggests
that cancer stem cells are involved in the mechanism leading to
MDR development; therefore, the elimination of cancer or
cancer-like stem cells is likely to be necessary to overcome
MDR and achieve appreciable prognostication in cancer
patients. For example, melatonin and chemotherapeutic drugs
have demonstrated synergistically lethal effects against brain
cancer stem cells and A-172 glioblastoma cells, associated with
the downregulation of ABC transporter expression and function
(127). One study of ovarian cancer cells demonstrated that
CD44+/CD117+ stem or stem-like cells have a higher growth
rate but a lower differentiation rate after they become resistant to
chemotherapeutics (128). Another recent experiment showed
Frontiers in Oncology | www.frontiersin.org 11
that microRNA-199a could significantly increase the
chemosensitivity of ovarian cancer stem cells against
chemotherapeutic drugs due to reductions in the mRNA
expression level of the ABC transporter BCRG (128). In
addition, the expression levels of stemness markers were
remarkably decreased cancer stem cell lines transfected with
microRNA-199a compared with transfection using a microRNA-
199a-mutant and untransfected ovarian cell lines. These effects
by microRNA-199a are generally attributed to regulatory effects
on the target gene CD44 (128).

6.2 Multidrug Resistance Regulation by
MicroRNAs
MiRNAs are ncRNAs 18–24 bp in length, which modulate the
expression of target genes by binding with the 3´-UTR of a target
gene (129). MiRNAs play pivotal roles in manifesting lethal
phenotypes in cancer cells, including MDR, growth,
differentiation, and metastasis among cancer stem cells, and
miRNAs can also be used to regulate the abnormal function of
target genes (129). For example, miRNA-19a and miRNA-19b,
which belong to the miRNA-17/92 cluster, can upregulate MDR
in cancer cells and modulate MDR levels in stomach cancer cell
lines by targeting phosphatase and tensin homolog (PTEN) gene
expression (129). MiRNA profiling revealed that miRNA-153
exhibits significantly higher levels of expression in colorectal
cancer (CRC) and bowel cancer cells than in normal cells. A
recent study of CRC patients over a 50-month period indicated
that 21 of 30 patients with increased miRNA-153 levels also
displayed increased metastases, whereas lower miRNA-153 levels
were associated with reduced metastasis. Furthermore,
functional studies demonstrated that increased miRNA-153
levels increased the invasion rate out of CRC cells, and both in
vivo and in vitro studies indicated that they possess resistance
against chemotherapeutic cancer drugs, such as oxaliplatin and
cisplatin. Moreover, mechanistic studies indicated that miRNA-
153 could indirectly promote the cancer cell invasion rate due to
the induction of matrix metalloproteinase-9 (MMP-9) enzyme
production. However, the direct mediation of drug resistance
occurs due to the inhibition of forkhead box (FOX) proteins,
especially forkhead box class O 3a (FOXO3a) (130). In addition
to cancer-promoting oncomiRNAs, some cancer-suppressive
miRNAs have been identified that can induce sensitization in
cancer treatments among MDR cancer cells. Studies have shown
that the levels of miRNA-15b and miRNA-16, which belong to
the miRNA-15/16 family, are decreased in MDR gastric cancer
cell line SGC-7901/VCR compared with their expression levels in
the parental cancer cell line SGC-7901. In vitro drug sensitivity
analyses have demonstrated that the overexpression of miRNA-
15b or miRNA-16 can sensitize the SGC-7901/VCR cell line
against anticancer drugs, whereas the downregulation of these
miRNAs using antisense oligonucleotides confers MDR in the
SGC-7901 cell line. Furthermore, the overexpression of miRNA-
15b or miRNA-16 can induce the sensitization of the SGC-7901/
VCR cell line against VCR-induced apoptosis through the
regulation of B cell lymphoma 2 (Bcl-2) gene expression (131).
The overexpression of miRNA-508-5p causes the reversion of
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cancer cell resistance against several chemotherapeutic drugs in
vitro , in addition to sensitizing tumor cells against
chemotherapeutic agents in vivo. In addition, miRNA-508-5p
directly targets the 3´-UTR of P-gp and DNA-directed RNA
polymerase I subunit RPA12 (ZNRD1) (132) . The
overexpression of miRNA-27a or the transfection of BEL-7402/
5-FU cells with miRNA-27a-like compounds can decrease the P-
gp and beta-catenin expression levels and enhance the cellular
response to 5-fluorouracil (5-FU), resulting in 5-FU–induced
apoptosis. In addition, miRNA-27a upregulation decreased the
protein expression of frizzled class receptor 7 (FZD7) without
changing the mRNA levels inBEL-7402/5-FU cell lines, and the
use of RNA interference to decrease FZD7 protein expression
was able to induce miRNA-27a-like inhibitory responses against
P-gp and beta-catenin (133). Recent studies demonstrated that
miRNAs are involved in the regulation and sensitization of MDR
phenotypes and can be utilized as diagnostic markers for MDR
occurrence. miRNA-19a levels in serum collected from patients
with CRC have been associated with drug resistance, and serum
levels of miRNA-19a have complementary values for
carcinoembryonic antigen. Further studies have revealed that
serummiRNA-19a levels can be used to predict the occurrence of
intrinsic and acquired MDR (134).

6.3 Cytokines in the Regulation of
Multidrug Resistance
The development of effective cancer treatments has been an aim
of biomedical sciences over the past few decades (135).
Oncoprotein-targeting anticancer drugs represent significant
tools in the fight against cancer. Recent studies have
demonstrated that distinct cytokines released by cancer-
associated stromal cells may result in the development of
resistance against chemotherapy-based treatments (136). To
better understand the mechanisms underlying cancer drug
resistance and predict treatment results, the relationship
between cytokines profiles and cancer drug resistance must be
established (136). Several cytokines have been used in vitro to
enhance the cytotoxin sensitivity of MDR cancer cells. The
addition of tumor necrosis factor a (TNF-a), interferon g
(IFN-g), and interleukin-2 (IL-2) to human colon cancer cells
resulted in the reduced expressions of the cell lines (137).
Sensitivity to chemotherapeutic drugs, such as VCR and DOX,
was increased in cells with suppressed P-gp expression, but only
if the drugs were administered after P-gp protein expression was
inhibited. The study also showed that cytotoxicity does not
increase by the subsequent addition of cytokines, which
demonstrates that immunotherapy can be used to treat MDR
cancers (138). In vitro experiments performed in cervical and
ovarian carcinoma cells suggested that TNF-a can enhance topo-
II inhibitor–mediated cancer cytotoxicity, Also, increased
sensitivity of the type II topoisomerases inhibitor was
notwithstanding of the TNF-a resistances (139). An MPR1-
overexpressing breast carcinoma cell line demonstrated
inherent sensitivity to in vitro cytotoxicity in response to TNF-
a (140). Another study showed that IL-2 treatment increased the
sensitivity of MDR colon cancer cells to the in vitro application of
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chemotherapeutic agents (141). However, this study has not been
substantiated clinically. When designing effective therapies,
identifying mechanisms to increase the sensitivity of MDR
cancer cell lines to therapeutic agents is necessary. A study of
engineered Michigan cancer foundation-7 (MCF-7) breast
carcinoma cell lines used to generate xenograft mouse models
showed that TNF-a could prevent the MDR1 gene response
against cytotoxic agents. The mouse models containing MCF-7
cell lines together with a cytotoxin-induced TNF-a cassette
exhibited a stronger cancer reduction response to DOX-based
treatments compared with mouse models containing MCF-7 cell
lines overexpressing TNF-a (142).
7 MUTATIONAL EFFECTS OF
DRUG RESISTANCE

Tumor cells are well-known to become resistant to some
chemotherapeutic drugs (143), and many molecular processes
contribute to the development of chemoresistance (143). More
than 70 oncogenes have been identified that promote cell growth
(144, 145). Mutations in these oncogenes affect various
molecular mechanisms; oncogenes have been identified that
encode membrane growth factor receptors, involved in the
growth factor signaling pathway, whereas others encode
cytoplasmic signaling molecules. Other oncogenes are involved
in the transmission of growth signals, whereas some mutant
oncogenes encode nuclear transcription factors, which provide
feedback in response to growth signals (143, 144). Recent studies
have demonstrated that cell cycle regulators can also act as
oncogenes by blocking the apoptotic cell death pathway and
promoting uncontrolled cellular proliferation (143, 144). C-
erbB2 encodes an RTK in the EGFR family, which has been
characterized as a transmembrane glycoprotein with a molecular
weight of 185 kDa (146, 147). Approximately 30% of breast
carcinomas patients display c-erbB2 gene overexpression (148).
A clinical research study showed that erbB2-overexpressing
breast tumor demonstrates reduced sensitivity to methotrexate,
cyclophosphamide, and CMF (combination cyclophosphamide,
methotrexate, and 5-FU) (149). The detection of c-erbB2
expression can serve as a chemoresistance marker and predict
survival time (150).

Recent studies have indicated the presence of a relationship
between signal transduction pathways and chemotherapy
responses (143). Ras, v-mos, src, protein kinase C (PKC), and
other oncogenes involved in signaling pathways can mediate
MDR (151, 152). Ras is an oncogene known to be directly
involved in human cancer occurrence, with approximately 30%
of all human cancers caused by mutations in the Ras oncogene
(144). The human prostate cancer cell line PC3(R), a variant of
PC3 cells featuring HRas overexpression, demonstrated
resistance to etoposide, m-amsacrine (m-AMSA), DOX, VCR,
and choline phosphotransferase (CPT) (152). Compared with
PC3 cells, the levels of P-gp, Topo-I, Topo-II, and glutathione-S-
transferase (GST) remain unchanged in PC3(R) cells (152).
Thus, the Ras gene may be involved in the drug resistance
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mechanism in PC3(R) cells (143). Genes that depend on
activator protein-1 (AP-1) are responsible for cell proliferation,
differentiation, tumor cell induction, and chemoresistance (153).
Myc class transcription factors may also be involved in the
development of chemoresistance (143). Myc oncogene-encoded
proteins form a sequence-specific DNA-binding complex
responsible for DNA repair processes. L-myc has been
associated with chemoresistance in small cell lung cancer cell
lines (154), whereas N-myc expression in a neuroblastoma cell
increased resistance to cisplatin and etoposide in patients (143).
Many chemotherapeutic agents target cell cycle regulators during
tumor cell growth (143). The detection of mutations in cell cycle
regulators can determine the drug susceptibility of tumor cells
(143). Mutations in cyclins and cyclin-dependent kinases (cdks)
can affect the cell (143), and a study showed that cyclin D1
overexpression was associated with drug resistance in a human
fibrosarcoma cell line (155). Cyclin D1 overexpression has been
identified in many cancer types, including breast cancer, head
and neck cancer, and NSCLC. Cyclin D1 promotes the
progression from the G1 phase to the S phase of the cell cycle,
together with cdk4 and cdk6 (156). One study found that
mutations in cyclin A, cdk2, and cdk4 increased resistance to
staurosporine (157). The study of apoptosis represents an
emerging field of cancer treatment. Mutations in apoptotic
regulators represent another key factor in the development of
MDR (143). Several studies have indicated that bcl-2 protein
expression can impaired apoptosis and is involved in the
development of MDR (158), and MCF-7 human breast cancer
cells with bcl-2 overexpression are resistant to adriamycin (159).
8 HYPOXIA-MEDIATED DRUG
RESISTANCE

Oxygen deprivation in cells and tissues is referred to as hypoxia,
and solid tumors commonly exist in a hypoxic state. Cancer cells
overcome this condition by either slowing progression, resulting
in necrosis/apoptosis, or adapting to the condition. Hypoxia-
inducible factors (HIFs) are the primary proteins that allow
cancer cells to survive under hypoxic conditions. HIF proteins
are dimers consisting of an a subunit, which is generally
inactivated by prolyl hydroxylase dioxygenase (PHD) under
normal oxygen conditions (160), and a b subunit, which binds
to the active subunit under hypoxic conditions, allowing the
complex to move into the nucleus freely (161, 162). Three types
of HIF-a have been identified in higher organisms, HIF-1a, HIF-
2a, HIF-3a, and only one form of HIF-b. HIF-1a mediates the
chemoresistance features of cancer cells through multiple and
interconnected mechanisms (Figure 5). Many chemotherapeutic
agents induce cancer cell death by triggering pro-apoptotic
pathways, in addition to other programmed cell death
pathways, such as necrosis, autophagy, and mitotic
catastrophe. The TME demonstrates chemoresistance and
limits drug-induced cytotoxicity under hypoxic conditions,
promoting malignancy and metastasis. Many anticancer drugs,
such as gemcitabine (GEM) (163), DOX, etoposide (164),
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and cisplatin (165), require oxygen to exert maximal activity,
and their functional capacities are reduced under hypoxic
conditions. Limited drug bioavailability due to low
vascularization is also a feature of hypoxic tumor cells (166).
Hypoxia-induced drug resistance has also been associated with
the upregulation of oxygen-regulated proteins, the over-
replication of DNA, cell cycle arrest, alterations in cellular
metabolism, the enhancement of drug efflux pumps, and a lack
of genetic stability. The pre-incubation of cancer cells under
hypoxic conditions increases resistance to several drugs, as
demonstrated in both in vitro and in vivo studies (12, 13,
167, 168).

HIF proteins are the primary drivers of hypoxia-induced
chemoresistance. HIF-1a-targets MDR1, which encodes the
ABC transporter P-gp (169). P-gp upregulation increases the
efflux of anticancer drugs, reducing the intracellular
concentration of these drugs and reducing their efficacy. HIF-
1a also upregulates the expression of MRP1, BCRP, and LRP
under hypoxic conditions (170, 171). Studies have demonstrated
that HIF-1a can reduce DNA damage in cancer cells through an
unknown mechanism, further contributing to the drug resistance
of several cancer types, including triple-negative breast cancer
(TNBC) and prostate cancer (PC) (172). HIF-1a also contributes
to the DNA repair mechanism and counteracts the activities of
several chemotherapeutic agents (173, 174). Furthermore, HIF-
1a can increase mitophagy and protect cancer cells from several
drugs, including cisplatin (175), 5-FU (176), and GEM (163).
FIGURE 5 | HIF-1a mediates interconnected mechanisms during hypoxia,
facilitating chemoresistance in cancer.
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Mitophagy also helps cancer cells to replenish ATP, metabolites,
and building blocks that have been damaged by drugs. Many
anticancer drugs induce oxidative damage as the primary
mechanism through which to kill cancer cells, and the reduced
capacity for ROS production under hypoxic conditions reduces
the efficacy of these drugs (175), likely mediated by the
downregulation of oxidative phosphorylation (OXPHOS) by
HIF-1a (176). Cancer cells expressing HIF-1a also reduce the
pro-apoptotic effects of TP53 when anticancer drugs, such as
cisplatin, are administered (177). HIF-2a mediates a similar
phenomenon in hypoxic cancer cells (178). The enhanced
upregulation of Pim kinases members, active P-gp, and Akt/
mammalian target of the rapamycin (mTOR) are also observed
under hypoxic conditions, which can induce resistance against
several chemotherapeutic drugs, including cisplatin, DOX, and
GEM (179–181). HIF-1a can induce resistance in hypoxic cells
by increasing the EMT, triggering proliferation and migration in
PC (182).

Several miRNAs also contribute to the development of
chemoresistance under hypoxic conditions. For example, miR-
106a, HIF-1a/miR-210, miR-508-5p, and miRNA-19a/b are
known to be involved in the development of chemoresistance
(129, 132, 183, 184). Hypoxia-driven autophagy is another
protective mechanism activated in cancer cells that can lead to
chemoresistance under hypoxic conditions (185–187). The
inhibition of ATG5, a mediator of autophagy in hypoxic
cancer, can induce cisplatin sensitivity in previously resistant
cells (188), supporting the contribution of hypoxia-induced
autophagy to the development of anticancer drug resistance.
Oxygen deprivation in cancer cells increases acidity due to the
increased production of lactate by glycolysis. This acidification of
TME can neutralize the activity of drugs that are weak bases
(189). Senescence is a key form of programmed cell death
associated with many types of stress, such as telomere
dysfunction, DNA damage, and oxidative damage. Senescence
is more efficient than apoptosis (190, 191). Several anticancer
drugs induce senescence to kill cancer cells (192–194), but
hypoxia can decrease tumor cell senescence (172). In addition
to these intrinsic factors, hypoxia can induce chemoresistance in
cancer cells through extrinsic factors. The hypoxic niche in TME
can accommodate cancer stem cells, which participate in drug
resistance (195). Furthermore, hypoxia-recruited tumor-
associated macrophages (TAMs) in the TME release factors
that contribute to drug resistance and cancer cell survival
(196). Immunogenic cell death mediated by chemotherapy can
also be prevented by TAMs in several cancers (197). Some
cytokines, such as interleukine-6 (IL-6), are also thought to
play roles in hypoxia-induced chemoresistance (198).
9 MULTIDRUG RESISTANCE
AND AUTOPHAGY

Autophagy is a conserved cellular process through which
damaged or unused proteins, various cytoplasmic elements, or
organelles are degraded by moving through the lysosomal
Frontiers in Oncology | www.frontiersin.org 14
system, which allows cells to recycle whole molecules or
organelles (199). Autophagy typically involves the formation of
a double-membrane body, called the autophagosome, which
transports important elements to the lysosome (200).
Autophagy is known to play several roles in both cell survival
and cell death, acting as a double-edged sword. However,
autophagy also plays an important role in the enhancement of
chemoresistance in cancer cells. Autophagy can improve the
survival of cancer cells during stressful conditions, such as
hypoxia, starvation, and damage induced by therapeutic agents
(201–203). Autophagy is primarily induced by the inhibition of
the mTOR signaling pathway during stress (204) and is regulated
by a group of highly conserved genes called autophagy-related
genes (ATGs). Studies have demonstrated the contributions of
autophagy to the development of drug resistance in cancer cells
and have identified various factors associated with this
autophagy-induced chemoresistance. The inhibition of
autophagy by chloroquine, an antimalarial drug approved by
the Food and Drug Administration (FDA), restored the
sensitivity to paclitaxel in NSCLC and decreased metastasis by
enhancing ROS levels (14, 205). Several ATGs have been
identified, including ATG3, ATG5, ATG6, ATG7, and ATG14,
which regulate cellular autophagy. An extensive and
interconnected ATG network participates in autophagy and
mediates drug resistance in cancer cells. Research has shown
that ATG3 is directly associated with the development of drug
resistance, as the inhibition of ATG3-induced autophagy was
able to promote salinomycin-induced apoptosis and enhance the
cisplatin sensitivity in NSCLC (206, 207). ATG5 also contributes
to DOX resistance, and the upregulation of GBCDRlnc1
(gallbladder cancer drug resistance–associated lncRNA1) in
DOX-resistant gallbladder cancer decreases phosphoglycerate
kinase 1 (PGK1) degradation and upregulates ATG5 and
ATG12 (208). MiRNA-153-3p inhibits ATG5-mediated
autophagy and improves sensitivity to gefitinib in NSCLC,
further supporting a role for ATG5 in chemoresistance (209).
One study showed that ATG5 could also induce macrophage-
mediated autophagy in liver cancer, and ATG5 inhibition
prevents macrophage-mediated autophagy and restores
oxaliplatin sensitivity (15). Another investigation provided
evidence that blocking ATG6 (beclin-1) could enhance the
efficacy of estrogen receptor (ER)-positive breast cancer cells
(210). Other autophagy regulators, such as ATG7 and ATG12,
are also involved in chemoresistance. One study demonstrated
that the co-administration of silencing ATG7 (siATG7) and
docetaxel for breast cancer treatment increased the efficacy of
docetaxel-induced apoptosis (211). ATG7 knockout using a
small hairpin RNA (shRNA) in AML improved the efficacy of
treatment with cytarabine and idarubicin (212). In addition, the
shRNA-mediated downregulation of ATG12 resulted in the
recurrence of efficacy for trastuzumab, erlotinib, gefitinib, and
lapatinib in vitro (213). These findings further support the
contributions of ATGs to the development of chemoresistance
in cancer cells.

Several miRNAs are also involved in autophagy-induced
chemoresistance. The relationship between miRNAs (miR-495,
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miR-30, miR-199a, miR-21, miR-22, miR-410, miR-181, miR-
409-3p, miR-26, miR-193, miR-101, and miR-142-3p),
autophagy, and chemoresistance has previously been reviewed
(214). Among these miRNAs, the downregulation of miR-30a
(215), miR-199a-5p (216), miR-410-3p (217), miR-101 (218),
and miR-495-3p (219) correlate with drug resistance, including
resistance to cisplatin, adriamycin, and GEM, in several cancers
through enhanced autophagy. However, some miRNAs, such as
miR-21, also participate in drug resistance by inhibiting the
protective autophagy of the cell (220). In addition to miRNAs,
several lncRNAs are associated with drug resistance induced by
autophagy. The roles of various lncRNAs in autophagy-induced
chemoresistance have previously been reviewed (6), including
bladder cancer-associated transcript 1 (BLACAT1), metastasis-
associated lung adenocarcinoma transcript 1 (MALAT1), the X-
inactivate specific transcript (XIST), small nucleolar RNA host
genes (SNHGs), highly upregulated in liver cancer (HULC), and
cancer susceptibility candidate 2 (CASC2). These lncRNAs
promote drug resistance and stabilize autophagy by
downregulating several miRNAs (221–226). However, some
drugs can induce autophagic cell death in drug-resistant cancer
cells (227). The inhibition of ATG5 can sometimes reduce the
efficacy of therapeutic agents, promoting tumor relapse (228).
Therefore, the mechanisms through which autophagy affects the
development of chemoresistance in cancer cells, are not yet
fully understood.
10 LABORATORY APPROACHES
AND ADVANCEMENTS IN CANCER
DRUG RESISTANCE

Currently, most MDR cancer phenotypes can only be identified
by separating tumor or cancer cells from primary tissue types
and evaluating their tolerance to anticancer or chemotherapeutic
drugs due to lack of in vivo MDR detection approaches (229).
Frequently evaluated cancer drug resistance indicators include
the half-maximal inhibitory concentration (IC50), half-maximal
effective concentration (EC50), cell resistance index (RI), the cell
growth curve, and the apoptotic index (229, 230). Other assays
used to evaluate the drug resistance of cancers and tumor cells
include genomic analysis of MDR tumors, drug susceptibility
tests in animal models, drug influx and efflux assays, 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assays, high-content screening and analysis, and high-
throughput screening and analysis (231).

10.1 Genomic Analysis of
Drug-Resistant Cancers
Some genetic factors can confer cancer drug resistance, such as
oncogene encoding growth factor receptors (GFRs), cell cycle
regulators, signaling molecules, transcription factors, and
apoptosis mediators (143). Genomic analysis can be used to
identify gene expression to determine the regulatory functions
underlying drug resistance in cancer cells (232). Anticancer drug
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transporter mutations can reduce drug absorption. Patients with
ALL harbor mutations in the hRFC gene, which confers
resistance to methotrexate (18). Mutation at the nucleotide 133
in the hRFC gene results in a mutation that prevents drugs from
binding to the transporter. Using genomic analysis to assess
miRNA expression, DNA methylation, single-nucleotide
polymorphisms (SNPs), and single-nucleotide variants,
approximately 463 genomic characteristics have been
associated with the development of glucocorticoid resistance
(232). The discovery of a mutation in a novel gene encoding
cadherin EGF LAG seven-pass G-type receptors (CELSRS)
results in glucocorticoid resistance, which was identified by
network-based transcriptomic modeling and single-cell RNA-
sequencing (232). Researchers showed that increased Bcl2
protein expression promoted steroid resistance and reduced
the CELSR2 protein level (232). Bcl2 protein impairs the cell
death pathway, and the leukemia treatment drug venetoclax
inhibits Bcl2 (232). The upregulation of Bcl2, Akt, and other
anti-apoptotic genes, combined with the downregulation of Bax
and Bcl-xL, which are pro-apoptotic genes, can increase tumor
cell resistance to chemotherapy (18). TP53 gene mutations also
impair the functional efficacy of anticancer drugs, in addition to
inhibiting the activation of apoptosis. More details regarding
cancer drug-resistant genes with their functions can be found
in Table 2.

10.2 Mouse Model Studies and In vivo
Studies of Cancer Drug Resistance
Studying animal models of chemoresistance due to genetic
alterations is vital for the field of cancer biology. In vivo
models provide a native TME, making in vivo studies
preferable to in vitro studies (241). Animal models must be
immunocompromised to prevent the rejection of xenografts
consisting of human cancer cells or small segments of
chemotherapy-resistant cancer specimens (241). The most
commonly used immunocompromised mice for xenograft
hosting are (1) severe combined immunodeficiency (SCID)
mice, which are B and T cell–immunodeficient mice with
defective natural killer cells due to the beige mutation (242);
and (2) athymic nude mice (Balb/c, CD-1), which are thymus-
deficient mice that fail to produce T cells, and the impairment of
T-independent B cell maturation also occurs due to the presence
of the xidmutation in the nude gene (241). Female 4–5-week-old
BALB/c nude mice injected with A549 cells transfected with
chromodomain helicase/ATPase DNA-binding protein 1-like
gene (CHD1L) shRNA1, shRNA2, or scrambled control
shRNA (234) were intraperitoneally treated with cisplatin (3
mg/kg) when tumor sizes reached 5 mm in diameter, which
resulted in mouse death, providing evidence that CHD1L
exhilarating is responsible for cisplatin resistance (234).
Anticancer drug resistance can develop in response to the gene
expression of MDR1 in transgenic mice (243). The anticancer
drug, daunomycin, had no effect on a transgenic mouse model
expressing human MDR1 (244). Mice deficient in mdr1a and
mdr1b revealed that P-gp knockout was not fatal in mice but
likely increased the assimilation and neurotoxicity of various
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drugs (10). Knockout mice lacking mdr1a/mdr1b and mrp1
genes demonstrated that P-gp and MRP1 transporters were
responsible for the development of resistance to anthracyclines,
taxol, and vinca alkaloids (245).

10.3 Drug Efflux Assays in Cancer
Multidrug Resistance
Drug efflux assays are used to test the functional roles of
membrane-localized pumps, including P-gp, MRP1, MRP2,
and BCRP. Drug efflux assays are performed in living cells
under physiological conditions and through direct analysis of
the relative fluorescence of cell populations to determine
intracellular concentrations of fluorescent MDR probes. Probes
utilized in these studies include small-molecule fluorophores and
fluorescents for bioimaging, including the classic fluorescent
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labeling dyes, 3,3´-diethyloxacarbocyanine iodide (DiOC2),
rhodamine 123 (Rh123), and calcein acetoxymethyl (229). The
selection procedure for probes differs across transporters; for
example, the evaluation of P-gp is commonly performed using
DiOC2, Rh123 (246), the antihistamine drug fexofenadine (247),
and the cardiac glycoside drug digoxin (248). The primary
substance used to assess the BCRP efflux pump is DOX (249),
and tariquidar has been as both BCRP and P-gp probes (250).
Leukotriene can be transported by MRP1 and MRP2, calcein
transported by MRP1, and bilirubin glucuronides are
transported by MRP2 (251, 252). A larger group of dyes,
including daunorubicin and mitoxantrone, are less sensitive
due to their dimness, which can result in false-negative reports
(253). The reduction of drug accumulation through enhanced
cellular flux is a widely studied mechanism in MDR cancers.
TABLE 2 | List of some cancer drug-resistant genes with their role and properties.

Drug resistance
genes

Role Properties References

ABCB1 Involvement in multi-drug resistance ➢ Found on chromosome 7 in humans

➢ Size: 1280 amino acids

➢ Molecular mass: 141479 Da

(97, 233)

ABCC1 Involvement in multi-drug resistance ➢ Found within the nucleus on chromosome 16 in humans

➢ Molecular mass: 171591 Da

➢ Contained two hydrophobic transmembranes

➢ Size: 1531 amino acids

(97, 234)

ABCC2 Involvement in multi-drug resistance ➢ ABCC2 protein belongs to MRP (Multidrug resistance-associated protein)
subfamily

➢ Exhibited apical in the part of the hepatocyte

➢ Found on chromosome 10 in humans at position 24.2

➢ Size: 1545 amino acids

➢ Molecular mass: 174207 Da

(100, 234)

ABCC3 Involvement in multi-drug resistance ➢ Belongs to the MRP subfamily

➢ Found within the nucleus on chromosome 17 in humans

➢ Size: 1527 amino acids

➢ Molecular mass: 169343 Da

(234, 235)

ABCC5 Involvement in resistance to thiopurine anticancer
drugs

➢ Found within the nucleus on chromosome 3 in humans

➢ Size: 1437 amino acids

➢ Molecular mass: 160660 Da

(102, 234)

ABCG2 Involvement in multi-drug resistance ➢ Found on chromosome 4 in humans

➢ Size: 655 amino acids

➢ Molecular mass: 72314 Da

(236)

BCL2L1 Act as an inhibitor of apoptosis ➢ The formation of BCL2L1 protein is homodimers or heterodimers

➢ Found on chromosome 20 in humans

➢ Size: 233 amino acids

➢ Molecular mass: 26049 Da

(234, 237)

CLPTM1L Elevation cancer susceptibility ➢ Found on chromosome 5 in humans

➢ Size: 538 amino acids

➢ Molecular mass: 62229 Da

(234, 238)

EGFR Increase the propagation of cells ➢ Found on chromosome 7 in humans

➢ Size: 1210 amino acids

➢ Molecular mass: 134277 Da

(234)

ELK1 Increase the propagation of cells ➢ Found on the X chromosome in humans

➢ Size: 428 amino acids.

➢ Molecular mass: 44888 Da

(234, 239)

NFKB1 Increase the propagation of cells ➢ Found on chromosome 4 in humans

➢ Size: 968 amino acids

➢ Molecular mass: 105356 Da

(234, 240)
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ABC transporters are regulatory components found in the
plasma membranes of healthy cells, and they mediate efflux.
ABC transporters are expressed by humans and other phyla and
serve to transport various substrates across the cell membrane.
The 49 known ABC transporters are typically comprised of two
domains, a highly conserved nucleotide-binding domain and a
largely variable transmembrane protein domain (254). An
intracellular substrate can be relocated outside of the cell when
the hydrolysis of ATP at the nucleotide-binding site causes a
change in the conformation, which typically occurs when a
substrate binds with the transmembrane protein domain. This
efflux mechanism plays a pivotal part in the prevention of toxin
over-accumulation in living cells (255). ABC transporters are
expressed largely in the epithelial cells of the intestine and liver,
where the body expresses proteins to protect against the efflux of
drugs and various harmful compounds into the lumens of the
intestine and the bile duct. ABC transporters are crucial to the
maintenance of the blood–brain barrier (256, 257).
Consequently, these three transporters protect cancer cells
from various first-line chemotherapies. P-gp was the first
ident ified ABC transporter and has been s tudied
comprehensively (258–260). The expression level of the MDR1
gene encoding P-gp is typically upregulated in cancerous tissues.
However, a study examining both inherent and acquired MDR1
overexpression mechanisms revealed that DOX treatment might
trigger a significant increase in MDR1 expression levels in lung
cancer cells without affecting the expression in normal
respiratory cells (261). Lung, prostate gland, and mammary
gland tissues do not express MDR1, and drug resistance in
these tissues is commonly associated with other members of
the ABC transporter family, including BCRP and MRP1. BCRP
is commonly expressed in stem cells and can protect normal cells
from the toxicological effects of xenobiotics by regulating the
homeostatic status of heme and folate. Researchers have
demonstrated that the upregulation of these transporters in
cancer cells can result in worse clinical outcomes, such as the
expression of MRP1 in neuroblastoma (262). BCRP expression
levels are predictive of drug responses and viability ratios in small
cell lung cancer. However, drug efflux can be reduced through
the use of BCRP inhibitors, such as gefitinib, a TKI that blocks
BCRP transporter function, restoring drug sensitivity (263).
Although some compounds have been identified that directly
inhibit BCRP, estrogen has also been shown to play a crucial role
in the regulation of BCRP expression (79). Cancer cells can be
resensitized to the effects of anticancer drug treatment through
the inhibition of these transporters.

In addition to activating downstream signaling molecules,
kinases are important for maintaining P-gp expression levels and
regulating the milieu to develop drug resistance. The translation
of P-gp is downregulated by estrogen in estrogen receptor–
positive (ER-positive) breast cancer cell lines without affecting
estrogen receptor–negative (ER-negative) breast cancer cell lines
or DOX-resistant ER-negative ovarian cancer cell lines (264,
265). By contrast, overexpression of proteins in the MAPK
pathway results in the activation of downstream tyrosine
kinase receptors and the upregulation of P-gp expression.
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The downregulation of P-gp expression mediated by inhibitory
substrates of the MAPK/extracellular signal-regulated kinase
(ERK) pathway can be upregulated by some growth factors,
such as EGF and fibroblast growth factor (FGF) (266).
Furthermore, heat shock protein 90 can stabilize various
signal-producing proteins and downregulate P-gp expression.
P-gp expression and stability are strictly regulated and necessary
for the survival of cancer cells or tumor progression. Targeting
cancer-promoting kinase substrates can inhibit P-gp expression
by sensitizing cancerous cells to therapeutic drugs.

10.4 High-Content Screening of
Drug-Resistant Cancers
High-content screening technology can be used to analyze and
collect biological data regarding intracellular and intercellular
conditions in response to drug stimulation. This system does not
require the destruction of cell structures and offers multiple
channels for the performance of multiple target detection using
fluorescent scanning (267). A high-content screening system is
capable of obtaining distinctive cell data, including
morphological features, proliferation, cancer differentiation,
migration, apoptotic conditions, characteristics of the signal
transduction mechanism, and other pertinent information
regarding the physiological activity and toxicological effects of
various agents within a single experiment (268). A high-content
screening assay can be utilized to analyze lysosomotropic
substrates, allowing for toxicology screening to identify
oncological therapeutics with lysosomotropic properties to be
performed using this method (268). This technique revealed the
significant contribution of lysosomes to programmed cell death
and suggested that lysosome membrane permeability–inducing
compounds can be advantageous for the eradication of cancerous
cells (269–271).

10.5 High-Throughput Screening of
Drug-Resistant Cancers
High throughput screening methods generally utilize various
molecular and cellular techniques to screen for various
outcomes using microplates and are typically applied using
automated techniques. High-throughput screening techniques
can be utilized to obtain large quantities of data from numerous
samples analyzed simultaneously in a single experiment, with
accurate and traceable results (229, 269). High-throughput
screening and analysis techniques can be utilized to screen
functional or phenotypic information, such as the identification
of MDR or miRNA gene expression using siRNA or miRNA
inhibitory libraries (272). Array-based high-throughput screening
methods, including DNA microarrays, cDNA microarrays, RNA
immunoprecipitation chips, protein microarrays, protein
modification microarrays (such as protein phosphorylation or
glycosylation microarrays), can also be utilized for the analysis
of MDR gene, RNA, or protein expression (272). For example, by
comparing healthy cell lines with drug-resistant cell lines using
array-based high-throughput screening, differences in gene
expression patterns can be detected, and MDR-associated RNA
or protein can be identified (273).
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10.6 Anticancer Drug Sensitivity Analysis
Drug sensitivity and drug susceptibility tests are performed by
analyzing cell proliferation in the presence of chemotherapeutic
drugs, which serves as an indirect reflection of cancer cell
sensitivity to chemotherapeutic drugs (274, 275). Frequently
used techniques at the cellular level are used to measure the
growth curve of cancer cells. At the cellular level, anticancer drug
sensitivity analysis is commonly performed using three-
dimensional microculture techniques, whereas in vivo mouse
models are used to explore cancer sensitivity at the animal level.
The cell growth curve produced through various assays can also
be used to examine drug sensitivity at the cellular level (275). The
histoculture drug response assay (HDRA) can be used as an
organism-level drug sensitivity test through the aseptic removal
of cells or tissues from multicellular organisms so that they can
function outside of the organism. For example, three-
dimensional microcultures utilize a variety of three-
dimensional structural cultures to preserve smaller pieces of
cancer tissue in glass or plastic culture vessels. The most
common culture technique is plasma coagulation, although
liquid cultures are becoming widespread. Organic salts,
vitamins, amino acids, and serums are used to generate
distinctive culture media (275, 276). In vivo drug sensitivity
can be measured by analyzing the results of chemotherapeutic
drugs or molecular substrates on xenograft tumors to evaluate
the anticancer or antitumor efficacy of these drugs (277).

Drug sensitivity tests have become very popular, and various
types of drug sensitivity tests are used in cancer therapy.
Although drug sensitivity tests can be conducted both in vivo
and in vitro (278, 279), the benefits and limitations of in vivo and
in vitro drug sensitivity tests can vary, and each can be adjusted
for distinctive clinical circumstances (280). The subrenal capsule
assay is one of the most distinguishing and preliminary in vivo
techniques used to perform drug sensitivity analysis. Tumors
from humans are surgically implanted into the renal capsule of a
mouse, and anticancer drug sensitivity assays are conducted and
analyzed (281, 282). However, orthotopic xenograft models have
become more popular of late, in which human cancer or tumor
tissues are implanted into immunodeficient mouse models to
generate a TME more similar to that observed in humans (280).
Because in vivo drug sensitivity tests are thought to better
simulate the characteristics associated with human cancer
proliferation and progression, in vivo drug sensitivity tests are
viewed as being more clinically relevant than in vitro drug
sensitivity tests. The use of immunodeficient mouse models is
the most recent advancement in the evaluation and prediction of
human cancer drug sensitivity, proliferation, and progression
(281). By contrast, in vitro drug sensitivity testing methodologies
are well-diversified and involve the analysis of drug responses
and inhibition mechanisms, including chemical, biochemical,
cytological, and enzymatic analyses. Some methods for analyzing
in vitro drug sensitivity include microculture tetrazolium assay
(283), ChemoFx assay (284), luminescent ATP detection assay
(285, 286), and collagen gel droplet-embedded culture (287).
Generally, the efficiency and sensitivity of drugs to affect the
enzymatic activity, energy consumption, and cell proliferation
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can be analyzed by various types of in vitro drug sensitivity tests
(280). Theoretically, all in vitro drug sensitivity analysis
techniques share similar biological and pharmacological
features. Furthermore, slight changes in the atmosphere do not
hamper in vitro studies, which can be used to predict the drug
sensitivity of cancer or tumor cells. However, a recent study
reported that the chemotherapy success rate was associated with
the therapeutic efficiency against the clonal or stem cells found in
cancer tissues or tumors (288–291). By contrast, in vivo drug
sensitivity assays do not consistently enhance the outcomes of
chemotherapy, specifically in terms of patient survival in clinical
practice (292).
11 BIOMARKERS OF CANCER
MULTIDRUG RESISTANCE

MDR represents a major hindrance to the success of
chemotherapy in cancer. Several approaches, including the
identification of reliable biomarkers, can minimize the
resistance to chemotherapy. Biomarkers refer to molecular
changes that can be detected in a biological molecule or system
that indicate the presence of unfavorable conditions within the
system. The identification of biomarkers is very important for
increasing the efficacy of the drugs against MDR cancers.
Numerous studies have provided substantial evidence to
support the use of several genes, proteins, miRNAs, lncRNAs,
and even cancer cell–derived extracellular vesicles (EVs) as
biomarkers for predicting drug resistance. Upregulation,
downregulation, overexpression, or underexpression of genes,
miRNAs, and lncRNA can be used to distinguish between drug-
resistant and drug-sensitive cancer cells, enhancing the efficacy
of chemotherapy. Proteomic, genetic, epigenetic, and
transcriptomic investigations have indicated that specific
proteins or genes might serve as potential biomarkers. For
example, pancreatic ductal adenocarcinoma (PDAC) is
primarily treated with GEM or 5-FU, but some PDAC patients
are resistant to GEM and 5-FU. The study demonstrated a
negative correlation between SLC28A1 (hCNT1, 606207) and
mucin 4 (MUC4, 158372), which serves as a regulatory
mechanism that can be used as a biomarker to identify GEM-
resistant PDAC patients (293). The expression of the SLC29A1
gene was also identified as a predictive biomarker for GEM
resistance but not 5-FU-resistance in a previous study (294).
Numerous studies have concluded that SLC29A1 and
dihydropyrimidine dehydrogenase (DPYD) might be the most
potent biomarkers for optimizing chemotherapy outcomes in
PDAC patients (295–297). Another study reported that the
overexpression of isocitrate dehydrogenase in resistant glioma
cells could also serve as a biomarker (298). In addition, hypoxia
induces MDR in several cancers, as described earlier,
and hypoxia-related genes, specifically HIFs, could serve as
potential biomarkers for identifying hypoxia-induced
drug resistance.

The dysregulation of miRNAs in cancer cells can also predict
the outcomes of therapy and the resistance to specific drugs,
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serving as a biomarker. Chen et al. (3) reported that miR-744,
miR-574, miR-423, miR-222, miR-140, miR-3178, miR-34a,
miR-6780b, and miR-29a contribute to drug resistance in
breast cancer. Gasparri et al. (299) reviewed urinary miRNAs
in breast cancer and deduced that miR-125b could participate in
chemotherapy resistance. Another investigation identified 20
downregu la t ed and four upregu la t ed miRNAs in
chemoresistant CRC patients. Among them, six miRNAs,
including miR-92a, miR-144-5p let-7i, miR-30e, miR-100, and
miR-16, showed consistent dysregulation in later experiments
(4). Another experiment identified two new miRNAs, miR-200a
and miR-210, that were able to predict drug resistance in
metastatic breast cancer when detected at high levels in plasma
(300). The overexpression of miR-1229-3p has also been
identified in gastric cancer patients who are resistant to 5-FU
(301). These reports suggest that these miRNAs may be
promising biomarkers of several cancers. In addition to
miRNAs, lncRNAs can also be used to predict drug resistance.
For example, lncRNA colon cancer‐associated transcript-1
(lncRNA CCAT1) may serve as a potential biomarker for drug
resistance in esophageal cancer, as it is expressed abundantly in
cancer and has been associated with drug resistance (302).
Furthermore, EVs derived from drug-resistant cancer cells may
also serve as clinically reliable biomarkers. An overwhelming
amount of evidence has indicated their efficiency for use as
biomarkers in vitro and in vivo. However, research reports have
confirmed that EVs can transfer the drug-resistant phenotype
from drug-resistant cells to drug-sensitive cells in leukemia
(303), breast cancer (304, 305), ovarian cancer (306), PC (307),
CRC (308), and NSCLC (309). Further, a study also suggested
that EVs released from ovarian cancer cells induce cisplatin
resistance because they contained DNA methyltransferase 1
(DNMT1) (310). Cancer cells derived EVs also contain several
miRNAs and lncRNAs, and studies have extensively reported on
the involvement of these miRNAs and lncRNAs in the
transmission of drug resistance phenotypes and the extension
of drug resistance to several drugs, such as DOX, gefitinib,
erlotinib, trastuzumab, and cisplatin (5, 311–316). Based on
these results, several clinical trials have evaluated the potential
use of EVs as biomarkers for the prediction of MDR
development in patients with breast cancer, PC, colon cancer,
pancreatic cancer, malignant melanoma, lung cancer, and
multiple myeloma, which have been extensively reviewed
elsewhere (317).
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12 IMMUNOPREVENTION OF MULTIDRUG
RESISTANCE IN CANCER

Prevention is the best method for evading the formidable
consequences of cancer, and effective preventive strategies
could reduce the global burden of cancer (318). Two well-
known prevention methods have been identified in the fight
against cancer. One is chemoprevention, and the other one is
immunoprevention (318). Chemoprevention may not be
effective against MDR cancers due to the resistance
mechanisms in cancer cells that allow for the avoidance of
drug-induced death during early stages (319). Therefore,
Immunoprevention may be the best method for cancer
prevention, as early-stage cancer cells may not be able to adopt
the necessary evasion measures to become drug-resistant (319,
320). Almost two million new cancer cases were reported in
2020, indicating that cancer prevention is not being applied as a
major method in the fight against cancer (1). Cancer
Immunoprevention refers to the use of immunological means
to stimulate host immune responses to prevent the initiation and
development of cancer (25). Immunoprevention is conceptually
different from immunotherapy, which induces immunity after
tumor onset in patients. By contrast, Immunoprevention aims to
eradicate cancer during the early stages by stimulating the
patient’s immune system. Host immunity can play an
influential role in early tumorigenesis by differentiating
between normal cells and tumor cells. The existing
Immunoprevention strategies (Table 3) focus on vaccines,
immunostimulators, and antibodies (25). The concept of
cancer Immunoprevention is a relatively new field of research,
and very limited data is available to support the ability to
completely prevent the development of human cancers (26).
However, some studies have highlighted the bright future of this
field and the potential to prevent cancer completely. At present,
preventive vaccines are the most common goal in the field of
cancer immunoprevention. Studies have demonstrated that
preventive vaccines are more effective than vaccines targeting
antigens during later stages of cancer (343). Two types of
vaccines are being explored: vaccines against virally induced
cancers and vaccines against non-viral cancers. Hepatitis B virus
(HBV) and human papillomavirus (HPV) vaccines are the
currently available vaccines that act against virally induced
cancer (324, 329, 330). These two vaccines represent the most
successful Immunoprevention agents in the field of cancer,
TABLE 3 | Major immunopreventive agents.

Agents Preventative outcomes References

HBV vaccine* Prevents HBV-induced cancer such as hepatocellular carcinoma (HCC) (321–324)
HPV vaccine* Protects against HPV types 16 and 18 and also prevents other HPV-induced cancers such as oropharyngeal, vulvar,

cervical, vaginal, penile cancers
(325–330)

HER2 vaccines* Clinical trials showed reduction in lesions and long term HER2 production in patients with DCIS positive HER2 (331–333)
MUC1 vaccines* Clinical trials showed strong immune response in patients with intestinal polyps and colon cancer (334–337)
Immune checkpoint inhibitors Prevents progression of malignancy of oral premalignant lesions which is showed in preclinical studies (338–341)
Non-specific immunomodulators
(Imiquimod)

Clinical trial showed clearance of actinic keratosis at early stage (342)
June 2022 | Volume 12 | A
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which may be able to eradicate drug-resistant cancer before
it develops.

Several studies have demonstrated the effectiveness of
vaccines against non-viral cancers. Based on the results of
preclinical studies, some of these vaccines have entered clinical
trials with promising efficacy. Although the use of these vaccines
may face limitations due to the occurrence of side effects, they
also illuminate the path of future Immunoprevention strategies
for cancers. For non-viral vaccine targets, studies have suggested
numerous potential antigen targets in several cancers (344).
Among these antigens, mucin 1 (MUC1) represents one of the
most promising targets for the development of protective
vaccines, as the overexpression of this gene is associated with
colon, pancreatic, breast, and various other carcinomas (345). A
peptide-based vaccine that targets MUC1 antigen is in
development and currently enrolling patients in clinical trials
(337). Mutated HER2 is another oncogene that is being targeted
for preventive vaccines in several studies (346), as HER2 is a
promising target for the prevention of breast cancer. Some
patients with ductal carcinoma in situ (DCIS) who received the
HER2 vaccine showed reductions in lesion size in clinical trials
(332). In another trial, patients with HER2-overexpressing DCIS
received dendritic cells displaying HER2, and 25% of them
demonstrated complete tumor regression (333). The anti-
EGFR vaccine resulted in a 76.4% reduction in EGFR-induced
lung cancer in mice (347). Several epitopes, such as syndecan-1
(CD138), X-box–binding protein 1 (XBP1)-unspliced, XBP1-
spliced, CS1, have been identified as potential targets in
multiple myeloma (MM) and smoldering multiple myeloma
(SMM), and their applications against MM and SMM were
also very effective (348–350).

However, vaccine-mediated approaches are not successful in
every individual, as vaccines mediate their effects through the
stimulation of the recipient’s immune system. Many individuals
have suppressed immune systems, which is a major contributor
to the failure of vaccines and other immunotherapies (351).
Several factors contribute to immune suppression, and the
inhibition of these factors may represent one potential pathway
to overcoming the limitations associated with cancer
immunoprevention. The polyfunctional myeloid-derived
suppressor cells (MDSCs) are an important inducer of immune
suppression (352–354) that is often detected in early lesions
during tumor development (355, 356). The first preventive
vaccine was tested in individuals with a recent history of
adenoma of the colon, and 43% of patients showed a response
to this vaccine; however, patients with high levels of MDSC failed
to respond to the vaccine. These reports suggested that the
inhibition of MDSC may serve to enhance the efficacy of
Immunoprevention methods in cancer, which has been
supported by the findings of several studies (357–360). Other
factors, such as the upregulation of immune checkpoint
molecules, including programmed death-ligand 1 (PD-L1) and
programmed cell death protein 1 (PD-1), also suppress the
immune system (361). Ongoing Immunoprevention trials,
including NCT03692325, NCT03347838, and NCT03603223,
are exploring the safety and efficacy of using nivolumab,
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pembrolizumab, and anti-PD-1 molecules, respectively.
However, preclinical studies have demonstrated that PD-1
blockade can completely reduce the progression of oral
premalignant lesions (362). Other approaches have been
explored to prevent cancer during the early stages. Several
non-specific immuno-modulators have been explored as
potential Immunoprevention agents in cancer. The use of
lenalidomide resulted in a 70% risk reduction in clinical
malignancy (363). Imiquimod is an approved cream used to
treat actinic keratosis (AK) that has demonstrated preventive
properties in a clinical trial and protected patients with a history
of long exposure to sunlight but without AK. Skin inflammation
and AK were diminished after treatment with 5% imiquimod for
eight weeks (342). The findings of these studies suggest that
Immunoprevention could be a useful prerequisite to treat MDR
in cancer cells (138). Although many efforts and various
approaches have been used, the optimal immunological
strategy for the treatment of MDR cancer cells remains
uncertain. With incremental progress, Immunoprevention
methods may eventually be combined with other agents to
impede tumor cell proliferation (138). The use of various
approaches to the eventual goal of cancer Immunoprevention
may eventually lead to useful, practical, and improved
methods (25).

12.1 Limitations and Future Perspectives
for Immunoprevention
Despite many aspects, efforts, and approaches to the goal of
developing a cancer Immunoprevention method, potential side
effects, toxicities, mutations, and immune checkpoint
modulations remain significant concerns and restrictions that
impede this method from reaching clinical application (25).
Scientists must scrutinize the mechanisms of reaction, which
may not effectively target cells that do not present the target
antigens and are less vulnerable to autoimmunity (364). The
activation of specific antigen-presenting cells may not be
possible, and the development of personalized vaccines may be
necessary (365, 366). In addition, major histocompatibility
complex (MHC) glycoprotein polymorphisms and the peptide
presentation range represent a significant limitation (364). Thus,
the researchers must pay greater attention to the effects played by
the mode of administration and the possible side effects of
various drugs and vaccination programs to facilitate the
successful development of Immunoprevention methods (25).
In recent decades, cancer immunology has become a field with
growing interest (367). Immuno-preventive actions should be
combined with the large-scale screening of cancer prophylactics
(368). Advancements in the field of cancer Immunoprevention
are regularly being achieved (367). Recently, three types of HPV
preventive vaccines have been successfully administered to
cervical cancer risk groups based on Pap test results (369).
Although various obstacles exist that make the development of
immuno-preventive methods challenging, progress has been
made in various areas, including the improvement of targeted
cancer immunotherapies, optimizing treatments by providing
cancer immunotherapy in combination with drug treatments,
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and Immunoprevention strategies. Critical innovation pathways
and new research prospects will eventually lead to the
overcoming of these obstacles (367).
13 ALTERNATIVE THERAPEUTIC
APPROACHES AGAINST MULTIDRUG
RESISTANCE

Cancer cells can avoid cell death by preventing drug-induced
cytotoxicity, apoptosis, and autophagy, becoming resistant
against drugs using previously described methods. Researchers
have explored various methods and avenues to overcome drug
resistance. Microparticles, nanomedicines, and gene editing
techniques, such as CRISPR/Cas9, are among the modern-day
tools that are currently being explored for use against cancer,
especially MDR cancer. Many of these methods have shown
tremendous results in preclinical studies and are currently
undergoing several clinical studies. Despite their promising
preclinical outcomes, very few have obtained approval for public
use. Here, we have extensively reviewed some of these techniques,
which have been tested against drug-resistant cancers.

13.1 Microparticles in the Prevention of
Drug Resistance
Microparticles (MPs) are enveloped plasma membrane
fragments that are also sometimes classified as microvesicles
(MVs), with an average size between 100 and 1000 nm. MPs are
thought to be released from cells during apoptosis or cellular
activation due to the loss of phospholipid asymmetry when
phosphatidylserine is relocated from the inner side of the
plasma membrane to the outer side (370). However, tumor
cells also continuously shed MPs from their surfaces, and
evidence suggests that tumor cell–derived MPs are involved in
the development of MDR, transferring functional resistance
proteins from donor-resistant cells to drug-responsive cells in
as little as several hours (303, 371, 372). MPs might also act to
sequester anticancer drugs by expressing the drug efflux
transporter P-gp on their surfaces, as an active mechanism,
and through the diffusion of chemotherapeutic drugs, such as
DOX, anthracyclines, and daunorubicin across the MP
membrane, as a passive mechanism (120, 373). Studies have
also reported their participation in MDR by inducing the
metastatic capacity of several cancers (374–377). These reports
indicate that cancer cell–derived MPs could represent promising
therapeutic targets for the prevention of MDR in cancer. The
inhibition of MPs may provide an alternative mechanism for
reversing MDR in cancer. The study of MPs is growing into a
promising field, and several approaches have been examined for
the blockade or modulation of MP production by cancer cells.
Several studies have reported the successful inhibition of MPs
using various types of inhibitors, which can be further considered
for application to the prevention of MDR in cancer. Calpains are
important for MP formation, and calpain expression has been
identified in several cancers. Calpain inhibition can abolish MDR
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(378, 379), and calpain inhibitors, such as MDL-28170 (380) and
calpeptin (381), can reduce MPs and enhance the sensitivity to
trastuzumab in breast cancer (382). Moreover, Rho-A, Rac, cell
division control protein 42 homolog (Cdc42), LIM kinase
(LIMK), and Rho-associated protein kinase (ROCK) are also
important for MP biogenesis. The blockade of Rho-A expression
by adenovirus-induced RNA interference decreased MP
synthesis in cervical carcinoma HeLa cells (383). Another
inhibitor, AZA1, successfully inhibited both Rac1 and Cdc42,
resulting in reducing cell migration and growth in PC (384).
ROCK inhibitors, such as AT13148, also showed suppressive
effects toward metastasis, and MDR and AT13148 entered phase
I clinical trials for solid tumors (385, 386). Other MP inhibitors,
such as eicosapentaenoic acid/docosahexaenoic acid, BPTES, 968
(Bromo-di-benzophenanthridine), ticlopidine, clopidogrel,
LMP- 20, statins, pantethine, and cystamine, have also been
found to lower MP levels and have been used for the
immunoprevention of MDR in cancer (387–390). Although
these drugs lower MP levels, they fail to reduce MP levels to
those observed in health controls; therefore, more research
remains necessary to identify appropriate inhibitors or
modulators that are effective against MP production (391, 392).

In addition to the negative contributions of MPs to MDR
development, their capacity to carry a variety of components can
be exploited in drug delivery. Modified or artificial MPs can be
used as drug delivery systems for better chemotherapeutic
outcomes in MDR cancer cells. Two primary challenges can
prevent the reversal of drug resistance: one is the insufficient
contact of cancer cells with anticancer drugs, and the other is the
insufficient internalization of drugs into targeted cells. MP-
encapsulated drugs can be used to overcome these challenges
(393, 394). Clinical observations revealed that chemotherapy
could result in adverse events, including cardiotoxicity, organ
damage, and myelosuppression which also represent major
obstacles to the reversal of drug resistance through the
application of small molecules to block MDR genes (395, 396).
However, MP-encapsulated drugs showed improved drug
delivery, resulting in decreased systemic toxicity and organ
damage (393, 397). These MPs can provide unique advantages
to drug delivery, such as better safety and improved cellular
affinity, enhanced physiochemical features of drugs, and
prevention of inappropriate distribution to normal tissues,
reducing organ damage and cytotoxicity and resulting in better
uptake by tumor cells to increase drug aggregation (393, 394). A
study showed that an MP-packaged survivin inhibitor, YM155,
applied to MDR osteosarcoma displayed increased anticancer
capacity with reduced organ damage and systemic toxicity (398).
Another study demonstrated the improved uptake of drugs in
cancer cells and showed better results when the researchers
modified a human mesothelin antibody with acid-prepared
mesoporous spheres , non-toxic , amorphous , s i l ica
microparticles, compared with control in chemoresistant
malignant mesotheliomas (399). Although MPs can contribute
to MDR development through several mechanisms, these reports
confirm that modified MPs can also be used to reverse MDR as
drug carriers.
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13.2 Nanomedicine-Based Approaches
For the past few decades, nanomedicine has been exploited to
overcome the MDR in cancer (400). Nanomedicine refers to
nanotechnology-based medicine that takes advantage of the
physiochemical features of nanomaterials to develop medical
applications (401). The level of interest in nanomedicine in
cancer is increasing, and several nanomedicine-based
approaches have been explored to address MDR in cancer
(402). Nanomaterials, such as nanoparticles (NPs), have
demonstrated great efficacy for the treatment of MDR cancer,
providing biodistribution control, efficient drug release in
resistant cancer cells, and promising storage capacity, which
can transform low therapeutic indexed drugs into promising
ones (400, 403). NPs have demonstrated the best results when
they are used as a delivery system for anticancer drugs. Drug
delivery using NPs encapsulation results in increased half-life of
drugs and better accumulation in the tumor (404). Several classes
of nanoparticles (Figure 6) have been developed, including
liposomes, micelles, polymeric nanoparticles, dendrites, and
inorganic nanoparticles, and explored for applications in
overcoming MDR. NPs have previously been well-reviewed
(405). Some NPs have already obtained FDA approval and are
in the process of being developed for clinical use based on their
capacity to reverse drug resistance in preclinical studies (28).

Liposomes have been extensively studied for the treatment of
MDR cancer. Liposomes are spheres of fatty acids with remarkable
features, such as the capacity for self-assembly, easy
characterization, and biocompatibility. Several experiments have
been performed to verify their efficacy, and based on these
experiments, liposomes received FDA approval as the first
nanomedical drug delivery system (406). Liposomes have also
demonstrated efficacy in the treatment of MDR cancer. A study
showed that nanomedicines constructed using lonidamine
liposomes and epirubicin liposomes were able to reverse MDR
development in NSCLC and achieve enhanced treatment efficacy
(407). Liposomes containing DOX showed better drug release and
enhanced cytotoxicity in VCR-resistant human leukemia cell lines
(408) and in drug-resistant brain tumors in rats (409). Vidhi et al.
built a liposome delivery system for vinblastine (CPD100), which
was able to prolong the drug circulation time and suppress tumor
growth during hypoxia without any adverse effects (410). Scientists
have also developed liposomes combined with an anti-EGFR
aptamer (Apt) to target EGFR muted cancer cells using erlotinib
(411) and later observed improvements in the reversal of hypoxia-
induced resistance when they applied perfluorooctylbromide
(PFOB) using the liposomal formulation (412). In addition, the
co-administration of DOX and siRNA using liposomes to treat
MDR tumors exhibited better DOX uptake by avoiding the P-gp-
mediated efflux effect (413). The application irinotecan-releasing
benzoporphyrin and nitric oxide-releasing DOX loaded into a
liposome-like nanoformulation was able to respectively reduce
ABCG2-mediated resistance and MRP1- and P-gp-mediated
resistance (414, 415). An in vivo study also demonstrated the
efficacy of epirubicin and antisense oligonucleotides against P-gp,
MRP1, and MRP2 using loaded pegylated liposomes in a CRC
model (416).
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Inorganic NPs, such as silver (Ag), zinc oxide (ZnO), iron
oxide, and gold (Au), are often functionalized against drug-
resistant cancer. Au is the most commonly utilized inorganic NP.
DOX encapsulated in Au nanoparticles showed higher uptake
and induced greater cytotoxicity in drug-resistant cells, such as
breast cancer cells (417, 418), in addition to the better
accumulation of drugs in tumor tissues (419). Au NPs also
decreased GEM resistance in cancer (420). In addition to Au
NPs, silver NPs have been explored in various investigations and
were found to cause the downregulation of Bcl-2 and Bcl-xL
other similar anti-apoptotic genes and upregulate Bax, Bad, and
Bak, which are pro-apoptotic genes, in CRC and lung cancer
(421–425), which could contribute to overcoming MDR. Copper
cysteamine NPs and fluorescent nanodiamonds have also been
found to be effective for inducing apoptosis, tumor suppression,
and overcoming MDR (426, 427). Polymeric nanoparticles have
demonstrated impactful effects in reducing drug resistance.
Polymeric structures have been designed to associate efflux
inhibitors and to carry drugs and nucleic acids more efficiently,
resulting in enhanced drug accumulation in drug-resistant tumor
cells. Several investigations have demonstrated their usefulness
in improving MDR. A study showed that the co-administration
of paclitaxel and survivin-targeted shRNA NPs improved the
efficacy of paclitaxel in paclitaxel-resistant lung cancer, whereas
the application of polymeric NPs loaded with paclitaxel showed
better target specificity and decreased adverse effects (428).
Scientists constructed a system named miR-200c-loaded
PEEP-PEDP polymersome, featuring a combination of
polyphosphazene, [NP(PEG)0.5(DPA)1.5]n (PEDP), and
amphiphilic [NP (PEG)0.3(EAB)1.7]n (PEEP) carrying miR-
200c. This nanosystem was demonstrated to induce antitumor
activities in paclitaxel-resistant cancer cells (429). The
administration of polymeric NPs and ceramide-encapsulated
paclitaxel has been reported to circumvention MDR in human
ovarian cancer cells (430). Other NPs, such as micelles and
dendrites, have also been explored for their usefulness against
drug resistance. Micelles are known for their drug-carrying
capacity and the ability to escape from drug efflux in resistant
cells. A study reported that paclitaxel coated with micelles was
able to escape the efflux mechanism, increasing drug uptake in
drug-resistant tumor cells (431). Micelles loaded with DOX and
methotrexate can also overcome MDR and prevent
tumorigenesis (431, 432). Another study demonstrated that
antibodies against structural maintenance of chromosomes
protein 2 (SMC2) and 5-FU loaded into micelles could
overcome resistance to 5-FU in human CRC lines (433).
Recently, several anticancer drugs loaded in micelles have
entered into clinical trials (434). In addition, the combination
of dendrimer and DOX was found to exhibit high cytotoxicity
against both drug-resistant cancer cells and drug-sensitive cells
(435, 436). DOX coated with dendritic mesoporous silica NPs
was also found to be effective against CRC (437).

Other approaches are being explored using different types of
nanomaterials. The administration of curcumin with DOX in a
copolymer vehicle was found to increase drug accumulation and
decrease tumor cell migration (438). Similarly, VCR in NPs
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resulted in increased drug accumulation and cytotoxicity in
drug-resistant cells (439). DOX encapsulated in poly (lactic-co-
glycolic acid) (PLGA) demonstrated a similar result and reversed
MDR in drug-resistant human breast cancer (440). The
application of DOX in carbon nanotubes resulted in better
DOX release in resistant human leukemia cells (441). The
administration of an ultrasound activatable nanomedicine
composed of ferrate and DOX loaded in mesoporous
nanoplatforms with n-heneicosane demonstrated the ability to
overcome hypoxia-induced resistance by downregulating HIF-
1a and MDR expression (442). Nanoformulations, such as
paclitaxel in nanocrystals (443), DOX in poly (aspartic acid)
NPs (444), paclitaxel with phosphatidylserine lipid nanovesicles
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(445), and DOX loaded in magnetic silk fibroin-based NPs (446),
also demonstrated efficacy against MDR cancer in several
studies. DNA damage repair is one mechanism for
drug resistance. Poly (ADP-ribose) polymerase 1 (PARP1)
participates in DNA damage repair in cancer cells.
Nanoparticles can be used to effect efficient PARP inhibition in
several cancers (447–449).

13.3 Applications of CRISPR/Cas9
Technology
In the past few years, CRISPR/Cas9 has been tested for the
treatment of cancer and cancer-related complications.
Numerous investigations have demonstrated that this genome
A B C
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FIGURE 6 | Notable nanoparticles that have several applications in the field of medical sciences. (A) Multilamellar liposomes which have several phospholipid bilayer
spheres. (B) Large unilamellar liposomes which have single phospholipid bilayer sphere and size of 200 to 800 nm. (C) Small unilamellar liposomes which also have
single phospholipid bilayer sphere and size of less than 100 nm. (D) Carbon nanotubes are made of sheets of single-layer carbon atoms. (E) Polymeric nanoparticles
which have size ranging from 1 to 1000 nm and also known as colloidal solid particles. (F) Metallic nanoparticles are made of metal as core and organic compound
or inorganic metal as sphere. (G) Micelles are composed of amphiphilic macromolecules which range from 5 to 100 nm as nanoparticle. (H) Quantum dots are
ultrasmall semiconductor nanoparticle. (I) Dendrimers are nanoparticle organized with core, inner shell and outer shell.
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editing technology can disrupt and modify genes in a variety of
cancer cells, resulting in cancer cell death (450, 451). CRISPR/
Cas9 and its applications in cancer treatment are likely to
represent a significant game-changer for overcoming MDR
features in cancer. Although this technology has not yet
reached human clinical trials, several preclinical studies have
demonstrated the efficiency of this system to reverse MDR in
cancer. The CRISPR system utilizes an endonuclease enzyme
named Cas9 combined with a single guided-RNA (sgRNA), and
the components of the CRISPR/Cas9 system can be delivered
using various delivery systems, such as viral vectors, plasmid
DNA, NPs, or cationic polymers (452–454). Several studies have
suggested that inhibiting resistance factor(s) in cancer cells can
represent an attractive method for preventing the development
of drug resistance. Researchers used CRISPR/Cas9 to delete
genes that can induce resistance to anticancer drugs and
achieve successful outcomes in both in vitro and in vivo
studies. Ha et al. applied the CRISPR/Cas9 system to the
MDR1 gene in drug-resistant breast cancer MCF-7/ADR cells
and found that the sensitivity of DOX was increased using this
method (455). ABCB1, another drug resistance–inducing gene,
was knocked down using CRISPR/Cas9 in one study, resulting in
enhanced drug sensitivity in adriamycin-resistant ovarian cancer
cell lines (29). The results from this study also suggested that
CRISPR/Cas9 could successfully decrease the expression of P-gp.
Further, Wang et al. reported reduced resistance to cisplatin,
docetaxel, DOX, and 5-FU in drug-resistant cancer cell lines
following the application of CRISPR/Cas9 to knock out
urokinase plasminogen activator receptor (uPAR), which is
overexpressed in several cancers (456). CD44 is a cancer cell
marker that is abundantly expressed in many types of cancers.
The expression of CD44 is higher in drug-resistant cancer cells
than in drug-sensitive cancer cells. CRISPR/Cas9 can silence
CD44, resulting in a decrease in the expression of P-gp and the
restoration of drug sensitivity in drug-resistant osteosarcoma
(457). Terai et al. also exploited a genome-wide CRISPR system
with an EGFR-TKI in EGFR-mutated lung cancer cell lines (458).
CRISPR-mediated knockout is also able to reduce drug resistance
in lung cancer cells and HCC cells (459, 460). The CRISPR-
induced repurposing of drug resistance–mediating lncRNA was
also able to restore drug sensitivity in cancer cells (461).

CRISPR-mediated screening and identification of drug
resistance genes could be conducive to the redesign of
therapeutic strategies against drug-resistant cancer. The
identification and screening of drug resistance using
CRISPR/Cas9 demonstrate high reagent consistency and
high validation rates (462). Several mutated gain-of-function
and loss-of-function genes play critical roles in drug resistance,
and their identification is crucial to overcoming MDR in
cancer. In one study, some researchers used a CRISPR/Cas9
knockout screen to identify 10 drug-resistant genes, including
C1orf115, a previously uncharacterized MDR gene that they
named required for drug-induced death 1 (RDD1) (463).
Studies also uncovered other information using CRISPR-
based systems, which could further promote research toward
overcoming drug resistance. A genome-wide CRISPR/Cas9
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screening found that the loss of Kelch-like ECH-associated
protein 1 (KEAP1) (464) and SGOL1 (465) promote drug
resistance in cancer cells, and the CRISPR-induced deletion of
SLFN11 (466), BAK (467), and any CST complex members
(468) can initiate drug resistance in cancer cells. However,
CRISPR/Cas9 has some limitations, including potential
immunological risk. Another concern in employing CRISPR/
Cas9 in clinical trials is low efficiency due to low specificity and
the safety of delivery into cells (469). However, carefully
designed CRISPR systems would be game-changing
against MDR in cancer, particularly in the current era of
personalized medicine.
14 RISK FACTORS AND POSSIBLE
THREATS OF DRUG RESISTANCE IN
CANCER TREATMENT

In cancer treatment, the risk factors associated with particular
cancer types should always be considered. Determining the exact
causes that drive cancer development can be difficult, and several
risk factors may strengthen cancer. As discussed above, exploring
the molecular mechanisms underlying drug resistance by
performing genomic analyses, identifying the expression of
resistance genes, and identifying epigenetic alterations, can
improve understanding of the drivers of drug resistance, which
can include various risk factors in the history of cancer patients.
Risk factors can have significant effects on cancer development,
progression, and resistance to cancer treatments. However, risk
factors vary from patient to patient and differ among the many
known cancer types. Some common risk factors are briefly
described in Table 4.

Anticancer drug resistance is problematic during cancer
treatment, associated with over 90% of all cancer patient
deaths (476). Drug resistance in cancer treatment results in 1)
the failure of standard treatment, 2) long-term illness, 3)
expensive health care costs, and 4) increased mortality (477).
15 CONCLUSIONS

The effectiveness of chemotherapy is significantly limited by the
expression of MDR genes, which play key molecular and
cellular roles in the induction of resistance against anticancer
agents. Drug resistance can occur due to genetically unstable
human cancer cells, and drug-resistant features can either
present before treatment (intrinsic) or develop after therapy
(acquired). Drug resistance is responsible for most cancer
relapses. Anticancer agents can fail to inhibit cancer cells and
tumor suppressor genes for various reasons, including
mutations in genes and gene amplification, epigenetic
alterations, drug efflux enhancement, apoptosis suppression,
and alterations in drug metabolism. MDR genes, such asMDR1
and MDR2, are highly responsible for anticancer resistance,
combined with various extracellular and intracellular factors.
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They increase epigenetic gene expression, EMT, and anti-
apoptotic factors and significantly decrease P53 tumor
antigens. The most common drug resistance mechanism is
the efflux of hydrophobic drugs, mediated by ATP-dependent
ABC transporters, such as P-gp, an integral membrane protein
that is overexpressed in various malignancies. The broad
substrate specificity and abundance of ABC transporter
proteins represent significant challenges to circumventing
ABC-mediated MDR in vivo. However, several new drugs,
small molecules, and monoclonal antibodies have been
identified that directly target oncogenic factors. Currently,
treatments with immune checkpoint inhibitors and vaccines
represent the most effective management techniques for cancer.
We summarized the functional roles of drug-resistant
genes and other crucial factors that contribute to drug
resistance mechanisms in cancer and highlighted cancer
Immunoprevention and other approaches to combat drug
resistance. We also elucidated other mechanisms that can be
used to better understand drug resistance mechanisms,
providing guidance for future cancer treatment to achieve
better outcomes.
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Castellsagué X, et al. Overall Efficacy of HPV-16/18 AS04-Adjuvanted
Vaccine Against Grade 3 or Greater Cervical Intraepithelial Neoplasia: 4-
Year End-of-Study Analysis of the Randomised, Double-Blind PATRICIA
Trial. Lancet Oncol (2012) 13:89–99. doi: 10.1016/S1470-2045(11)70286-8

330. Paavonen J, Naud P, Salmerón J, Wheeler CM, Chow S-N, Apter D, et al.
Efficacy of Human Papillomavirus (HPV)-16/18 AS04-Adjuvanted Vaccine
Against Cervical Infection and Precancer Caused by Oncogenic HPV Types
(PATRICIA): Final Analysis of a Double-Blind, Randomised Study in Young
Women. Lancet (2009) 374:301–14. doi: 10.1016/S0140-6736(09)61248-4

331. Lowenfeld L, Mick R, Datta J, Xu S, Fitzpatrick E, Fisher CS, et al. Dendritic
Cell Vaccination Enhances Immune Responses and Induces Regression of
HER2pos DCIS Independent of Route: Results of Randomized Selection
Design Trial. Clin Cancer Res (2017) 23:2961–71. doi: 10.1158/1078-
0432.CCR-16-1924

332. Sharma A, Koldovsky U, Xu S, Mick R, Roses R, Fitzpatrick E, et al. HER-2
Pulsed Dendritic Cell Vaccine can Eliminate HER-2 Expression and Impact
Ductal Carcinoma in Situ. Cancer (2012) 118:4354–62. doi: 10.1002/
cncr.26734

333. Fracol M, Xu S, Mick R, Fitzpatrick E, NisenbaumH, Roses R, et al. Response
to HER-2 Pulsed DC1 Vaccines is Predicted by Both HER-2 and Estrogen
Receptor Expression in DCIS. Ann Surg Oncol (2013) 20:3233–9. doi:
10.1245/s10434-013-3119-y
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