
Frontiers in Oncology | www.frontiersin.org

Edited by:
George Bebis,

University of Nevada, Reno,
United States

Reviewed by:
Avantika Lal,

National Centre for Biological
Sciences, India

Fei Liu,
Baoji University of Arts and Sciences,

China
Zhi-Ping Liu,

Shandong University, China

*Correspondence:
Wei-Feng Guo

guowf@zzu.edu.cn
Shiren Sun

sunshiren@medmail.com.cn

Specialty section:
This article was submitted to

Cancer Genetics,
a section of the journal
Frontiers in Oncology

Received: 08 March 2022
Accepted: 12 April 2022
Published: 31 May 2022

Citation:
Yan J, Hu Z, Li Z-W, Sun S and

Guo W-F (2022) Network Control
Models With Personalized Genomics

Data for Understanding Tumor
Heterogeneity in Cancer.
Front. Oncol. 12:891676.

doi: 10.3389/fonc.2022.891676

MINI REVIEW
published: 31 May 2022

doi: 10.3389/fonc.2022.891676
Network Control Models With
Personalized Genomics Data
for Understanding Tumor
Heterogeneity in Cancer
Jipeng Yan1, Zhuo Hu2, Zong-Wei Li2, Shiren Sun1* and Wei-Feng Guo2,3*

1 Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China, 2 School of Electrical
Engineering, Zhengzhou University, Zhengzhou, China, 3 State Key Laboratory of Oncology in South China, Collaborative
Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China

Due to rapid development of high-throughput sequencing and biotechnology, it has
brought new opportunities and challenges in developing efficient computational methods
for exploring personalized genomics data of cancer patients. Because of the high-
dimension and small sample size characteristics of these personalized genomics data,
it is difficult for excavating effective information by using traditional statistical methods. In
the past few years, network control methods have been proposed to solve networked
system with high-dimension and small sample size. Researchers have made progress in
the design and optimization of network control principles. However, there are few studies
comprehensively surveying network control methods to analyze the biomolecular network
data of individual patients. To address this problem, here we comprehensively surveyed
complex network control methods on personalized omics data for understanding tumor
heterogeneity in precision medicine of individual patients with cancer.

Keywords: personalized omics, network control principles, tumor heterogeneity, precision medicine, cancer
individual patients
INTRODUCTION

Increasing studies on cancer genomics data have revealed that individual heterogeneity of cancer
patients is one of the main reasons for no substantive breakthrough in cancer treatment methods.
With the recent development in high-throughput omics technology, data resources have become
available for cancer research, such as genomic and transcriptomic data (1, 2). Personalized omics
data of individual patients should be analyzed for understanding the tumor heterogeneity of cancer
diseases. The key challenges are how to integrate multi-level omics data, such as genomic and
transcriptomic data, for understanding the regulatory mechanism in individual patients, and how to
identify cancer-related drug targets (3). Therefore, it is of great theoretical significance and clinical
application value for designing computational methods through integration of the omics data of
individual patients and screening for drug targets related to phenotype transitions of these patients.

Modern medical studies have shown that cancer is generally an outcome of the dysfunction of
related dynamic systems. From the system biology perspective, cancer can be driven by the state
transition of key driver genes, which can lead to the dysfunction of molecular networks (e.g., gene
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regulation networks or signal transduction networks) that
regulate molecular pathways and cellular processes. Moreover,
the state of biomolecules (e.g., gene expression value) with
complex dynamic characteristics in individual patients changes
with time and environmental conditions (Figure 1). To
understand the dynamics of individual patients, the regulatory
mechanism of molecular networks needs to be understood from
the perspective of network control theory. This theory considers
the state variables of a high-dimensional dynamic system as a
complex network and studies how to effectively control the state
of driving variables through control signals in the system with
optimal control objectives (such as minimum number of
controllers or minimum energy), thus changing the network
state to the desired stable state (4).

Although traditional control theory (5) has been studied
extensively, it is not suitable for a biological network system
with numerous nodes (e.g., genes). Network control methods
provide the technology for analyzing biomolecule networks with
complex dynamic characteristics and quantifying their ability to
intervene the biomolecule system of individual patients through
proper control signals (6, 7). Moreover, researchers have made
progress about network control principles. However, few studies
comprehensively surveyed network control methods to analyze
the biomolecular network data of individual patients.
Considering these facts, this study provided a comprehensive
survey for complex network control methods on the multi-omics
data of individual patients including methods for personalized
gene interaction network construction, network control
principles, driver gene prediction, and drug combination
identification (Figure 1), which aims to reveal the molecular
Frontiers in Oncology | www.frontiersin.org 2
mechanism and regulation law of personalized biomolecular
systems for the diagnosis, prevention, and treatment of
individual patients.
DATASETS

With the development of cancer genomics technology, many
data resources are available for understanding the cancer
mechanism. In the past decade, a large amount of cancer
genome data from large-scale cancer genomics projects
facilitated the development of computational methods for
mining personalized omics data of individual patients and
understanding tumor heterogeneity in cancer precision
medicine. Among these cancer genomics projects, The Cancer
Genome Atlas, an important database for mining cancer omics
data (2), has created a genomic panorama of different cancers. It
currently contains 33 cancer types and more than 20,000
samples. The Cancer Cell Line Encyclopedia is a compilation
of gene expression, chromosomal copy number, and massively
parallel sequencing data from 1457 cell lines. It provides the
pharmacological activities of 24 anticancer drugs in 504 cell lines
(8, 9). Gene Expression Omnibus (GEO) is a public repository of
functional genomics data currently storing approximately 23,002
public series submitted directly by 168,607 laboratories. This
series comprises 4,851,647 samples derived from more than 1600
organisms (10).

BioGPS (11) is an online gene annotation database
integrating 150 resources. It can query gene name information,
chromosome location, gene function, transcript information,
FIGURE 1 | Overview of our review. The contents of our review consist of three parts. Firstly, we summarized the works to construct personalized gene interaction
network from genomics of individual patients. Then on the personalized gene interaction networks, we pointed out how to identify personalized driver gene by using
network control tools. Finally, we described how to discover synergistic drug combinations by targeting personalized driver genes.
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encoded protein information, and related protein names.
However, this database cannot provide a detailed gene
annotation list, and therefore, users find it difficult to annotate
the genes for a large number of samples. The cancer gene census
(CGC) data (12) offers a detailed list of driver genes that have
been experimentally verified as cancer driver genes (13–15). The
Network of Cancer Genes (NCG) (16) is a database that collects
and annotates cancer genes from a large amount of cancer
sequencing data. This database contains 2372 genes, including
experimentally verified cancer driver genes.
CONSTRUCTION OF PERSONALIZED
GENE INTERACTION NETWORK

A biological system is a complex dynamic multi-scale system
involving different time, space, and functions. Cells contain genes
that store information, proteins, and metabolites and perform
biological functions for forming basic functional modules. A
complex biological system is composed of multiple functional
modules. In system biology, the key to constitute a biological
system is not its components (e.g., genes, proteins, and small
biological molecules), but their interactions with components
having different properties. These interactions constitute the
regulatory network controlling different biological functions.

The rich information can be obtained from the high-
dimensional data of samples of individual patients. However,
the individual genomics data of these patients are often limited
and incomplete. Therefore, methods to ensure complete use of
personalized genomics data for designing effective gene
interaction network construction algorithms of individual
patients must be developed. The personalized gene interaction
network represents which gene pairs are involved in the disease
development for each patient. Because the principles of the
personalized network dynamics are hidden, it is important to
reconstruct the personalized state transition networks with the
personalized genetic data (e.g., expression profiles). It is a key
challenge to unravel the dynamic nature of gene regulation
during a biological process in systems biology.

Current gene interaction network construction methods, such
as Gene Network Reconstruction tool (GNR) (17), dynamic
cascaded method (DCM) (18), and Hotnet2 (19), use gene
expression data of population cancer patients. Although these
gene regulation networks can reflect the gene interaction
mechanism of the disease, they cannot describe the gene
interaction relationship of individual patients. Numerous
single-sample gene interaction network construction methods
have recently been proposed. Several common techniques
including Single Sample Network construction method (SSN)
(20), Paired Single Sample Network construction method
(Paired-SSN) (21), Single Pearson Correlation Coefficient
calculation method (SPCC) (22, 23), and Cell Specific Network
construction method (CSN) (24), and Linear Interpolation to
Obtain Network Estimates for Single Samples (LIONESS) (25)
were introduced as follows. In Table S1 of Supplementary
Tables, we gave a summary of these methods including brief
Frontiers in Oncology | www.frontiersin.org 3
descriptions and input data for constructing personalized gene
interaction network.

1) SSN

SSN is a statistical method to construct an individual-specific
network based on statistical perturbation analysis of a single
sample against a group of given control samples (20). For the
SSN method, the co-expression network of the tumor sample
network or normal sample network for each patient is
constructed based on statistical perturbation analysis of one
sample against a group of given reference samples (e.g.,
choosing the normal sample data of all of the patients as
the reference data).

2) Paired-SSN

For the paired-SSN method (21), the co-expression network of
the tumor sample network and normal sample network for
each patient is firstly constructed in the same way as for the
SSN method. Then, the personalized differential co-
expression network between the normal sample network
and tumor sample network can be constructed in which the
edge will exist if the P-value of the gene pair is less than
(greater than) 0.05 in the tumor network but greater than (less
than) 0.05 in the normal network for their corresponding
patient.

3) SPCC method

To overcome the difficulty in obtaining correlations or edges
from one sample, the SPCC approach (22, 23) was developed
by decomposing each PCC measurement into multiple
additive elements that form a new vector embedding
correlation-like information of two variables for one sample.

4) LIONESS

LIONESS does not rely upon differential analysis between the
tumor sample and a group of normal samples, and it
reconstructs the individual specific network in a population
of tumor samples as the personalized gene state transition
network for each tumor sample (25). LIONESS constructs the
state transition network by calculating the edge statistical
significance between all the tumor samples and the tumor
samples without a given single sample.

5) CSN

The CSN method is derived from a theoretical model based on
statistical dependency (24), which can be viewed as data
transformation from the “unstable” gene expression data to
the “stable” gene association data. CSN designs a statistic for
gene pairs and can obtain the P-value corresponding to the
edge between genes by the statistic.

We should note that conditional or partial sample-specific
correlation network can be generally used to eliminate the
indirect co-expressions between genes (26, 27). Furthermore,
the reference reliable gene/protein interaction network are
generally used to take overlapped edges from the original gene
co-expression edges, forming the final personalized gene
interaction networks for the above methods. However, the
current single-sample gene regulation network construction
May 2022 | Volume 12 | Article 891676
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methods ignore temporal data of individual patients (28), and
their accuracy and stability need improvement.
NETWORK CONTROL PRINCIPLES

A core concept in network science is to control and intervene on
network dynamics (4). Network control methods have recently
received extensive attention (29–36). Therefore, network control
methods are better than the traditional control concept in
revealing the dynamic characteristics of biological networks
with a lot of noise in edge weight. In particular, considering
the gene expression profiles in normal and tumor samples as the
respective state of a given patient, network control tools aim to
detect a small number of driver nodes by the input signals related
with the state transition of individual patient depending on
adequate knowledge of the network structure. The input
signals may be oncogene activation signals such as gene
mutation or metabolites changes in specific tissue. The
“controllers” in network control problem for molecular
networks mean the genetic or environment factors which
produce the oncogene activation signals. As per our best
understanding, current methods can be classified as directed
and undirected network control methods.

i) For the control methods of directed networks, Liu et al. (37)
studied the structural control of directed networks and
proposed Maximum Matching Sets-based controllability
methods by referring to the structural controllability theory
of linear systems, which has greatly inspired the promotion of
research of network control methods and applications.
Although these network control tools have been applied to
biomolecular systems, some interesting properties of
biological systems have also been discovered. For example,
driving mutant genes (38) and drug targets (39) were found in
cancer datasets, and driving metabolites were detected in
human liver metabolic networks (40). However, these tools
only describe the linear dynamic behavior of the network and
are not sufficient for completely characterizing the complex
nonlinear dynamic system. Recently, a Feedback Vertex Set
(FVS)-based control method based on the framework of
feedback vertex set control theory (FC) that can be used to
study network systems with nonlinear dynamics was
proposed. However, for the FVS-based control method, not
only the network structure needs to be known but also the
functional form of the governing equation must satisfy certain
properties (41, 42). Zanudo et al. applied FVS-based control
to directed networks (43). By comparing FVS predictions
with those of MMS-based controllability methods, they
identified topological features underlying different observed
phenomena.

ii) For the control methods of undirected networks, Yuan et al.
proposed an accurate control method (44) that can identify
the minimum set of driver nodes in the undirected networks.
Because the precise control method only describes the linear
dynamic behavior of biological networks, it cannot be used to
accurately describe their nonlinear dynamic behavior. To
Frontiers in Oncology | www.frontiersin.org 4
overcome the aforementioned problems, some researchers
proposed minimum dominating set (MDS)-based control
methods (45). These methods, however, have a strong
assumption on control signals, that is, these signals can
independently control their neighborhood nodes. However,
most controllers cannot satisfy the strong conditions;
therefore, FVS-based methods of undirected networks
(namely NCUA) based on the framework of feedback vertex
set control theory (FC) have been proposed (46). Since most
current methods are designed based on the time-invariant
network system, temporal networks can accurately describe
the characteristics of cancer omics data. Thus, more accurate
network control methods need to be further developed to
accurately understand the dynamic characteristics of the
network.

To easier understand these network control methods, we gave
the concept comparisons including the network types and
targeted states and input and network dynamics between
different network control method including MMS, MDS and
DFVS and NCUA (Table S2 of Supplementary Tables). In
Figure 2, we intuitively explained these methods. We
summarized some key points of different structure network
control methods as follow:

i) The MMS control methods investigate the controllability of
directed structural networks with linear or local nonlinear
dynamics through a minimum set of input nodes and they
only give an incomplete view of the network control
properties for a system with nonlinear dynamics.

ii) MDS control method studies the controllability of undirected
networks by assuming that each driver node in the MDS
model can control its associated edges independently in the
undirected networks. Since MDS works with the strong
assumption that the controllers can control its outgoing
links independently, it requires higher costs in many kinds
of networks which may underestimate the structural control
analysis of undirected networks;

iii) NCUA and DFVS study the structural network control of
undirected and direct networks respectively based on the
framework of FC (42). Therefore NCUA and DFVS
methods ultimately depict the structure-based network
control of the large-scale system with nonlinear dynamics.
Since FC assumes that the functional form of the governing
equations must satisfy some continuous, dissipative, and
decaying properties, DFVS and NCUA may be only suitable
some specialized nonlinear systems.
DRIVER GENE PREDICTION

Using new methods, researchers have recently made some
progress in predicting cancer driver genes of population
cohorts. These methods are based on mutation frequency,
machine learning, and complex network. (1) In gene mutation
frequency-based methods, the mutation frequency of driver
May 2022 | Volume 12 | Article 891676
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genes is usually assumed to be significantly higher than that of
other genes (13, 47–51). However, due to the tumor
heterogeneity, it is difficult to build a reliable background
mutation model. In addition, these methods cannot be used to
detect the low-mutated frequency and non-mutated cancer
driver genes, because a part of driver genes is mutated at high
frequencies (>20%), while most of cancer mutations occur at
intermediate frequencies (2–20%) or even lower (52), and even
many genes that play important roles in tumorigenesis are not
altered on the DNA sequences, and these genes are dysregulated
through various cellular mechanisms (53). (2) Machine learning-
based methods (49, 51, 54–56) usually train the classifier (e.g.,
random forest, support vector machine) by extracting various
kinds of features from different types of cancer data to predict
new cancer driver genes. Although machine learning-based
methods can effectively predict some cancer driver genes,
because of the incomplete database, some key driver genes may
be ignored, thus generating false-positive results. (3) Complex
Frontiers in Oncology | www.frontiersin.org 5
network-based methods usually assume that driver genes have
obvious structural characteristics at the biological network level
(19, 57, 58). Although these methods have been successfully used
for detecting cancer driver genes, they are still limited to
incomplete and unreliable interactions in biological
network (59).

The aforementioned algorithms focus on how to identify
driver genes in population cohorts but cannot be directly
applied to the data of individual patients because of the
following reasons. On the one hand, TCGA provides 33
cancer types with more than 10,000 samples and 3,000,000
mutation data, while the sample size for individual patients is
typically very small. On the other hand, the functional
characteristics of cancer mutations in population cohorts are
different from those observed in individual cancer patient data
with complex and unclear dynamics. Therefore, considering
that network techniques such as random walk with restart
(RWR) (60), network diffusion (19, 61), subnetwork
A B

D

E

C

FIGURE 2 | The principles of different network control methods. (A) Concept demonstration of network control methods. Network control tools aim to detect a small
number of driver nodes which form the input matrix and are injected by the input signals for driving the state transition of high dimension networked system depending on
adequate knowledge of the network structure. (B) MDS based control methods. If the connected edges of MDS are removed, there will be no edges in the network. By
assuming that the driving node can independently control all neighbor nodes, the minimum dominating set (MDS) in the undirected network is taken as the set of driver
nodes, and the red node represents the minimum driving node. (C) DFVS based control methods. The red nodes represent the minimum set of feedback nodes (FVS),
that is, if the connected edges of FVS are removed, there will be no loops in the network. For FVS based control methods, by controlling the nodes in FVS, the whole
system can be transformed from one stable attractor to another attractor. (D) MMS based control methods. The directed network is transformed into a bipartite graph.
For the bipartite graph, the upper side represents the out degree of the original network, while the bottom side represent the in degree of the original network nodes. If
there is an edge from one node to another node in the original network, an edge connecting these two nodes is added to the bipartite graph. According to the maximum
matching of bipartite graph, the maximum matching (i.e., red edges) can be obtained, and 6 unmatched nodes (i.e., red nodes) can be found in the bottom side of
bipartite graph. By controlling these 6 nodes, the system structure can be completely controllable for MMS based control methods. (E) NCUA based control methods.
Firstly, the original undirected network is transformed into a bipartite graph, in which the upper side represents the nodes of the original network and the bottom side
represent the edges of the original network respectively. Then, the nodes covering the nodes on the bottom side (i.e., red nodes) are obtained in the bipartite graph and
are considered as driver nodes for the NCUA method. The red edges represent the links between the driver nodes and the nodes of bottom side in the bipartite graph.
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enrichment analysis (62), matrix completion (63) and network
structure control (6, 64–66) to predict cancer driver genes at the
biological network level by incorporating the knowledge of
pathways, protein-protein interactions, can deal with high-
dimensional data having a small sample size, researchers
proposed some network algori thms for predict ing
personalized driver genes of individual patients (14, 15, 67).
Although these algorithms can predict personalized driver genes
with important biological functions, they do not consider
dynamic changes in the structure of the personalized gene
interaction network, thereby leading to false-positive results and
affecting the accuracy of driver gene identification. Therefore,
dynamic changes in the structure of the personalized gene
interaction network must be considered for inferring the
evolution trajectory of driver genes and accurately understanding
the cancer development mechanism.
DRUG COMBINATION IDENTIFICATION

Computational methods for predicting combination drugs have
recently attracted extensive attention (68). These methods can
predict a large number of combination drugs with enhanced
efficacy and reduced adverse effects (69), which are beneficial for
providing efficient clinical treatments (70). At present, drug
combination prediction methods mainly include complex
network- and machine learning-based methods. (1) The
complex network-based methods generally use some network
optimization algorithms to predict drug combinations (71–73).
However, their predictive performance relies on prior knowledge
of drug targets and disease-related networks and is generally only
suitable for a few specific diseases. (2) The machine learning-
based methods use drug attribute information and cell line
experimental data to predict combination drugs (74). The drug
characteristics include chemical structure (75, 76), physical and
chemical properties of the substructure and toxic modules (77),
drug targets (78), and single drug dose response (79, 80). The cell
line data include gene expression profile (81), transcriptome
(76), pathway network (82), gene interaction network (83),
microRNA expression and protein abundance (84), gene
variation information, and copy number variation (78). The
machine learning algorithms for drug combination prediction
mainly include logistic regression (76), Bayesian network (85),
random forest (86), multi-decision assemble (87), deep neural
network (77), and deep residual neural network (88).

The existing methods ignore the heterogeneity of
combination drugs among individual patients, and thus cannot
predict effective drug combinations for individual patients.
Therefore, an appropriate and effective drug combination
prediction method needs to be designed by considering the
information of individual patients. However, because
personalized genomics data are generated from a small sample
size and have a high dimension, these drug combination
methods based on large samples cannot be used to accurately
identify individual drug combinations from such data. Several
studies have attempted to provide such recommendations
Frontiers in Oncology | www.frontiersin.org 6
through predictive models that can predict the efficacy of a
drug for an input genomic profile. For instance, Sheng et al. (89)
proposed an algorithm on a cell line (or a patient profile) based
on similarity of the input drug and cell line to those in Genomics
of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line
Encyclopedia (CCLE). Recently, Drug Recommendations by
Integrating Multiple Biomedical Databases (DruID) (90)
utilized a Prescriptive Analytics framework based on Integer
Programming on multiple public well known databases (91) for
personalized drug recommendations. These methods require
genomics data from cell lines and a list of genes with
mutations, from a single patient, as input which ignore the
personalized gene interaction for identifying personalized drug
combinations. In our previous work, we used the network
control theory to design a personalized drug combination
prediction model, aiming to identify personalized synergistic
drug combinations by targeting personalized driver genes of
individual patients (6, 7). In fact, the model neglected the
individual dynamic characteristics of drug activity and toxic
concentration in drug combination therapy, and thus could
not provide precise personalized drug combination. Therefore,
a more effective personalized drug combination prediction
model needs to be designed considering more information of
individual patients’ omics data.
FUTURE DIRECTIONS

Due to the complex dynamics of cancer data, some of the future
directions for designing network control methods are as follows:

i)Designing Boolean network control methods. Although network
control methods can analyze the dynamics of a biomolecular
network, the positive and negative sign characteristics of
interactions are currently ignored. For example, in a gene
interaction network, the activation or inhibition regulatory
relationship between genes is indicated as a connection with
positive and negative signs (92). These signs of the gene
interaction network become important when the network is
controlled in a particular manner, whereas most current
network control methods for personalized genome omics
data only assume that their state of interactions are non-zero
and do not make any assumptions about the sign of
interactions. Therefore, designing Boolean network control
methods considering the positive and negative sign
characteristics of network interactions is an important future
direction.

ii) Designing temporal network control methods. Driver genes
influence the cell state through a combination of molecular
interactions that may change dynamically during cancer
progression (93, 94). At present, most network control
methods are designed based on the static time-invariant
network structure. However, the network structures of
cancer patients differ at different cancer stages, which needs
to be considered (95). Therefore, how to design reasonable
temporal network control methods for inferring the
May 2022 | Volume 12 | Article 891676
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evolutionary trajectory of driver genes in cancer patients
needs to be determined.

iii) Predicting biomarker for individual patients based on
network observability. Individual early diagnosis has
become essential in precision medicine, which has thus
made biomarker prediction increasingly important in drug
development (96–102). Therefore, more effective methods are
required to describe transitions in cancer status and to
identify more biologically significant biomarkers. Network
observability is dual with network controllability for network
with linear dynamics (103, 104). It focuses on how to select
key sensor nodes in the network to reconstruct the state of the
entire network. Therefore, developing effective biomarker
prediction algorithms for individual patients based on
network observability is another crucial future direction.

iv) Designing network control methods on personalized single-cell
data. With the development of biological sequencing
technology, single-cell data provides a powerful resource for
revealing the gene interaction of a single cell and understanding
the tumorheterogeneityof individualpatientswithcancer (105).
Therefore, how to design effective network control methods on
the single-cell data of individual patients to predict biomarkers,
driver genes, and drug targets for such patients is another
important research direction.

v) Designing deep learning techniques for network controllability.
Over the past decade, deep learning has become a focal topic in
artificial intelligence and machine learning (106, 107).In fact,
deep learning techniques have been developed for predicting
the controllability robustness according to the input network-
adjacency matrices (108). However, there are no related works
to apply deep learning techniques especially graph based deep
learning techniques (107) for studying controllability of
personalized gene interaction network. Therefore, how to
utilize deep learning methods to analyze controllability of
personalized gene network is another interesting and
important topic in the future.
CONCLUSIONS

The genomic profiles of cancer patients are diverse and
heterogeneous. These profiles are believed to be responsible for
heterogeneity of drug response in cancer patients. The current
main challenge in cancer precision medicine is to develop effective
computational methods for finding personalized biomarkers,
Frontiers in Oncology | www.frontiersin.org 7
driver genes, and drug targets for individual patients. These
personalized biomarkers, driver genes, and drug targets would
help improve the outcome of cancer patients, especially those with
drug resistance. As the number of samples of an individual patient
is usually limited, the accuracy and reliability of statistical methods
based on a large sample size (109, 110) will greatly be reduced for
mining personalized omics data of individual patients. Therefore,
considering the multi-omics data of individual patients, this study
discusses cancer datasets, construction of gene regulation network,
network structure control method, driver gene prediction, and
drug combination prediction for individual patients in order to
understand tumor heterogeneity in precision medicine.
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