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Background: Radiofrequency ablation (RFA) destroys tumors through hyperthermic
injury, which induces the release of immunogenic intracellular substrates and damages
associated molecular patterns (DAMPs) to evoke a systemic immune response, but its
therapeutic effect is limited. This study aimed to combine RFA with an immunomodulator,
resiquimod (R848), to enhance the RFA-induced antitumor immunity.

Methods: We performed RFA on subcutaneous tumors in immunocompetent mice and
intraperitoneally injected R848 to observe the efficacy of the combination therapy. Our
research investigated changes in the composition of tumor-infiltrating immune cells in
primary and distant tumors by flow cytometry. Natural killer (NK) cell depletion experiment
was applied to confirm the role of NK cell in the combination therapy. The expression
levels of cytokines and chemokines were detected by real-time quantitative PCR.
Immunohistochemical test was conducted to reveal tumor angiogenesis, tumor
proliferation, and apoptosis after the different treatments.

Results and Conclusion: Compared with RFA or R848 monotherapy, the combination
therapy significantly slowed the tumor growth, prolonged the survival time, and shrank the
tumor-draining lymph nodes of tumor-bearing mice. The flow cytometry results showed
that tumor-infiltrating immune cells, total T cells, the ratio of CD8+ T and NK cells to CD45+

cells, and functional NK cells were obviously increased after the combined treatment.
Distal tumor growth was also suppressed, and the profile of tumor-infiltrating immune cells
was remodeled, too. In addition, the additive effect of the combination therapy
disappeared after NK cell depletion. Furthermore, immunohistochemical results verified
that R848 inhibited tumor angiogenesis in murine liver cancer, and the combination
therapy promoted tumor cell apoptosis. In conclusion, our data suggest that RFA
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combined with R848 stimulated a stronger antitumor immune response and effectively
inhibited liver cancer progression in a NK cell-dependent manner. Meanwhile, we
confirmed that R848 inhibited tumor angiogenesis and promoted apoptosis in murine
liver cancer. Overall, this is a promising therapeutic strategy to improve the efficacy of RFA
in the treatment of liver cancer and provides a novel option for combined thermal ablation
and immunotherapy.
Keywords: radiofrequency ablation, resiquimod, liver cancer, immune response, combination therapy
INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most common
malignant tumors worldwide and the fourth leading cause of
cancer-related deaths (1–3). East Asia and Africa are currently
the regions with the highest incidence and mortality of HCC.
The incidence and mortality of HCC in Europe and the United
States have also been increasing in recent years (4, 5). At present,
liver transplantation, surgical resection, and local ablation are the
three major treatments for HCC (4, 6). However, the occult onset
of HCC and the scarcity of donor livers severely limit the clinical
application of surgical resection and liver transplantation (7–9).
Local ablation therapy is especially suitable for these patients
who are not suitable for surgery, and it is estimated that more
than half of HCC patients have received local ablation therapy
during their lifetime (10).

Radiofrequency ablation (RFA) is the most commonly used
local ablation technique for HCC (11), and several studies have
shown that RFA can achieve a similar therapeutic effect as
surgical resection in the treatment of small HCC (single
nodules ≤2 to 3 cm) (12–15). Interestingly, RFA induces tumor
tissue coagulation necrosis and apoptosis, which lead to the
release of immunogenic intracellular substrates to stimulate local
anti-tumor immunity (16–20). Nevertheless, for a large tumor or
a tumor located close to large blood vessels, RFA cannot
completely destroy the tumor (incomplete ablation), and the
residual tumor results in the recurrence and distant metastasis
of HCC in the future (10, 21, 22). Therefore, it is clear that
the anti-tumor immunity elicited by RFA monotherapy is too
weak to effectively inhibit tumor recurrence and distant
metastasis. In recent years, the combination of local ablation
and immunotherapy for liver cancer is considered as a promising
approach to boost RFA-induced immune response. Clinical trials
of thermal ablation combined with immunotherapy, such as
anti-PD1/anti-PDL1/anti-CTLA4 antibody, in the treatment of
liver cancer have been widely carried out. Patients who received
combination therapy had different degrees of improvement in
overall survival or progression-free survival (23).

Resiquimod (R848) is a novel immunomodulatory agent
which binds to Toll-like receptor7/8 and stimulates the release
of various immunoregulatory cytokines, such as IFN-a, IL-6, and
TNF-a, through MyD88-dependent or MyD88-independent
pathways, thereby activating a cascade of signaling pathways to
induce innate and adaptive immune response (24–26). Although
R848 was originally used to study the role of antiviral and
antibacterial immunity and the research on tumor has only
2

started in recent years, several studies have shown that R848
significantly increases the number and function of CD8+ T cell
and inflames the tumor immune microenvironment (TIME)
(27–29). In addition, R848 has been used as an adjuvant in
combination with anti-PD1/PDL1 antibody to treat colon cancer
(30) and squamous cell carcinoma (31, 32) and achieved great
therapeutic effects.

Here we demonstrated that the combined treatment of RFA
and R848 not only ignited the TIME compared with RFA
monotherapy but also increased the number and function of NK
cell and CD8+ T cell and boosted the expression levels of multiple
proinflammatory cytokines and NK cell-related chemokines in
tumors. Meanwhile, we found that the combination therapy
significantly inhibited HCC angiogenesis and proliferation but
promoted tumor apoptosis (Schematic Illustration).
MATERIALS AND METHODS

Cell Lines and Mice
Murine liver cancer cell line hepa1-6 was purchased from the cell
bank of Chinese Academy of Sciences (Shanghai, China). The
cells were cultured in Dulbecco’s modified Eagle’s medium
(DMEM) containing 10% fetal bovine serum and 1%
penicillin–streptomycin at 37°C and 5% CO2. The cells were
digested for subsequent use when they reached 70% density.

Six- to 8-week-old male C57BL/6 mice were obtained from
Shanghai SLAC Laboratory Animal Co. Ltd. Hepa1-6 cells (4 ×
106) were resuspended in 100 ul phosphate-buffered saline (PBS)
and were subcutaneously injected into the right flank of C57BL/6
mice. In the abscopal effect assay, hepa1-6 tumor cells (3 × 106)
were simultaneously inoculated into the bilateral flanks of the
mice. Tumor progression was measured with a vernier caliper.
Tumor volume was calculated with the following formula:
(length × width2)/2. At about 1 week later, the tumor-bearing
mice were randomly divided into four groups to receive different
treatments. All animal experiments followed relevant
experimental animal ethic requirements and were approved by
the Laboratory Animal Welfare Ethics Review Committee of
Zhejiang University.

Radiofrequency Ablation Therapy
For the radiofrequency ablation (RFA) and RFA+R848 groups,
the mice were anesthetized with ketamine + xylazine solution
(i.p., 90 + 8 mg/kg). After the mice were fully anesthetized, the
abdominal hair was shaved, and they were fixed on the electrode
June 2022 | Volume 12 | Article 891724
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plate in prone position; then, 1 ml PBS was sprayed on the
contact area between the electrode plate and the mouse’s skin to
increase the conductivity. A 480-kHz RFA generator (S-1500,
MedSphere, Shanghai) was then connected, and a 17-gauge
monopolar electrode was inserted along the long axis of the
tumor so that the electrode tip reached the center of the tumor,
and the ablation was performed with parameters of 5W and 15 s.
For the control and R848 groups, the mice received the same
treatments but with the RFA generator turned off. After the RFA
procedure, all mice were resuscitated on a 37°C blanket. A
picture of the tumor RFA model is shown in Supplementary
Figure S6.

Resiquimod Therapy
The powder of resiqumod (R848) was obtained from
MedChemExpress (Monmouth Junction, NJ, USA). The
powder was prepared into a solution according to the
manufacturer’s instructions and filtered with a 0.2-um syringe
filter before administration. For the mice in the R848 and RFA
+R848 groups, R848 solution (1 mg/kg,100 ul) was
intraperitoneally injected on the same day as with the RFA
treatment and then once every 2 days until the mice were
sacrificed or dead. For the control and RFA groups, the mice
were injected in the same way with a control solution
without R848.

Flow Cytometry
Flow cytometry was performed to analyze the tumor-infiltrating
immune cells. In brief, tumors were peeled off the skin after the
mice were sacrificed. The edge of the tumor was cut into 1-mm3

size, and then the fragments were placed for an hour in 5 ml
DMEM containing 0.1 mg/ml DNase-I and 1 mg/ml collagenase
IV at 37°C to get a single-cell suspension. Next, the cell
suspensions were filtered through a 70-mm strainer to filter out
incompletely digested residues. For cell membrane staining,
Zombie Aqua Fixable Viability Kit was first applied, according
to the manufacturer’s instructions, to distinguish live cells from
dead cells, and then a suspension of various antibodies was used
for cell membrane staining. For intracellular cytokine staining,
the cells need to be stimulated with Cell Activation Cocktail
(with Brefeldin A) first, followed by live–dead staining, cell
membrane staining, fixation and permeabilization, and
incubation of anti-IFN-g and anti-Granzyme B monoclonal
antibodies with cell suspensions. After dyeing, the excess dye
was washed off with PBS, and the suspension was filtered
again with a 40-mm nylon mesh to get the final single-cell
suspension. All samples were acquired on BD LSR Fortessa
(BD Biosciences), and data was analyzed with FlowJo 10.5.3
software (FlowJo LLC, Ashland, USA). The gating strategy is
provided in Supplementary Figure S2.

The antibodies and reagents used in the flow cytometry analysis
were obtained from Bio-Legend (San Diego, CA, USA), namely:
Zombie Aqua Fixable Viability Kit, BV605-conjugated anti-CD45,
APC-conjugated anti-CD3, Perp-Cy5.5-conjugated anti-NK1.1, PE-
conjugated anti-CD4, FITC-conjugated anti-CD8, APC-conjugated
anti-TCRb, PE-conjugated anti-CD11b, BV711-conjugated anti-
Ly6C, BV650-conjugated anti-Ly6G, APC-conjugated anti-F4/80,
Frontiers in Oncology | www.frontiersin.org 3
APC-Cy7-conjugated anti-I-A/I-E (MHCII), APC-Cy7-conjugated
anti-CD45R (B220), PE-Cy7-conjugated anti-CD11c, FITC-
conjugated anti-CD86, PE-Cy7-conjugated anti-IFN-g and FITC-
conjugated Granzyme B, Cell Activation Cocktail (with Brefeldin
A), fixation buffer, and permeabilization wash buffer.

NK Cell Deletion
The tumor-bearing mice were divided into three groups, and
then they received RFA, RFA+R848, or RFA+R848+anti-NK1.1
antibody (Bio-Legend, San Diego, CA, USA). R848 was
administered as previously described. Anti-NK1.1 (300 mg/
mouse) or sham antibodies were injected intraperitoneally into
the mice starting on the day before the RFA and then once every
3 days—for a total of 3 injections. Detection of NK cell in mouse
blood was performed using flow cytometry to verify the efficiency
of NK1.1 antibody.

Real-Time Quantitative PCR
Approximately 0.1 g of tumor tissue was homogenized, and then
total RNA was extracted using RNeasy Mini Kit (Qiagen,
Germany), according to the manufacturer’s instructions. The
synthesis of cDNA from RNA was achieved with Prime-Script™

RT reagent kit (TaKaRa). qPCR was performed on LightCycler
480 II system (480II-384, Roche, Germany) in a 10-μl reaction
mixture containing SYBR Green I (Yeasen, Shanghai). The
parameters are set to 40 cycles of 95°C for 15 s, 60°C for 15 s,
and 72°C for 30 s. The expressions of the desired genes were
normalized to GAPDH, and data were further analyzed by the
2−DDCT formula. The final results are presented as fold change to
the control group, and the primer sequences are provided in
Supplementary Table S1.

Immunochemistry Staining
Tumor tissues were fixed in 10% neutral buffered formalin and
then embedded in paraffin. For immunochemistry (IHC), the
paraffins are cut into 4-mm slices. In the deparaffinization of
sections to water, xylene and various concentrations of ethanol
(100, 95, 85, and 75%) were used. Endogenous peroxidase was
inactivated, antigen was retrieved, followed by goat serum
blocking and incubation with primary anti-CD31 (AF3628,
Bio-Techne) antibody, anti-VEGFA (19003-1-AP, Proteintech)
antibody, anti-cleaved-caspase3 (9661L, Cell Signaling)
antibody, and anti-ki67 (12202S, Cell Signaling) antibody.
Next, the samples were incubated with a horseradish
peroxidase-conjugated secondary antibody, and a color
developer (diaminobenzidine) was used to develop color at an
appropriate concentration. Finally, five fields of each section
were randomly selected at ×400 magnification for counting of
positive cells, and for ki67 staining, the integrated optical density
value was calculated by ImageJ software (https://imagej.nih.gov/
nih-image/) under the same threshold conditions.

Statistical Analysis
All data analyses were performed by GraphPad Prism 8.0.2
(GraphPad Software, Inc.), and p-value <0.05 was regarded as
statistically significant. The detailed statistical methods are
presented in the figure legend.
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RESULTS

Combination of RFA With R848 Constrains
the Growth of HCC and Extends the
Survival of Tumor-Bearing Mice
To evaluate whether RFA, R848, and the combo treatment elicit
an effective anti-tumor immunity, hepa1-6 liver cancer cells were
subcutaneously implanted into the right flank of C57BL/6 mice.
At 1 week later, the mice were randomly assigned to four groups
when the diameter of the tumor has reached 6–8 mm. The mice
in the four groups received no treatment (control), RFA
treatment, R848 treatment, and combined treatment (RFA+
R848), respectively. Tumor volume was recorded every day,
and tumor growth curves were plotted (Figure 1A).

As shown in Figures 1B–D, in contrast to the control or
monotherapy group, the tumors of mice treated with RFA+R848
grew significantly slower and were smaller at the end of the
experiment, whereas only a negligible tumor growth inhibitory
effect was detected in the RFA and R848 groups. Combo
Frontiers in Oncology | www.frontiersin.org 4
treatments especially distinctly constrained the growth of tumor
in the first 3 days after RFA. The tumor growth kinetics of mice
that received different treatments is shown in Figure 1C. Both the
RFA and combo treatments evidently reduced the tumor weight
compared with the control group, but the tumor in the RFA+R848
group was significantly lighter than that in the RFA group
(Figure 1E). Besides this, we observed that the tumor-draining
lymph node in the RFA+R848 group was a little bit smaller than
that in the control group, but there was no significant difference
between the RFA and control groups (Supplementary Figure
S1A). In addition, spleen size was not different among the groups
(Supplementary Figure S1B). On the other hand, we also showed
that combo treatments obviously extended the survival of tumor-
bearing mice compared with those from the monotherapy or
control group (Figure 1F). The median survival for mice treated
with RFA+R848 was 15 days, an increase of 36.4 and 57.9%
compared with the RFA (11 days) and R848 (9.5 days) group,
respectively. We additionally found that RFA alone can also
slightly improve the survival time of tumor-bearing mice.
A C

B

D E F

FIGURE 1 | Potent antitumor efficiency following radiofrequency ablation combined with resiquimod. (A) Diagram of the experimental design for assessment combo
treatments in mice liver cancer model (hepa1-6). (B) Tumor growth curves of mice that received different treatments. (C) Tumor growth in each mouse after different
treatments. (D) Representative image of hepa1-6 tumor excised at day 6. (E) Quantitative analysis of tumor weight at sacrifice in different groups; summary analysis
of the result of the two experiments. The experiments represented in (B–E) were repeated 3 times, with 4–6 mice per group. All data are shown as mean ± SEM,
and two-tailed Student’s t-test was performed to compare the statistical differences between the two groups. (F) Kaplan–Meier overall survival analysis (n = 10 for
each group), and this experiment was repeated 2 times. Statistical significance was evaluated by log-rank (Mantel–Cox) tests. **p < 0.01; ***p < 0.001; ****p <
0.0001; ns, not significant.
June 2022 | Volume 12 | Article 891724
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Combination of RFA With R848 Modulates
the Profiles of Tumor-Infiltrating
Immune Cells
We then revealed the effect of the combo treatments on tumor-
infiltrating immune cells by flow cytometry (the gating strategy is
shown in Supplementary Figure S2). Mice that received
different treatments were executed on the 6th day, the tumors
were peeled off the skin, and the edge of the tumor was cut into
pieces to get single-cell suspensions. As shown in Figure 2A,
there was a distinct increase in intra-tumoral CD45+ immune
cells after the combined treatments compared with the control or
RFA monotherapy, but no significant difference was found
between the RFA+R848 group and the R848 group.

Natural killer (NK) cells and CD8+ T cells play an important
role in liver cancer progression (33–36). We found that the
combination therapy clearly elevated the ratio of NK, CD3+T,
Frontiers in Oncology | www.frontiersin.org 5
and CD8+ T cells to CD45+ immune cells compared with those in
the control or RFA monotherapy (Figures 2B, C ;
Supplementary Figure S3A). Furthermore, the proportion of
NK cells in the combined treatment group is significantly higher
than in the R848 group, whereas the ratio of CD8+ T cells is not.
In addition, the proportion of IFNg+ cells in NK cells in the
combined treatment group is higher than that in the RFA or
control group (Figure 2D). Only a slight increase was observed
after the combo treatments in terms of the frequency of IFNg+

CD8+ T cells compared with no treatments, and there was no
statistical difference between the combined group and the RFA
group (Supplementary Figure S3D). Besides this, the ratio of
Granzyme B+ cells in NK cells and CD8+ T cells was not different
among the four groups (Supplementary Figures 3E, F). This
implies that the combinational effect is mainly attributed to
NK cells.
A

B

C

D

FIGURE 2 | The composition of tumor-infiltrating immune cells is changed after combination therapy. (A) Ratio of tumor-infiltrating immune (CD45+) cells to live cells
in different groups; quantitative analysis results are shown on the right. (B) Representative flow cytometry plots of the percent of tumor-infiltrating NK (CD3-NK1.1+)
cells in CD45+ cells and the corresponding quantitative results. (C) Intra-tumoral CD8+ T cells were gated from CD3+ cells, and then the ratio of CD8+ to CD45+ was
calculated; %CD8+ T in CD45+ cells = %(CD8+CD3+CD45+/CD45+). (D) The proportion of IFNg-secreting NK (IFNg+NK1.1+) cells to total NK cells in the tumors of
mice that received different treatments. The experimental results from one of the two independent experiments are shown; n = 4 per group. Statistical comparison
was performed by two-tailed Student’s t-test. All error bars represent mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001. IFNg, interferon g; NK, natural killer.
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The flow cytometric assay also detected that the proportion of
CD4+ T cells, B cells (CD3-CD45R+), macrophages (Ly6c-

CD11B+F4/80+), monocytes (CD11B+MHCII-Ly6c+Ly6g-), and
neutrophils (CD11B+MHCII-Ly6c+Ly6g+) to CD45+ immune cells
was not different among the four groups. Moreover, there was also
no difference between the ratio of M1 (MHCII+ macrophage)/M
and M2 (MHCII- macrophage)/M (Supplementary Figures S3B,
C, S4A–E). However, interestingly, similar to the role of R848 in
pancreatic cancer (27), the percentage of dendritic cells (DCs,
CD11B+MHCII+CD11C+F4/80-) as a percent of CD45+ cells in
both the R848 group and the RFA+R848 group was significantly
reduced, while there was no difference in the proportion of CD86+

DCs to the total DCs between groups (Supplementary Figures
S4F, G).

Abscopal Effect Is Induced by RFA+R848
Treatments
To investigate the systemic antitumor immune response of combo
treatments, we simultaneously implanted hepa1-6 liver cancer cells
into the bilateral flanks of C57BL/6 mice. After a week, the mice
were divided into four groups when the tumors have reached
approximately 100 mm³. The tumor on the right flank was
regarded as the primary tumor for RFA therapy, while the
contralateral tumor was considered the distant tumor for
monitoring and flow cytometry analysis. R848 was injected
intraperitoneally once every 2 days—for a total of 4 injections.
Themice were sacrificed on the 7th day after RFA (Figure 3A). The
volume and weight of distant tumors manifested that only a
negligible tumor growth inhibition was induced by RFA or R848
monotherapy. Nevertheless, the RFA+R848 treatment significantly
reduced the tumor burden of the tumors that were left untreated
(Figure 3B). Corresponding to these results, the flow cytometry
analysis revealed that the combo treatments showed a stronger
ability to increase the frequencies of bothCD45+ andNKcells in the
distant tumors compared with the control or RFA treatment.
Furthermore, the proportion of NK cells to CD45+ cells in the
combination therapy group was highest among the four groups
(Figures 3C, D). This phenomenon further proves the role of NK
cells in combination therapy. However, unlike a tumor in situ, no
difference was detected in the ratio of CD3+ and CD8+ T cells to
CD45+ cells in distant tumors among the four groups. The
proportion of CD4+ T cells was not changed either
(Supplementary Figure S5). What is more, similar to the
primary tumor, except for DCs, the tumor-infiltrating myeloid
immune cells inmicewith different treatments almost did not differ
in the distant tumor. The data is not presented.

NK Cells Are Essential for the Antitumor
Immunity Elicited by the Combined
Treatments
On the basis of the research that we have made, those mice that
received the combination therapy not only had the highest
proportion of NK cells among the four groups but also had
enhanced NK cell function (Figures 2B, D). Hence, to directly
confirm the role of NK cells in combination therapy, we
performed a NK depletion test. Anti-NK1.1 antibody was
Frontiers in Oncology | www.frontiersin.org 6
injected intraperitoneally at 1 day before the RFA and then
once every 3 days until the mice were sacrificed. The rest of the
operation was similar to Figure 1A. The depletion efficiency is
shown in Figure 4A. The tumor growth curves indicate that the
RFA+R848 treatment evidently reduced the tumor burden
compared with RFA monotherapy, whereas the inhibition of
tumor growth disappeared in the absence of NK cells
(Figure 4B). Correspondingly, the tumors in the RFA+R848
group were the lightest and smallest among the three groups, but
the tumor size was not reduced after using anti-NK1.1 antibody
(Figures 4C, D).

RFA+R848 Treatment Promotes the
Expression of Lymphocyte-Related
Cytokines and NK Cell-Related
Chemokines in Tumor Tissue
Various cytokines and chemokines play a crucial role in the
tumor microenvironment (24, 37–39), and chemokine networks
are essential for NK cells exerting antitumor effects in solid
tumor (40). We discovered that the expression of IL-2, IL-6, and
IL-12 in these tumors, associated with the activation of T cells
and NK cells, was evidently increased after the combo treatments
(Figures 5A–C). At the same time, the expression of IFN-a/bR
and cytokines related to the function of T cells and NK cells, such
as TNF-a and IFN-g, was also significantly increased after the
combination therapy (Figures 5D–F). This inflammatory
phenomenon is a reflection of the widespread and powerful
immune activation within the tumor microenvironment and is
consistent with the changes that we observed earlier in tumor-
infiltrating lymphocytes. Although NK cells express many
chemokine receptors, CCR2, CCR5, CCR7, CXCR3, CX3CR1,
and their ligands are thought to play a major role in attracting
NK cells to infiltrate tumors (40). As depicted in Figures 5G–O,
the expression levels of the ligands corresponding to the
aforementioned chemokine receptors in the RFA+R848 group
were markedly higher than those in the RFA group. In summary,
these multivariate data suggest that the combination therapy
evidently reshaped the HCC immune microenvironment,
leading to the inhibition of tumor growth.

Combo Treatments Suppress
Angiogenesis and Promote the Apoptosis
of Liver Cancer
Previous studies have shown that R848 alone can inhibit
angiogenesis and promote apoptosis in breast cancer (41). To
assess whether R848 plays a similar role in liver cancer, we
selected two tumor vascular markers—CD31 and VEGFA—for
immunohistochemical staining of tumor tissues. Apparently, the
micro-vessel density and VEGFA+ cells were decreased in the
R848 group and the RFA+R848 group (Figures 6A, B, E, F),
while RFA+R848 did not further reduce the tumor micro-vessels
compared with R848 monotherapy. This indicates that the
reduction of tumor micro-vessels is mainly caused by R848. In
addition, cleaved caspase3 and ki-67 were stained to indicate
tumor apoptosis and proliferation. The number of cleaved
caspase3+ cells in the RFA+R848 group was significantly
June 2022 | Volume 12 | Article 891724
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higher than in the other three groups, and the quantity of cleaved
caspase3+ cells in the R848 group was also slightly higher than
that in the RFA group and the control group (Figures 6C, G).
Meanwhile, both the RFA and R848 treatments have a certain
degree of inhibitory effect on tumor proliferation, but no obvious
additive effect was observed in the combined treatment
(Figures 6D, H). Overall, these findings are consistent with the
changes in tumor size and TIME that we described earlier.
DISCUSSION

HCC is one of the most common malignant tumors worldwide
and remains a global health challenge (9). Local ablation is one of
Frontiers in Oncology | www.frontiersin.org 7
the top three treatment options for HCC, and it is estimated that
more than half of HCC patients have received this treatment
throughout their lifespan (10). As one of the most commonly
used treatment modalities in local ablation, RFA destroys tumor
tissues by generating heat through a radiofrequency electrode
(16, 42). The heat causes mechanical damage to tumor cells,
which, in turn, leads to the release of abundant immunogenic
intracellular substrates and damage-associated molecular
patterns, such as heat shock proteins, high mobility group
protein B1, RNA as well as DNA (16, 43). These elicit a certain
degree of anti-tumor immune response as an in situ vaccine, but
the response is too weak to effectively inhibit tumor progression
(10, 42–45). Combined immunotherapy, on the basis of local
ablation therapy, is an ideal method to enhance the efficacy of
A B

C

D

FIGURE 3 | Systemic antitumor immune response is elicited after the combination of radiofrequency ablation with resiquimod. (A) Schematic diagram of the
experiment to understand the different operations at different points in time. (B) Distant tumor growth curves of tumor-bearing mice treated with different approaches
and the tumor weight (from two independent experiments) on the untreated side when the mice were sacrificed. (C, D) Tumors from the untreated side were
dissected and made into single-cell suspensions for flow cytometry. The representative flow cytometry plots of tumor-infiltrating immune (CD45+) cells and natural
killer (NK; CD3-NK1.1+) cells as well as the relative quantification of the ratio of CD45+ cells to live cells and the proportion of NK cells to CD45+ cells are shown. The
results represent one of two independent experiments; n = 5 in each group. Statistical analysis was performed by two-tailed Student’s t-test. All error bars represent
mean ± SEM. *p < 0.05; **p < 0.01; ns, not significant.
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thermal ablat ion therapy (10, 23, 46) . As a novel
immunomodulatory agent, R848 has attracted widespread
attention in recent years, which plays an important role in
promoting the activation of NK cell and CD8+ T cell as well as
the release of proinflammatory cytokines, such as IFN-a, IL-2,
IL-6, and TNF-a (27, 47–49). The purpose of this study was to
examine whether RFA in combination with R848 could
meaningfully inhibit HCC progression and inflame the TIME.

Some preclinical studies have confirmed that R848 alone can
slightly inhibit the progression of pancreatic cancer (27), breast
cancer (41), and colorectal cancer (47). Here we demonstrated
that RFA combined with R848 further inhibited HCC growth
and prolonged the survival time of tumor-bearing mice
compared with R848 or RFA monotherapy. This study also
revealed the changes in the composition of tumor-infiltrating
immune cells by flow cytometry. We found that the total tumor-
infiltrating immune cells, the ratio of CD8+ T cells and NK cells
to the total immune cells, and the percentage of functional NK
cells were effectively increased after the combination therapy
compared with RFA treatment alone. However, unlike previous
studies about TLR7/8 agonist (50–54), our findings suggest that
the systemic administration of R848 (1 mg/kg) did not evidently
alter the composition of macrophages nor did it effectively
Frontiers in Oncology | www.frontiersin.org 8
promote type I macrophage polarization in murine liver
cancer, and the percentage of DC cells in liver cancer and
pancreatic cancer (27) was slightly decreased after R848
administration, which is inconsistent with the stronger
antitumor immunity induced by R848—so further research
is necessary.

Another critical finding of our research is that the combined
treatment of RFA and R848 induced a potent abscopal effect. The
total tumor-infiltrating immune cells and NK cells in distant
tumor tissues were significantly increased. NK cells are abundant
in the liver, and studies have shown that the proportion of NK
cells in the liver is approximately five times that in the blood and
spleen, but it is significantly decreased in the occurrence and
development of HCC (34, 55). Moreover, the number of NK cells
is positively correlated with the prognosis of HCC patients (56).
Previous research had also shown that both RFA (17, 57) and
TLR7/8 agonist (58–61) alone can stimulate the activation of NK
cells. Our study shows that the proportion of tumor-infiltrating
NK cells in both primary and distant tumors of the combined
treatment group was higher than that in the RFA or R848
treatment group, suggesting that the combination therapy
further promotes the infiltration of NK cells into the HCC and
formed a superimposed effect. Furthermore, the NK deletion test
A B

C D

FIGURE 4 | The superimposed effects induced by combination therapy are natural killer (NK) cell dependent. (A) NK1.1 antibodies were injected intraperitoneally at
1 day prior to radiofrequency ablation (RFA) and once every 3 days until the mice were sacrificed at 3 days after injection tail vein blood was collected to verify the
clearance efficiency. (B) Tumor growth curves of mice depleted for NK cells and treated with RFA + resiquimod. (C, D) Tumor weight and a representative picture of
the tumor excised at sacrifice. One of the two independent experiments is shown; n = 5 in each group. Statistical analysis was performed by two-tailed Student’s
t-test. All error bars represent mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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clearly proved that the inhibition of liver cancer by the
combination therapy is NK cell dependent.

Chemokine networks are critical for driving the intra-tumoral
infiltration of NK cells (40). Previous studies have confirmed as
well that CXCL10, CX3CL1 (62), and CXCL11 (63) play an
important role in the infiltration of NK cells into the melanoma.
Correspondingly, we observed that the expression levels of NK cell-
Frontiers in Oncology | www.frontiersin.org 9
related chemokines were the highest in the combined treatment
group, especially CCL7, CXCL10, CXCL11, and CX3CL1, which
was consistent with the phenomenon that the proportion of NK
cells was the highest in the combined treatment group, reflecting
that they are responsible for the infiltration of NK cell into the
tumor. Moreover, the expression of CXCL11 in the combination
therapy group was significantly higher than those in the R848
A B C D

E F G H

I J K L

M N O

FIGURE 5 | The profile of cytokines and chemokines are remodeled after radiofrequency ablation and resiquimod treatments. (A–C) qPCR detected the intra-
tumoral mRNA expression of cytokines associated with the activation of T cells and natural killer (NK) cells following different treatments. (D–F) Expression levels of
IFN-a/bR and cytokines related to the function of T cells and NK cells. (G–O) Expression of multiple chemokines with chemotaxis to NK cells. All results are
presented as fold change relative to the control group. One of the two independent experiments is shown; n = 7–10 per group. Statistical analysis was performed by
two-tailed Student’s t-test. Error bars represent mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001.
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group, which might be the reason for the additive effect of the
combined treatments. However, we have not been able to clarify
which chemokine drives the NK cell to infiltrate liver cancer; this
needs to be further explored in the future. The expression level of
CXCL10 in the RFA group was higher than that in the control
group as well. It is a manifestation of the immunogenic cell death of
tumor after RFA. On the other hand, recent studies have
demonstrated that R848 binding to TLR7/8 stimulates the
production of IFN-a, IL-6, IL-12, TNF-a , and other
proinflammatory cytokines through MyD88-dependent or
MyD88-independent pathway (24, 25, 47), and RFA treatment
can also promote the expression of multiple cytokines, such as IL-
1b, IL-6, IL-8, and TNF-a (16, 43, 64, 65). Our data shows that the
expression levels of IL-2, IL-6, IL-12, TNF-a, and IFN-a/bR in the
combination group were significantly higher than those in the RFA
or R848 group. This is evidence that RFA and R848 work together
Frontiers in Oncology | www.frontiersin.org 10
to activate anti-tumor immunity. In addition, several studies
reported that R848 can inhibit angiogenesis and promote
apoptosis in breast cancer (24, 41). Our IHC results certified that
the RFA+R848 treatment effectively reduced the vascular density
and VEGF expression of liver cancer, but the mechanism of this has
not been elucidated; it is an aspect for further research. Besides this,
cleaved-caspase3 and ki-67 staining indicated that the combination
therapy promoted tumor apoptosis but failed to further inhibit
tumor proliferation compared with RFA monotherapy.

In conclusion, this study demonstrated that the combination
of RFA with R848 ignited a robust anti-tumor response and
significantly constrained HCC progression in a NK cell-
dependent manner. Meanwhile, we confirmed that R848
inhibited angiogenesis and promoted apoptosis in murine liver
cancer (Schematic Illustration). Overall, our research explored
the potential of RFA combined with R848 in the treatment of
A
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D

E F G H

FIGURE 6 | The combination of radiofrequency ablation and resiquimod reduces tumor vascularization and induces apoptosis. Representative images of
immunohistochemistry (IHC) staining for CD31 (A) and VEGFA (B) of tumors collected from mice that were treated with different approaches. (E, F) Quantitative
analysis of tumor micro-vessel density and the number of VEGFA+ cells per field; n = 4–6. (C, G) Detection of the expression of apoptosis marker cleaved caspase 3 in
tumors by IHC and its corresponding quantitative analysis; n = 4. (D, H) IHC analysis of the tumor sections stained with Ki67 following different treatments; n = 6. Scale
bars, 50 mm. The P-values were calculated by two-tailed Student’s t-test. Error bars represent mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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liver cancer and provided a novel insight into the combination of
thermal ablation with immunotherapy.
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Supplementary Figure 1 | Radiofrequency ablation, in combination with
resiquimod, shrinks the tumor-draining lymph node, but monotherapy does not.
Representative pictures to show the tumor-draining lymph node (A) and spleen (B)
Frontiers in Oncology | www.frontiersin.org 11
size in the mice with different treatments. The quantitative analysis of the TLN and

the spleen weight were taken from two independent experiments; n=4-5, *P < 0.05.
Error bars represent mean ± SEM. Statistical analysis was performed by two-tailed
Student’s t-test.

Supplementary Figure 2 | Gating strategy to facilitate the understanding of how
different types of cells are defined.

Supplementary Figure 3 | The profile of tumor-infiltrating lymphoid immune cells
is slightly altered after the combination therapy. (A–C) The proportion of tumor-
infiltrating CD3+, CD4+, CD45R+ cells to total CD45+ immune cells. (D–F)
Cumulated ratio of CD8+ T cells and NK cells expressing IFN-g or GZMB; n = 4.

Statistical significance was calculated by two-tailed Student’s t-test; *P < 0.05.
Error bars indicate mean ± SEM. GZMB, Granzyme B.

Supplementary Figure 4 | Changes in tumor-infiltrating myeloid immune cells
after the combination therapy. (A–E) The frequencies of macrophages (Ly6c-
CD11B+F4/80+), monocytes (CD11B+MHCII-Ly6c+Ly6g-), and neutrophils
(CD11B+MHCII-Ly6c+Ly6g+) in the total CD45+ immune cells and the ratio of M1
(MHCII+ macrophage) and M2 (MHCII- macrophage) to the total macrophages.
(F, G) The proportion of dendritic cells (DCs, CD11B+MHCII+CD11C+F4/80-) to
CD45+ immune cells and the frequencies of CD86+ DCs in total DCs; n = 4.

Statistical significance was calculated by two-tailed Student’s t-test; *P < 0.05,
**P < 0.01. All error bars represent mean ± SEM.

Supplementary Figure 5 | Distant intra-tumoral T lymphocyte composition is not
altered by the combination therapy. Hepa1-6 tumor cells were simultaneously
inoculated on the bilateral flanks of immunocompetent C57BL/6 mice; the tumor on
the right side is seen as a primary tumor for radiofrequency ablation therapy, and the
contralateral tumor was considered as a distant tumor for flow cytometry analysis.
resiquimod was injected intraperitoneally once every 2 days for a total of 4
injections. (A–C) Percentage of CD3+, CD4+, and CD8+ T cells as a percent of
CD45+ immune cells in distant tumor; n = 4. Statistically significant differences were
calculated by two-tailed Student’s t-test. All error bars indicate mean ± SEM. ns, no
significance.

Supplementary Figure 6 | Representative picture of the tumor radiofrequency
ablation model.

Supplementary Table 1 | List of qPCR primer sequences.

Schematic Illustration | Both RFA and R848 can stimulate the production of
pro-inflammatory cytokines and chemokines in tumor tissue, thereby stimulating the
formation of anti-tumor immunity. The combination of the two treatments further
promoted the expression of NK cell-related chemokines and cytotoxic lymphocyte-
related cytokines, such as CXCL10, CXCL11, IL2, IFN-g, TNF-a, etc., which drove
lots of NK cells to infiltrate the tumor and enhanced the NK cell function. In addition,
R848 inhibited tumor angiogenesis and promoted the apoptosis of liver cancer. As
a result, the combination of RFA with R848 improved the anti-tumor immune
response induced by RFA and significantly inhibited the progression of liver cancer.
RFA, radiofrequency ablation; R848, resiquimod; DAMPs, damage-associated
molecular patterns; IICSs, immunogenic intracellular substrates; APC, antigen-
presenting cell; NK cell, natural killer cell.
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