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Background: Detection of circulating tumor cells (CTCs) is a promising technology in
tumor management; however, the slow development of CTC identification methods
hinders their clinical utility. Moreover, CTC detection is currently challenging owing to
major issues such as isolation and correct identification. To improve the identification
efficiency of glioma CTCs, we developed a karyoplasmic ratio (KR)-based identification
method and constructed an automatic recognition algorithm. We also intended to
determine the correlation between high-KR CTC and patients’ clinical characteristics.

Methods: CTCs were isolated from the peripheral blood samples of 68 glioma patients
and analyzed using DNA-seq and immunofluorescence staining. Subsequently, the
clinical information of both glioma patients and matched individuals was collected for
analyses. ROC curve was performed to evaluate the efficiency of the KR-based
identification method. Finally, CTC images were captured and used for developing a
CTC recognition algorithm.

Results: KR was a better parameter than cell size for identifying glioma CTCs. We
demonstrated that low CTC counts were independently associated with isocitrate
dehydrogenase (IDH) mutations (p = 0.024) and 1p19q co-deletion status (p = 0.05),
highlighting its utility in predicting oligodendroglioma (area under the curve = 0.770). The
accuracy, sensitivity, and specificity of our algorithm were 93.4%, 81.0%, and 97.4%,
respectively, whereas the precision and F1 score were 90.9% and 85.7%, respectively.

Conclusion: Our findings remarkably increased the efficiency of detecting glioma CTCs
and revealed a correlation between CTC counts and patients’ clinical characteristics. This
will allow researchers to further investigate the clinical utility of CTCs. Moreover, our
automatic recognition algorithm can maintain high precision in the CTC identification
process, shorten the time and cost, and significantly reduce the burden on clinicians.
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INTRODUCTION

Circulating tumor cells (CTCs) are an important component of
liquid biopsies and play an increasingly important role in cancer
management (1–6). They have the advantage of non-invasive
and convenient sampling and are commonly used for cancer
diagnosis, dynamic monitoring of disease progression, and
prognostic prediction. Undoubtedly, this technological
advancement holds promise for further application in glioma,
the deadliest brain tumor for which there is no safe monitoring
method routinely. In particular, since scientists have successfully
captured CTCs from the peripheral blood of patients with
glioblastoma multiforme (GBM), World Health Organization
(WHO) grade 4 glioma, a more comprehensive and in-depth
understanding of glioma CTC characteristics has been achieved
(7–9). However, the low detection efficiency with the currently
available methods is still the most important factor limiting the
clinical utility of CTCs in glioma.

Currently, the challenges of CTC detection are mainly focused
on the two major issues of isolation and identification; correct
identification is even more difficult than isolation. Because
complete separation of CTCs and blood cells can barely be
achieved by “positive enrichment,” “negative depletion,” or
physical isolation, researchers need to further screen out CTCs
from thousands of isolated nucleated cells. Among the various
identification approaches, immunofluorescence (IF) staining is
currently the most widely used technique (7–14). However, the
use of antibodies against one or more protein surface markers will
render the detection fragile to changes in the expression level of
the selected marker, while targeting several proteins using an
antibody cocktail will increase the risk of false-positive results and
high background levels because healthy cells might express one or
more of the included markers (7, 9, 11, 14). Thus, we believe that
the development of other identification parameters will be an
important component of IF staining for CTC identification. To
address this issue, we proposed an identification method of IF
staining combined with cell morphological features in our
previous study, in which cell size was used as an important
index for determination, which remarkably increased the
specificity compared to IF staining alone (14). By using this
identification strategy, the threshold of CTCs in healthy donors
and detection level in glioma patients was 3.0 and 5.5 ± 3.0
(median: 5.0 CTCs, range: 0–13) CTCs per blood sample. It was
noteworthy that our detection rate was as high as 85.7 (36/42
glioma patients), which was the highest yet reported. Although
this strategy remarkably reduced background levels in healthy
donors and increased the CTC detection rate, it also led to
misidentification of a proportion of CTCs that were small in
size. In particular, CTCs below the normal cell size have been
increasingly reported, especially in highly heterogeneous GBM
(15). Hence, evaluation of the role of other parameters (other
morphological features) in distinguishing a broad repertoire of
glioma CTCs from leukocytes is urgently required.

In addition, the interpretation of IF images is highly
dependent on visual identification and annotation under the
microscope by specialized physicians, who need to accurately
discern 1–10 CTCs from thousands of nucleated cells, making
Frontiers in Oncology | www.frontiersin.org 2
this endeavor challenging. This is discussed in three aspects:
First, there may be subtle differences in labeling results among
CTCs owing to the use of antibody cocktail, as well as batch
effects, easily leading to the occurrence of false-positive results (7,
13, 14); second, because of the background interference after the
enrichment of CTCs (normal cells may express one or more of
the targeted markers), the identification process needs to be
combined with more parameters (including KR, cell volume, and
nucleus morphology), further increasing the difficulty of
microscopic identification through the naked eye; third,
because of limited identification with human vision,
misinterpretation of the results may be possible during
macroscopic identification of CTCs under the microscope. In
view of the above three demands and the remarkable progress
made by artificial intelligence (AI) in the field of medical image
recognition (16–18), we believe that developing computer
technology and image processing technology to realize
automatic identification and annotation of CTCs in gliomas
would be of great clinical value for further application of CTCs.

Herein, after a comprehensive assessment of the roles of
several morphological features in CTC identification in a
previous study (19–21), we developed and validated a novel
identification method to quantify CTCs isolated from peripheral
blood samples of patients based on a method combining IF
staining and KR, an important feature of malignant cells.
Subsequently, we aimed to investigate the correlation between
high-KR CTCs and patients’ clinical characteristics to evaluate
clinical utility. Finally, based on acquired glioma CTC images
and the aforementioned identifying parameters, we combined
computer technology with digital image processing technology to
construct an algorithm that mimics the CTC identification
process by specialized physicians and achieve automated
identification and annotation of CTCs in gliomas.
METHODS

Blood Samples of Patients and
Healthy Donors
Sixty-eight patients who were diagnosed with glioma underwent
surgery and were enrolled in this study. After receiving written
informed consent, peripheral blood samples were collected
from patients and healthy donors under the Institutional
Review Board-approved protocols. All patients in the study
were free of significant comorbid medical conditions or prior
cancer, deemed operable, and underwent a biopsy, subtotal, or
gross total surgical resection (Table 1). Peripheral blood samples
(5 ml × 2) were collected in EDTA buffer and processed by our
ISET device (14) through the automatic isolation and staining
procedure. All of the samples were collected before initial
treatment and handled within 4 h. For postoperative patients,
peripheral blood samples (5 ml × 2) were collected 2 weeks
after surgery.

Cell Lines
To establish the stable cell lines of U87-GFP and U251-GFP, a
lentiviral plasmid, pLVX-GFP-puro (Miaolingbio, Wuhan,
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China), was transfected with two helper vectors, pMD2.G
(#12259, Addgene, USA) and psPAX2 (#12260, Addgene,
USA), into 293T cells using the Lipofectamine 2000
transfection reagent (Invitrogen, Carlsbad, CA, USA) to
produce lentiviruses. The cells were infected with the
lentiviruses and selected by puromycin (#73342, Stemcell,
Canada) (5 mg/ml for U87 and 8 mg/ml for U251). The
efficiency of viral infection was monitored by an Olympus
BX51 microscope (Olympus, Tokyo, Japan).

Isolation Procedure of the ISET Device
The blood sample (5 ml) was diluted 1:2 with BD wash buffer
(BD, USA) containing 0.2% paraformaldehyde (PFA), 0.1%
bovine serum albumin (BSA), and 0.0372% EDTA. It was
incubated for 10 min at room temperature and then detected
by our ISET device. Our ISET device and the protocols of
isolation were introduced in detail in our previous study (14).
Subsequently, the filtrate was gently aspirated by a vacuum
suction pump. After aspiration, the retained cells were washed
three times with pure water and fixed in 100% methanol. After
disassembly from the filter, the membrane was placed on a slide
and coverslipped after it had air-dried. The protocols of CTC
isolation and detection were performed in our previous
study (14).

STEAM Staining
STEAM staining was a specific antibody cocktail against GBM
CTCs developed by researchers in 2014 (7). Given the
heterogeneity of GBM and the unknown expression profile of
Frontiers in Oncology | www.frontiersin.org 3
putative GBM CTCs, researchers sought to develop a cocktail of
antibodies that would identify a broad spectrum of GBM cells, by
searching the GBM biomarker literature and utilized publicly
available microarray data on GBM tumors, cell lines, and
purified WBC populations to identify GBM-specific markers.
From this process, five antibodies were selected, based on their
strong immunofluorescent staining of GBM cells and their
complete absence in normal blood cells. This antibody cocktail,
annotated as STEAM (SOX2, Tubulin beta-3, EGFR, A2B5, and
c-MET), was combined into a single IF staining channel.

We fixed the captured cells on the membrane with 4% PFA for 5
min and subsequently washed it with PBS 3 times. Then, 150 ml of
0.3% Triton-X 100 was added for 3 min in order to allow for
intracellular staining. After that, we added 10% goat serum (Jackson
ImmunoResearch) to block nonspecific binding for half an hour.
Then, we discarded the serum and added the primary rabbit
antibodies against Sox2 (CST), EGFR (CST), Met (CST), A2B5
(Abcam), and Tubulin (Abcam); the mouse antibodies against
CD14 (BD) and CD16 (Santa Cruz Biotechnology); and the rat
antibody against CD45 (Santa Cruz Biotechnology) diluted 1:100
for incubation overnight at 4°C. On the next day, we washed the
membrane with PBS 3 times and added the secondary Alexa Fluor
488 Goat anti-Rabbit IgG (Thermo Fisher), Alexa Fluor 546 Goat
anti-Mouse IgG (Invitrogen), and Alexa Fluor 546 Goat anti-Rat
IgG (Invitrogen) diluted 1:200 for incubation for 45 min at 37°C.
The nuclei were stained with DAPI. The slides were imaged by an
automated fluorescence microscopy scanning system (OLYMPUS
IX81) under ×40 magnification.

Low-Pass Whole-Genome Sequencing
of CTC
Because the permeabilization process for STEAM staining is not
compatible for the isolation of intranuclear DNA, CTCs were
identified using fluorescently labeled antibodies against the
surface markers: EGFR, MET, and CDH11. Subsequently, IF
staining-positive CTCs were isolated by laser capture
microdissection (LCM) technology. The minute amounts of
DNA from CTC were amplified by the multiple annealing and
looping-based amplification cycles (MALBAC) technique. DNA
sequencing was performed by Illumina HiSeq 2500 system.

Automatically Segmentation and
Recognition Algorithm
Our CTC recognition algorithm is designed to imitate the process
of manually counting CTC (Figure 4). First, the image is read and
converted to a grayscale image (the 24-bit color JPEG image with a
resolution of 1,920 × 1,440 is converted to an 8-bit grayscale image
by reading only the grayscale values of the corresponding dye
channel). Then, the nucleus is located in the blue channel (DAPI).
The green channel (STEM) and the red channel (CD45) are
segmented according to the location of the nucleus
(Figures 5A–C). The KR and the proportion of the red part are
calculated. The specific flow of our algorithm is as follows:

1. The image obtained by the CTC detection device is used as
the input data of the algorithm, in which DAPI is input as the
blue channel image, STEM is input as the green channel
TABLE 1 | Baseline information of patients.

Patients’ information No. of cases (n = 68)

Age (years)
>48 39
≤48 29
Sex
Male 44
Female 24
WHO grade
1 5
2 17
3 10
4 36
Pathology
Astrocytoma 13
Oligodendrogliomas 13
GBM 33
Others 9
IDH status
Mutant 21
Wild type 36
NA 11
1p19q status
Co-deletion 13
Non co-deletion 44
NA 11
CTC collection time
Before surgery 53
After surgery 28
NA, not available.
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image, and CD45 is input as the red channel image, and is
converted into a grayscale image.

2. Since the background levels in blue channel (DAPI) are
relatively low, the Otsu method is directly used to divide
each pixel of the blue channel into two categories: target and
background, and the blue channel is binarized.

3. Find the connection region of the binarized image of the blue
channel (DAPI) and obtain the maximum width (W) and
maximum height (H) of each connected region.

4. Set the upper and lower thresholds of height (h1 and h2) and
the upper and lower thresholds of width w1 and w2 and make
conditional judgments: if h1 <H < h2 and w1 <W < w2, go to
the next step. If there is no connected region that meets the
above conditions, it is determined that there are no CTCs,
and the picture is output (where h1 and w1 take the value
slightly smaller than the diameter of the filter hole, and h2
and w2 take the value slightly larger than the distance
between the two filter holes. In our picture, the filter hole
diameter is about 56 pixels, h1 = w1 =46. The distance
between the centers of two filter hole is 180 pixels, h2 =
w2 = 200, which is used to remove large-scale pollution and
reduce the amount of calculation).

5. Taking the width and height obtained in step (3) as
parameters, enlarge the width and height by 3 times,
respectively, and take the bounding box where the nucleus
is located and mark it. We can get bounding boxes of varying
numbers according to the number of nuclei.

6. Region growth in the bounding box is marked in the blue
channel. Select the central 11 × 11 area of the bounding box
and select the point where the grayscale value in this area is
between 80% and 95% of the grayscale histogram of the entire
bounding box as the seed point and begin growing based on
the seed points. Choose the grayscale value with the most
occurrences in the bounding box as the background grayscale
in the bounding box. When a point in the 8 neighborhoods of
the seed point matches the condition, (1) the difference
between the grayscale value of the point and the grayscale
value of the center point is less than the grayscale value of the
center point multiplied by p; and (2) the grayscale value of the
center point is greater than the background grayscale value
plus the standard deviation of the grayscale value of the
bounding box. Label the point as a target point and a new
seed. Repeat the above process until no new seed point is
added, and the blue channel growth ends. To enhance the
connectivity of the image, morphological operations are
implemented on the image, such as open and close
operations to remove discrete points and fill holes.

7. According to the bounding box in the blue channel, the
detection areas in the green channel and the red channel are
locked, respectively, and regional growth is implemented
within the bounding box. When generating the bounding
box, it has been known that there must be a target in the
bounding box of the blue channel, but there may not be a
target in the bounding box of the green channel and the red
channel. We need to find whether there is a target in the
green channel and the red channel. First, select the grayscale
Frontiers in Oncology | www.frontiersin.org 4
value with the most occurrences in the whole picture as the
global background grayscale value, and then choose the
grayscale value with the most occurrences in the bounding
box as the local background grayscale value in the bounding
box. Calculate the average grayscale value of the target in
the same position in the green channel and red channel in the
binarized blue channel generated in step (6). When the
bounding box of the green channel and the red channel
matches the condition, (1) the difference between the average
grayscale value and the global background grayscale value
is less than the standard deviation of the global grayscale
value; and (2) the difference between the average grayscale
value and the local background grayscale value is less than the
standard deviation of the bounding box. It is considered that
there is no target in this channel. If there is a target in the
channel, the same region growth as in step (6) is performed.
Because it has been obtained, the binarized blue channel in
step (6), the area for selecting the seed point, needs to change
from an 11 × 11 area in the center of the bounding box to the
target area of the blue channel, which is generated in step (6).

8. Calculate karyoplasmic ratio (KR) and the proportion of red
(Red_prop) according to the binarized DAPI, STEAM, and
CD45 images segmented in steps (6) and (7).

9. Using the result of step (7) to compare with the threshold, the
threshold of the KR and the proportion of red are set to K and
R, respectively. Cells with a proportion of red higher than R
were considered to have a common leukocyte antigen, and
cells with KR less than K were considered non-CTCs. The
output bounding box binarized image and calculation results.
After processing all bounding boxes in the picture, the CTCs
were marked with a red box and the picture was output.
Evaluation Criteria for Our
Classification Algorithm
After the segmentation of these images, some performance
evaluation criteria were involved to evaluate the performance
of our classification algorithm. There are four basic categories
—True Positives (TP), False Positives (FP), True Negatives
(TN), and False Negatives (FN)—that are commonly used to
describe the overlap of predictions with ground-truth labels.
True means the prediction is correct, False means the
prediction is wrong, Positive means the label is CTC, and
Negative means the label is non-CTC. Here, we choose five
metrics—accuracy, sensitivity (Se or recall), specificity (Sp),
precision, and F1 score—to evaluate the performance of our
classification algorithm.

Accuracy =
TP + TN

TP + TN + FP + FN

Sp =
TN

TN + FP

Se recallð Þ = TP
TP + FN
May 2022 | Volume 12 | Article 893769
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Precision =
TP

TP + FP

F1 =
2� Precision� Se
Precision + Se

=
2� TP

2TP + FP + FN

Statistical Analysis
Statistical analysis was mainly performed with R (https://www.r-
project.org/) with several publicly available packages. p < 0.05
was considered to indicate statistical significance (*p < 0.05, **p <
0.01, ***p < 0.001, and ****p < 0.0001, as indicated in the figures
and legends).

RESULTS

Confirmation of Identification of Cells of
Smaller Size Through Copy Number
Variation detection
First, of the 10 patients with gliomas of WHO grades 2–4
enrolled in this study, we focused on whether IF staining-
positive cells with a small size (<16 mm) belong to CTCs. In
particular, we found that “smaller CTCs” were more often
observed in GBM, a WHO grade 4 glioma (Figure S1).

To clarify this subtype of CTCs, we utilized a single-cell DNA
sequencing technique to analyze its variation patterns
(Figure 1A). Because the permeabilization process for STEAM
staining is not compatible with the isolation of intranuclear
DNA, CTCs were identified using fluorescently labeled
antibodies against the surface markers EGFR, MET, and
CDH11 (7). Single-cell low-pass whole-genome sequencing (lp-
WGS) analysis revealed that copy number variation in “smaller
CTCs” was highly similar to that in normal CTCs, whereas it was
quite different from that in leukocytes (Figure 1B). This result
was consistent with that of a previous study and urged us to focus
on smaller CTCs. Diffuse glioma is a highly heterogeneous
disease with different tumor cell sizes. In particular, its
heterogeneity might increase with an increase in tumor
malignancy, leading to various sizes of CTC in high-grade
gliomas. Our findings are consistent with this phenomenon.
Therefore, other morphological features of malignant cells
must be evaluated to develop a new CTC identification standard.

Defining Karyoplasmic Ratio as an
Important Parameter in CTC Identification
Notably, after DAPI staining and antibody labeling, larger nuclei
were observed in STEAM+/CD45- cells than in STEAM-/CD45+

leukocytes (Figure 2A). Even in cells that were smaller in size,
their nuclei appeared significantly larger than those in the
cytoplasm (Figure 2A). Dysregulated KR is among the most
representative feature of tumor cells owing to uncontrolled
division that makes the nucleus grow much faster than the cell
does. Therefore, we deduced that abnormal KR may play an
important role in CTC identification.

To verify our conjecture, 20 blood samples collected from
glioma patients (5 patients each in WHO grades 1–4) were
Frontiers in Oncology | www.frontiersin.org 5
analyzed for further details. Peripheral blood was collected
using our ISET isolation device, and enriched cells were
marked with an antibody cocktail annotated as STEAM and
antibody against CD45 as well as DAPI. By converting the raw
image to a grayscale image and calculating the area of DAPI and
STEAM staining, a new parameter, the ratio of the area of the
nucleus to that of the cytoplasm, was defined as KR of the cells.
Using this new parameter, cells labeled with a single nucleus were
divided into two categories. In the STEAM+/CD45- cell group,
the vast majority showed a high KR (HKR), while very few
showed a low KR (LKR). Corresponding to this, the STEAM-/
CD45+ group showed LKR. These results indicated that HKR
cells were more likely to be tumor cells.

For the quantification of KR in CTCs and white blood cells,
we developed an algorithm based on the calculation of the IF-
labeled area (KR = DAPI area/total cell area). In the above
samples, we found that the KR of STEAM+/CD45- cells was
0.807 ± 0.055, 0.821 ± 0.065, 0.787 ± 0.047, and 0.878 ± 0.046,
respectively, ranging from WHO grades 1 to 4, while the KR of
STEAM-/CD45+ cells was 0.450 ± 0.031, 0.449 ± 0.082, 0.396 ±
0.061, and 0.531 ± 0.041, respectively. In blood samples from five
healthy donors, the KR of STEAM+/CD45- cells was 0.848 ±
0.039, whereas that of STEAM-/CD45+ cells was 0.425 ± 0.044.
Furthermore, we selected two glioma cell lines for quantification.
The KR of U87 cell lines was 0.802 ± 0.059 and that of U251 was
0.772 ± 0.042 (Table 2). In addition, the threshold of HKR cells
was similar to that in Liu’s study (19), revealing that KR might be
a much more reliable identification parameter for glioma CTCs.

Comparing the Identification Effect of
Methods Based on Karyoplasmic Ratio
and Cell Size in Clinical Samples
First, the development of a KR-based identification method for
CTCs was aimed at reducing the risk of false-positive results and
high background levels. To further study this strategy, blood
samples obtained from 20 healthy donors were randomly
selected and tested using the same methods. In our previous
study, we demonstrated that this identification strategy was able
to reduce the background levels in healthy donors using a cell
size identification method. Interestingly, when we used KR as an
ancillary identification method, we observed that a subset of cells
with LKR was present in STEAM+/CD45- CTCs from the
peripheral blood of healthy donors (Figure 2A). Using the KR-
based identification strategy, the detectable number of STEAM+/
CD45-/HKR cells was remarkably decreased in healthy donors
(Figure 2B). In addition, no significant difference in the decrease
in the background level was observed between the two
identification methods (p > 0.05). Because the limitation of the
antibody cocktail for several surface markers mainly focuses on
the high background level and false-positive results (7, 11, 14),
our findings indicate that this strategy could overcome the
drawbacks of targeting several proteins and be an important
complement of IF staining in CTC identification.

Second, our KR-based identification strategy has the advantage
of increasing the detection rate by detecting CTCs of smaller sizes.
Thus, we further validated it in clinical samples to compare the
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detection level of CTCs using the above two methods. Among
68 glioma patients, with an increase in tumor malignancy and
WHO grade, the detectable level of CTCs was remarkably
increased (Figure 2C). For WHO grade 2 glioma, the detectable
level of CTCs increased from 6.7 (median: 6 cells, range: 0–16,
mean: 6.7 ± 4.2) to 8.4 (median: 7 cells, range: 0–21, mean: 8.4 ±
5.1) (p = 0.015). For patients with WHO grade 3, the detectable
level of CTCs increased from 5.9 (median: 5.5 cells, range: 2–12,
mean: 5.9 ± 3.7) to 7.1 (median: 6 cells, range: 2–12, mean: 7.1 ±
3.4) (p = 0.02). For GBM, the detectable level of CTCs increased
from 6.1 (median: 5.5 cells, range: 0–14, mean: 6.1 ± 3.3) to 7.4
(median: 6 cells, range: 0–27, mean: 7.4 ± 5.3) (p = 0.01). To
further evaluate the efficiency of three identification methods in
glioma diagnosis, we used an ROC curve to determine sensitivity
and specificity. The ROC curve showed that the area under the
curve (AUC) of single IF staining, IF with cell size, and IF with KR
were 0.875, 0.940, and 0.935, respectively (Figure 2D). These
results indicate that the KR-based method can increase the
sensitivity of CTC identification compared to the cell size-based
method. Therefore, further studies on the relationship between
CTC counts and patients’ clinical characteristics are required to
reevaluate their clinical utility.

Correlation Between CTCs and Clinical
Characteristics in Glioma Patients
When validated in clinical samples, we found that the detectable
level of CTCs in the peripheral blood of glioma patients was not
related to the WHO grade of the tumor, which was consistent
with the finding of a previous study (10, 14). One explanation is
that the high heterogeneity of high-grade gliomas results in the
Frontiers in Oncology | www.frontiersin.org 6
loss of our targeted markers, leading to CTC capture being a
small proportion of total glioma CTCs. Another explanation is
that the group of determinant CTCs had not been precisely
identified, exemplified by the fact that only vimentin-positive
CTCs were related to patients’ outcomes rather than EpCAM-
positive CTCs in colon cancers (22). In addition to the
aforementioned potential cases, the specificity of CTC
detection in brain tumors using peripheral blood should also
be considered. Although CTCs have been detected in the
peripheral blood of glioma patients, their clinical significance
remains unknown. On the one hand, GBM-related tumor
metastases were rare; on the other hand, it remains debatable
whether the detection of CTCs using 5 ml of peripheral blood
was able to reflect the situation in 5 L of whole blood.

However, we could still observe a close relationship between
CTC counts and patients’ histopathology andmolecular pathology
(Figures 3A, B). Consistent with the findings of our previous
research, low CTC counts were found in patients with an isocitrate
dehydrogenase (IDH) mutant status (p = 0.024). We also observed
that patients with 1p19q co-deletion status were more likely to
have low CTC counts (p = 0.05). IDH and 1p19q status have
important roles in the molecular diagnosis of diffused glioma (23,
24). Therefore, we further investigated the correlation between
CTC counts and glioma histopathology. We found that
oligodendroglioma (WHO grades 2–3, IDH mutant, and 1p19q
co-deletion) showed a remarkably lower CTC count than
astrocytoma (WHO grades 2–4, p = 0.011) and GBM (WHO
grades 2–4, IDH wild type, p = 0.043) (Figure 3C). Despite the
lack of correlation between CTC counts and tumor malignancy,
we still demonstrated the potential application of CTCs in tumor
A

B

FIGURE 1 | The isolation and sequencing of glioma CTC. (A) Schematic of the experimental design. CTCs were collected by LCM technology and amplification was
performed by MALBAC technology. The amplified products were used to perform DNA-seq. (B) The CNV pattern in normal CTC (upper), smaller CTC (middle), and
leukocytes (lower).
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diagnosis. These results highlight the potential value of CTCs in
glioma classification, including histopathological and molecular
pathological diagnosis.

Development of an HKR-Based CTC
Identification Assay Using an Automatic
Segmentation and Recognition Algorithm
For the precise localization of CTCs and the accurate calculation of
the above-mentioned parameters, we developed an algorithm for
automatic segmentation and identification based on CTC IF
images (Figure 4). Because a full image is extremely large, the
complexity of the algorithm is positively related to the size of the
Frontiers in Oncology | www.frontiersin.org 7
image. To reduce the number of calculations, we selected part of
the image to perform the following tests. There may be only one
CTC or multiple CTCs in these images and possibly other non-
CTCs. The resolution of the selected part of the image was 1,920 ×
1,440. Our CTC recognition algorithm was designed to imitate the
manual counting of CTCs. First, the image is read and converted
into a grayscale image. The nuclei were then located in a blue
channel (DAPI). The green (STEAM) and red (CD45) channels
were segmented according to the location of the nucleus
(Figures 5A–C).

Together with the findings described above, we incorporated
both the calculation of KR and the co-expression profile of CD45
A

B

D

C

FIGURE 2 | Comparing identification effect of methods based on karyoplasmic ratio and cell size in clinical samples. (A) The representative IF image of CTC in
glioma, containing CTC with normal size and smaller size. Scale bar = 20 mm. (B) Left panel: method based on karyoplasmic ratio decreased the background level
and false-positive risk in healthy donors (p = 0.002). Right panel: method based on cell size also decreased the background level and false-positive risk in healthy
donors (p = 0.0014). (C) Compared with the method based on cell size (blue), the method based on karyoplasmic ratio significantly increased detectable level of
CTC in glioma with WHO grade 2-4 (p = 0.015, p = 0.02, and p = 0.01, respectively). Before: method with cell size; after: method with KR. (D) Left panel: ROC
curve for single IF staining in glioma diagnosis (AUC = 0.875). Middle panel: ROC curve for IF staining with cell size in glioma diagnosis (AUC = 0.940). Right panel:
ROC curve for IF staining with KR in glioma diagnosis (AUC = 0.935).
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into the CTC identification standard. A previous study reported
that the nucleus with a proportion of red higher than 30% was
commonly defined as having a common leukocyte antigen (25).
In this study, because we used an automatic recognition
algorithm, filter pore and impurities on the images may
interfere with calculation of proportion of CD45 and thus
affect the final identification results. To quantify the threshold
of HKR and CD45 co-expression profiles, 337 images containing
353 CTCs and 1,271 leukocytes were labeled for calculation.
After referring to previous studies and our clinical data (Table 2),
we established a standard for CTC: cells with a CD45 proportion
of less than 35% and KR of >70% were considered CTCs (20).

Validation of Our CTC Recognition
Algorithm Using Clinical Samples
To further validate the clinical utility of our CTC recognition
algorithm, we applied it to 197 images with at least one CTC, out
of which there were 258 CTCs and 809 non-CTCs. The results
obtained using our segmentation and recognition algorithms are
listed (Table 3). The accuracy, sensitivity, and specificity were
93.4%, 81.0%, and 97.4%, respectively, whereas the precision and
Frontiers in Oncology | www.frontiersin.org 8
F1 score reached 90.9% and 85.7%, respectively, indicating that
our CTC recognition algorithm was able to achieve automated
identification and annotation of CTC in gliomas. Compared with
the study by He et al. (21), our algorithm showed higher accuracy
and specificity, indicating that our CTC recognition algorithm
might perform better than machine learning in the case of small
sample sizes.
DISCUSSION

The present study showed that KR was a better parameter for
detecting glioma cells than cell size. The accuracy, sensitivity, and
specificity of the developed algorithm were 93.4%, 81.0%, and
97.4%, respectively.

Although CTCs are a promising technology for the diagnosis
and monitoring of glioma, they play a key role in improving
patient outcomes, and the isolation and identification of CTC
have been proven challenging (7–14). With advances in
technology, the capture efficiency of CTCs has greatly
improved. However, the slow development of CTC
A

B C

FIGURE 3 | The correlation between CTC level and clinical characteristics. (A) Representative IF image of CTC in 5 subtypes of glioma from WHO grade 2 to grade 4.
Scale bar = 20 mm. (B) Left panel: low CTC level was significantly related to IDH mutant status (p = 0.024). Right panel: low CTC level was significantly related to 1p19q
co-deletion status (p = 0.05). (C) Left panel: CTC level in oligodenroglioma was significantly lower than that in astrocytoma and GBM (p < 0.05 and p < 0.05,
respectively). Right panel: ROC curve revealed that low CTC level was a good predictor for oligodenroglioma pathological subtype (AUC = 0.770). ns, no significance.
ABLE 2 | Quantization of karyoplasmic ratio in clinical samples and cell lines.

roup STEAM+/CD45- STEAM-/CD45+

Count Karyoplasmic Ratio Count Karyoplasmic Ratio

HO 1 grade 46 0.807 ± 0.055 1000 0.450 ± 0.031
HO 2 grade 50 0.821 ± 0.065 1000 0.449 ± 0.082
HO 3 grade 43 0.787 ± 0.047 1000 0.396 ± 0.061
HO 4 grade 54 0.878 ± 0.046 1000 0.531 ± 0.041
ealthy donors 9 0.848 ± 0.039 1000 0.425 ± 0.044
87 cell line 10,000 0.802 ± 0.059 0 –

251 cell line 10,000 0.772 ± 0.042 0 –
May 2022 | Volum
aryoplasmic ratio = DAPI area/total cell area; Data are presented as the mean ± SD of independent experiments.
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identification methods has not received sufficient attention,
which might hinder their further application. Currently, the
identification of glioma CTC mainly faces two issues: (1) it is
difficult to identify CTCs with high efficiency by single IF
staining due to the highly heterogeneous nature of GBM; and
(2) the interpretation of IF images is highly dependent on visual
identification and annotation under the microscope by
specialized physicians, which can easily produce errors.

To improve the identification efficiency of glioma CTCs, we
developed and validated a novel identification method to
quantify CTCs isolated from peripheral blood samples based
on a combination of IF staining and KR, an important
morphological feature of tumor cells. We found that this
Frontiers in Oncology | www.frontiersin.org 9
identification method remarkably increased the detection level
of CTCs, compared with that reported in previous studies (7–11,
14). Subsequently, we combined computer technology with
digital image processing technology to construct an algorithm
that mimics the process of CTC identification by specialized
physicians and achieve the automated identification and
annotation of glioma CTCs.

This study is significant on four major fronts. First, this study
identified a potential reason for the low efficiency of detecting
glioma CTCs. Although CTCs are generally considered larger
than 16 mm, CTCs below the normal size have been increasingly
reported in several solid tumors (15). Our study confirmed the
same phenomenon in glioma CTCs, particularly in GBM.
FIGURE 5 | Validation of CTC recognition algorithm in clinical samples. (A–C) Representative IF image of cells isolated from glioma patients’ peripheral blood. Cells
were sequentially labeled by DAPI (blue), STEAM (green), and CD45 (red). (D, E) Automatic segmentation of nucleated cells. (F) Automatic recognition of CTC
through our algorithm. CTCs were marked by red anchor box. Scale bar = 20 mm.
FIGURE 4 | Flowchart of automatic CTC recognition algorithm. Schematic of the algorithm design.
May 2022 | Volume 12 | Article 893769
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These findings will contribute to a more efficient CTC detection
strategy for evaluating the clinical utility of glioma CTCs.

Second, we developed a novel KR-based IF staining strategy for
glioma CTC identification. Dysregulated KR is among the most
representative features of tumor cells, owing to uncontrolled
division, which makes the nucleus grow much faster than the
cell does (19–21). A previous study proposed a KR-based imaging
flow cytometry for the detection of CTCs in hepatocellular
carcinoma and pointed out that the technique relying on the KR
had a higher sensitivity than traditional techniques relying on
antibodies or cell surface markers (20). However, this study relied
on imaging flow cytometry, which was not a first-line method for
isolating CTCs and might have led to biased results. Therefore, we
combined IF staining and the KR-identifying technique in
subsequent studies. We demonstrated that our KR-based IF
staining strategy could significantly increase detection efficiency
in glioma patients while reducing background levels in healthy
donors. This finding may open a new window for glioma CTC
detection and application, as only a sufficient number of CTCs can
shed light on its clinical value.

Third, this study further revealed a correlation between CTC
counts and patients’ clinical characteristics. Unlike previous studies
(10), we confirmed the potential relationship between CTCs and
tumor pathological diagnosis, including histopathology and
molecular pathology. Based on our previous study (14), we
further demonstrated the correlation between CTC counts, IDH
status, and 1p19q status of glioma. IDH and 1p19q are two of the
most important molecular pathological markers of glioma, which
are closely related to tumor classification and patient outcomes (23,
24).We observed a remarkably lowerCTC count in glioma patients
with IDHmutation and 1p19q co-deletion status, which are typical
features of oligodendrogliomas, suggesting that CTC count might
be a good predictor for histopathological and molecular
pathological diagnosis of glioma. Moreover, the IDH status plays
an important role in predicting patient prognosis. However, limited
by the short follow-up period, this study did not reveal a correlation
between CTC counts and patient survival. Future work should
further expand the sample size and refine the follow-up of patients
to further evaluate the clinical utility of CTCs in glioma. It is also
worth noting that the correlation between CTC count and tumor
malignancy (fromWHO grades 2 to 4) has not yet been observed,
contrary to the favorable relationship between CTC counts and
tumor molecular pathology. This may be because the group of
determinant CTCs has not been precisely identified, as exemplified
by the fact that only vimentin-positive CTCswere related to patient
outcomes rather thanEpCAM-positiveCTCs in colon cancers (22).
This finding urges investigators to further explore the subtypes of
glioma CTCs that are decisive in predicting patient survival in
future studies. In addition to the aforementioned potential reasons,
the specificity of CTC detection in brain tumors using peripheral
Frontiers in Oncology | www.frontiersin.org 10
blood should also be considered. Although CTCs have been
detected in the peripheral blood of glioma patients, their clinical
significance remains unknown. On the one hand, GBM-related
tumormetastaseswere rare; on the other hand, it remains debatable
whether the detection of CTCs in 5 ml of peripheral blood could
reflect the situation in 5 L of whole blood. Recent research has
pointed out that cerebrospinal fluid (CSF) is a more appropriate
sample for the liquid biopsy of brain tumors (26–29). Therefore,
further detection of CTCs in CSF may have a positive effect in
clarifying their clinical significance.

Finally, this study established an algorithm for automatic
segmentation and recognition of glioma CTCs. Undoubtedly,
machine-learning-based AI has made remarkable progress in the
field of image recognition (16–18). To date, there have been some
deep-learning-based methods for CTC recognition. However,
these methods are based on complex neural networks, which
require high-performance computers to accelerate computation
and large amounts of data so that the networks have better
generalization performance. Despite the extremely poor
prognosis of glioma, its incidence remains relatively lower than
that of breast and lung cancers, making it difficult to obtain a
large amount of data for machine learning. By contrast, our CTC
recognition algorithm requires much less computation, only
requires tuning a few parameters, and does not require a large
amount of labeled data for training. This automatic recognition
algorithm can maintain high precision in the CTC identification
process, shorten the time and cost, and greatly reduce the burden
on clinicians.

There were still some limitations in this study. First, although
our recognition algorithm showed high efficiency in small
samples (<600 images) compared with AI, machine-learning-
based AI remained the better method for identifying CTC images
when the sample size is large enough. Second, limited by the
short follow-up period, this study did not reveal a correlation
between CTC counts and patient survival. Third, the correlation
between CTC level and clinical characteristics remained
unknown. Therefore, future work should focus on three
aspects: (1) Continued expansion of clinical samples and
research cohorts with close follow-up should be performed to
investigate the relationship between CTCs, clinical
characteristics, and patients’ survival. (2) Deep-learning-based
methods are still a more accurate approach for the recognition of
medical images than our simple algorithm because AI can obtain
a larger amount of information that human eyes cannot capture
from images. Therefore, future work is still needed to rationally
utilize AI technology after obtaining sufficient CTC images to
achieve the precise identification of CTCs and precision
medicine for patients. (3) Last but not least, targeting CSF-
derived CTCs might help to better understand the role of CTCs
in glioma malignant behavior.
TABLE 3 | Validation of CTC recognition algorithm in clinical samples.

Positive Negative Total

True 209 788 997
False 21 49 70
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CONCLUSION

In summary, we demonstrated that smaller CTCs (<16 mm)
accounted for a proportion of glioma CTCs and were an
important factor contributing to the low efficiency of the
previous assays. We developed a novel KR-based IF staining
strategy for glioma CTC identification, which remarkably
increased the detection rate and reduced the number of false-
positive events. Our findings also revealed a correlation between
CTC counts and molecular pathological diagnosis of glioma. We
established an algorithm for automatic segmentation and
recognition of glioma CTCs. Based on our research, the KR-
based automatic recognition method could simplify the
identification process, increase the detection efficiency, and
provide a bridge for further clinical application of CTCs in
tumor management. Future work shall focus on utilizing AI to
precisely identify images and investigate the correlation between
CTC and patients’ clinical characteristics in larger clinical samples.
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