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reporting and data system
(BI-RADS) ultrasound category 4
or 5 lesions: A single-center
retrospective study based on
radiomics features
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Jian-Chuan Yang1,2 and Song-Song Wu1,2*

1Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China, 2Department of
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Purpose: To develop nomograms for predicting breast malignancy in BI-RADS

ultrasound (US) category 4 or 5 lesions based on radiomics features.

Methods: Between January 2020 and January 2022, we prospectively

collected and retrospectively analyzed the medical records of 496 patients

pathologically proven breast lesions in our hospital. The data set was divided

into model training group and validation testing group with a 75/25 split.

Radiomics features were obtained using the PyRadiomics package, and the

radiomics score was established by least absolute shrinkage and selection

operator regression. A nomogramwas developed for BI-RADS US category 4 or

5 lesions according to the results of multivariate regression analysis from the

training group.

Result: The AUCs of radiomics score consisting of 31 US features was 0.886.

The AUC of the model constructed with radiomics score, patient age, lesion

diameter identified by US and BI-RADS category involved was 0.956 (95% CI,

0.910–0.972) for the training group and 0.937 (95% CI, 0.893–0.965) for the

validation cohort. The calibration curves showed good agreement between the

predictions and observations.

Conclusions: Both nomogram and radiomics score can be used as methods to

assist radiologists and clinicians in predicting breast malignancy in BI-RADS US

category 4 or 5 lesions.
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1. Breast cancer, the malignant tumor with the highest

incidence in women, has become the top killer of

women’s health.

2. Traditional imaging examinations have limited value for

evaluating the status of breast lesions in BI-RADS

ultrasound category 4 or 5.

3. We developed a radiomic nomogram based on US

imagings to predict breast malignancy in BI-RADS US

category 4 or 5 lesions.
Introduction

According to the statistics of the World Health Organization

(WHO) (1), breast cancer(BC), the malignant tumor with the

highest incidence in women, has become the top killer of

women’s health. New cases of BC worldwide accounted for

about a quarter of all malignancies annually (2). The incidence

of BC in Chinese women is 41.82 per 100,000, and the fatality

rate is 9.90 per 100,000.The climbing yearly incidence and

younger trend have also been observed. Early detection,

diagnosis and treatment is unquestionably crucial to the

reduction of the morbidity and mortality related to BC.

In the second edition of the ACR BI-RADS US atlas, breast

lesions are assigned a category after the analysis and judgment of

their sonographic characteristics (3). There are seven categories

in total (3). Among them, category 4 is defined as suspicious

lesion with 5% to 95% malignant probability that is

recommended for biopsy. Due to the wide range of

malignance probability, category 4 is further divided into three

subcategories: 4A, 4B and 4C, with 5–10%, 10–50% and 50–95%

malignance probability, respectively. Category 5 is defined as

highly suspected of malignancy, with more than 95% malignant

probability (3). We focused our study on breast lesions classified

as ACR BI-RADS US categories 4 or 5 because these lesions have

a wide-ranging likelihood of malignancy (>5%) and were

recommended for biopsy. Nevertheless, sonographic features

for determining BI-RADS categories are generally based on the

radiologist’s interpretation. Moreover, microcosmic features of

images, such as gray matrix, texture features and so on, may not

be identified by visual interpretation.

As is known to all, breast US is a sensitive imaging method

for the diagnosis of BC. However, the ultrasound features of
eviations: BI-RADS, Breast Imaging Reporting and Data System; US,

ound; BC, breast cancer; WHO, World Health Organization; AUC,

under the curve; GLCM, Gray level co-occurrence matrix; GLRLM,

level run length matrix; GLSZM, Gray level size zone matrix; ROC,

ver operating characteristic; ROI, regions of interest.
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some atypical BC overlap with benign lesions (4), and thus may

lead to miscategorization of benign cases into BI-RADS category

4 or 5 and unnecessary recommendation for biopsy. The positive

predictive value of US-guided biopsies ranged from 19.5 to

42.7%, indicating that many patients did receive unnecessary

biopsies, which is invasive and carries the risk of complications

such as infection, hematoma and so on. Consequently, to make

an exact diagnosis of both can prevent unnecessary operation,

and at the same time prevent missed diagnosis of malignant

tumor, which is of great significance for guiding clinical

treatment. How to better distinguish the benign and

malignancy of BI-RADS category 4 or 5 by non-invasive

means is the burning issue at present.

In recent years, radiomics, a novel computer-aided

technology that reflects the texture and morphological features

of tumour by quantitatively analysing the grey values of medical

images, has gradually received attention and application (5–8).

Radiomics is a non-invasive reproducible low-cost technique

which can extract many quantitative features from areas of

interest of medical images through a computer algorithm.

Most of the quantitative features extracted through

computerized algorithms are beyond visual interpretation but

may potentially be associated with important clinical outcomes,

as they contain comprehensive information about tumor

characteristics, such as tumor size, shape, strength, texture and

so on (9–12). Radiomics features can be used to establish

descriptive or predictive models, which is of great help to

detection, diagnosis, treatment response prediction and

prognosis evaluation in different types of cancer, and will

eventually greatly improve clinical decision-making ability (6,

7, 13). Furthermore, nomograms have been widely used to

predict medical prognosis and outcomes by combining

multiple risk factors in different types of cancer. Of all the

available models, a nomogram can provide an individualized,

evidence-based, highly accurate risk estimation. Nomograms are

easy to use and can facilitate management-related decision making.

Therefore, we aimed to explore radiomics score of US images

of patients with BI-RADS category 4 or 5, and establish a

nomogram of BC based on this and other clinical risk factors.
Materials and methods

Study population

The study was approved by the review committee of Fujian

Provincial Hospital. Informed consent was waived because the

present study is retrospective. Between January 2020 and

January 2022,we collected female patients with US findings of

breast lesions continuously. The following inclusion criteria

were used: (1) a pathological result was available; (2) breast US

was performed before biopsy or resection; (3) the target lesion

was assigned as BI-RADS category 4A, 4B, 4C or 5 according to
frontiersin.org
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the second edition of the ACR BI-RADS US atlas. The following

exclusion criteria were used: (1) the pathological result was

indefinite;(2)images of tumors larger than 5 cm; (3) the patient

had undergone anticancer therapy (chemotherapy, radiotherapy

or endocrine therapy); or (4)the target lesion was incompletely

visible on US. For patients with more than one breast lesion that

was BI-RADS category 4 or 5, only the lesion with the highest

BI-RADS category was included in the study to guarantee the

statistical independence of each observation. Finally, a total of

496 lesions from 496 patients (mean age, 46.54 ± 11.75 years;

range, 13 to 88 years) were included (Figure 1). Using the

random sampling methods of SPSS version 20.0 (SPSS,

Chicago, IL, USA), the data were split 75/25; 75% of the cases

were assigned to the training group, which was used to establish

the evaluation system, and 25% of the cases formed the

validation group, which was used to test the accuracy of the

model prediction.
US and pathological examinations

US examinations were performed using an Philips EPIQ7

equipped with a L12-5 linear array probe. All of the breast

lesions were examined and assessed by the same radiologist

(L.JW) with over 30 years of experience of breast US

examination. Imaging parameters were adjusted to optimally

visualize the target lesion. The US characteristics were acquired
Frontiers in Oncology 03
in both transverse and longitudinal sections. The largest

diameter of each lesion was recorded on the grayscale US

images. Image preprocessing was performed on grayscale US

images without considering whether imaging optimization

technology, such as harmonics, SonoCT, and XRES, was used.

We excluded images of tumors larger than 5 cm, as it is difficult

to delineate the ROI properly if the tumor is not fully presented

in a single plane. The US images were selected by two

radiologists who had over 25 years of work of breast US

examination and were responsible for the delineating of the

ROI. The two radiologists were blinded to the patients’

clinicopathological details.

In our study, breast lesions classified as BI-RADS category 4

or 5 were all recommended for biopsy. Pathological findings

were confirmed by US-guided biopsy or surgical excision.US-

guided biopsy was performed using 16-gauge or 18-gauge

needle. More than three tissue samples were acquired and

placed in formalin solution,followed by histopathological and

immunohistochemical tests as per standard procedures (14).

Patients with indefinite histological results were recommended

for surgical excision.
Definition of the ROI

Python software was used for radiomics analysis. The ROI

was sketched along the edge of the breast tumor lesions on
FIGURE 1

Flow chart of the study population enrolment.
frontiersin.org

https://doi.org/10.3389/fonc.2022.894476
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hong et al. 10.3389/fonc.2022.894476
selected typical images of each patient and should include the

whole lesion as far as possible. Finally the image of the whole

tumor was obtained. Another radiologist (C.S) with 25 years of

breast US experience, blinded to the final histopathological

details, drew the ROIs using ITK-SNAP software (http://www.

itksnap.Org/pmwiki//pmwiki.php) (Figure 2). To evaluate inter-

observer variability, another radiologist (W.SS,specializing in

breast US imaging for 25 years) drew the ROIs in 100

randomly selected lesions. In addition, to assess intraobserver

reliability, C.S. then carried out the second delineation of ROIs

from 100 randomly chosen images according to the same

procedure one week later. The intra-observer agreement and

inter-observer consistency of ROI portrayed by two radiologists

were measured by the intraclass correlation coefficient (ICC).

ICC > 0.75 is considered good consistency.
Radiomics feature extraction and
radiomics score

We employed an open-source python package called

"PyRadiomics" (15) to extract radiomics features from the US

images, and all the results were collected in a form. These

features included 5 neighboring gray tone difference matrix

features, 16 gray-level run length matrix features, 16 gray-level

size zone matrix features, 18 first-order features, 24 gray-level

occurrence matrix features, and 14 gray-level dependence matrix

features (Figure 3). Considering that multivariate analysis
Frontiers in Oncology 04
requires a 10:1 ratio of the number of patients and the number

of covariates, logistic regression with the least absolute shrinkage

and selection operator (LASSO) was chosen to extract radiomics

features that might contribute to the prediction model (16).

Then, a formula incorporating the selected features was

developed to calculate the radiomics score.
Model construction and validation

Univariate and multivariate logistic regression analyses were

performed to analyse the significant factors associated with

breast malignancy. The features were entered into statistical

software to construct the prediction model on the basis of the

multivariate logistic regression analysis. After construction, the

prediction model was verified in the validation group. A

calibration (i.e., consistency between the observed result

frequencies and predicted probabilities) curve was plotted to

explore the predictive accuracy of the nomogram. The

specificity, sensitivity, positive likelihood ratio, negative

likelihood ratio, positive predictive value, and negative

predictive value were calculated to assess the diagnostic

accuracy. Receiver operating characteristic (ROC) curves and

the area under the curve (AUC) were generated to assess the

discrimination performance of the prediction model. Decision

curve analysis (DCA) was conducted to determine the clinical

usefulness of the radiomics features by quantifying the net

benefits at different threshold probabilities.
FIGURE 2

Examples of sketching ROIs on US images. The greyscale image (A) and the ROI (B) of a malignant lesion with the maximum section (radiomics
score=−14.95). The greyscale image (C) and the ROI (D) of a benign lesion with the maximum section (radiomics score=−23.26).
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Statistical analysis

R software (version 4.0.2) and SPSS 22.0 (Chicago, IL) were

used to perform the statistical analysis. Python software was

used for radiomics analysis. Student’s t-test was used to compare

continuous variables with a normal distribution. The Mann-

Whitney U test was used to compare continuous variables with

an abnormal or unknown distribution. The c² test was used to

compare categorical variables. P values of less than 5% were

considered statistically significant. The intra-observer agreement

and inter-observer consistency of the two radiologists in ROI

delineation were measured by the ICC, which was graded as very

good (0.80 to 1.00), good(0.60 to 0.80), fair (0.40 to 0.60),

moderate (0.20 to 0.40), or poor (< 0.20).R software was used

to develop and assess the nomogram. The glmnet package was

used for LASSO regression. The Hmisc package was used to

perform the nomogram. The pROC package was used to plot the
Frontiers in Oncology 05
ROC curves and measure the AUCs. The difference in the AUC

between the two groups was examined by the U test. The

CalibrationCurves package was used for the calibration curves.

The DecisionCurve package was used to plot the DCA.
Results

Baseline characteristics of
the populations

Table 1 shows the basic information of the research

population. Breast malignancies occurred in 40.1% (149/372)

and 44.3% (55/124) of the patients in the modeling and

validation groups, respectively. There was no significant

difference between the two groups for the presence of BC

(P=0.589). No significant difference was detected between the
TABLE 1 Basic information in the training and validation groups.

Training group Validation group

Benign Malignant Benign Malignant
n = 223 n = 149 p n = 69 n = 55 P

Age (years) 44.16 ± 11.80 52.15 ± 11.55 <0.001 41.75 ± 10.70 49.15 ± 11.80 <0.001

Diameter (mm) 13.33 ± 8.46 29.57 ± 13.98 <0.001 12.32 ± 6.72 26.53 ± 14.40 <0.001

BI-RADS <0.001 <0.001

4A 154 24 55 13

4B 59 29 13 15

4C 10 45 1 13

5 0 51 0 14

Radiomics score −18.44 ± 6.02 −3.57 ± 18.28 <0.001 −18.04 ± 7.99 −4.79 ± 15.94 <0.001
frontiersin.or
Diameter, Largest diameter of the target lesion.
Numerical data are presented as mean ± standard deviation, categorical data as numbers (n).
FIGURE 3

List of radiomics feature classes with descriptions from the PyRadiomics package.
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two groups regarding the presence of BI-RADS category(p =

0.533), distribution of patient age (p = 0.064),largest lesion

diameter (p = 0.38), or radiomics score(p = 0.827). Table 2

displays the results of univariate and multivariate analyses for

BC in the training group. The radiomics score,BI-RADS

category, largest lesion diameter and patient age were

demonstrated to be independent predictors of BC (P<0.001).

The inter-observer consistency of the radiomics feature

extraction between the two readers was substantial, with an

ICC of 0.798 ± 0.021, and the intra-observer reliability reached

good agreement, with an ICC of 0.829 ± 0.016.
Radiomics score

On the basis of the training group, 112 radiomics features

were reduced to 31 potential predictors by the LASSO regression

model (Figures 4A, B). The 31 features were included in the

radiomics score formula as follows:

Radiomics score =−12.303134×diagnostics_Image.original_

Mean−0.669834×diagnostics_Mask.original_VoxelNum+

1.487857×original_shape_MajorAxisLength+0.384037×origi

nal_shape_Maximum2DDiameterRow−0.517837×original_

shape_Sphericity−5.052795×original_shape_SurfaceArea+

16.122379×original_shape_VoxelVolume-0.333529×original_

firstorder_Kurtosis−0.081668*original_firstorder_Maximum−

0.186704×original_firstorder_Minimum+0.703602×original_

firstorder_RobustMeanAbsoluteDeviation−0.148799×original_

glcm_Autocorrelation+0.083887×original_glcm_ClusterT

endency−1.163571×original_glcm_DifferenceAverage−

0.138501×original_glcm_DifferenceVariance+0.995198×orig

inal_glcm_Id−3.011644×original_glcm_Imc2−3.133431×

original_glcm_JointAverage+0.331901×original_glcm_Sum

Average+0.215143×original_gldm_DependenceNonUniformity

Normalized−0.285513×original_gldm_LargeDependence

LowGrayLevelEmphasis−0.062460×original_glrlm_Gray

LevelNonUniformity−0.654854×original_glr lm_Gray

LevelVariance−0.369813×original_glrlm_LowGrayLevel
Frontiers in Oncology 06
RunEmphasis−2.467511×original_glrlm_RunEntropy+2.7

61×original_glszm_GrayLevelNonUniformity+1.013797×

original_glszm_SizeZoneNonUniformityNormalized+

0.104497×original_glszm_SmallAreaLowGrayLevelEmphasis+

1.155782×original_ngtdm_Coarseness−1.747814×original_

ngtdm_Complexity+0.09735×original_ngtdm_Strength

Malignant lesions had significantly higher scores than

benign lesions in both groups (Table 1, both P<0.001).The

radiomics signature showed good predictive efficacy, with an

AUC of 0.886 in the training cohort and 0.868 in the

validation cohort. The sensitivity of the radiomic signature

was good, as high as 0.852 and 0.821 in the training and

validation cohorts, and the specificity was also good, as high

as 0.846 and 0.798 in the training and validation cohorts. The

accuracies were 82% and 80% in the training and validation

cohorts, respectively.
Development and validation of the
prediction model

Radiomics score, patient age, BI-RADS category and largest

lesion diameter were all discovered as independent risks for BC

in the multivariable logistic regression model (Table 2). We

developed a nomogram based on a radiomic score, patient age,

BI-RADS category and largest lesion diameter (Figure 5). Calibration

curves of the full model in the training and validation groups were

plotted to evaluate the agreement between the predicted probability of

BC and actual results and are presented in Figures 6A, B. The bias

curves for the training and validation cohorts are both close to the

ideal line in the figures, and good consistency can be observed

between the predictions and observations. The nomogram

displayed an AUC of 0.956 (95% CI,[0.910, 0.972]) for predicting

BC in the training cohort (Figure 7), and the sensitivity, specificity,

and accuracy were 0.899,0.879, and 86%, respectively. In the

validation cohort, it also displayed excellent prediction efficacy, with

an AUC of 0.937 (95% CI, [0.893–0.965]), and the sensitivity,

specificity, and accuracy were 0.886, 0.862, and 85%, respectively.
TABLE 2 Results of the univariate and multivariate analyses based on the development group.

Univariate analysis Multivariate analysis
OR (95% CI) P OR (95% CI) P

Age (years) 1.06 (1.039,1.080) <0.001 1.063 (1.031,1.095) <0.001

Diameter (mm) 1.124 (1.097,1.153) <0.001 1.060 (1.025,1.096) 0.001

BI-RADS

4A Ref. Ref.

4B 3.154 (1.699,5.854) <0.001 2.134 (0.963,4.728) 0.062

4C 28.875 (12.858,64.845 <0.001 14.258 (5.035,40.378) <0.001

5 NA 0.997 NA 0.996

Radiomics score 1.262 (1.195,1.334) <0.001 1.209 (1.135,1.287) <0.001
frontiers
NA, values were not available.
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Clinical use

Decision Curve Analysis (DCA) evaluates and compares the

clinical application value of imaging feature models and

radiomics features by calculating the net benefit under

different threshold probabilities (17). The decision curve

analysis for the radiomics features and clinical risk factors

were displayed in Figure 8. The decision curve analysis showed

that when the threshold probability was within a range from 0 to

0.9, the net benefit of using radiomics features to predict BC

added more benefit than either the treat-all scheme or the

treatnone scheme. The net benefit of radiomics features were
Frontiers in Oncology 07
higher than that of clinical risk factors in the threshold

probability within a range from 0 to 0.5,therefore,the

radiomics features established in our study have high clinical

application value.
Discussion

In this research, we developed a nomogram based on a

radiomics score and clinical characteristics to predict

malignancy in breast lesions classified as BI-RADS US

category 4 or 5,and it displayed excellent ability to predict
BA

FIGURE 4

(A) Selection of the tuning parameter l in the LASSO model via 10-fold cross-validation was based on the 1 standard error of the minimum
criteria (the 1−SE criteria). The value of l that gave the minimum average binomial deviance was used to select features. Dotted vertical lines
were drawn at the optimal values using the minimum criteria and the 1−SE criteria. (B) LASSO coefficient profiles of the 112 radiomics features. A
vertical line was drawn at the value selected using 10-fold cross-validation, where optimal result was 31 non-zero coefficients.
FIGURE 5

Nomogram for prediction of BC in BI-RADS US category 4 or 5 lesions. The different values for each variable corresponds to a point at the top
of the graph, while the sum of the points for all the variables corresponds to a total point, draw a line from the total points to the bottom line is
the probability of BC in BI-RADS US category 4 or 5 lesions.The AUC of the model constructed with radiomics score, patient age, lesion
diameter identified by US and BI-RADS category involved was 0.956.
frontiersin.org
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malignancy in breast lesions with an AUC of 0.956 in the

training cohort. In addition, we constructed a radiomics score,

which also displayed good performance (AUC 0.886). Both of

the nomogram and the radiomics score can assist clinicians to

predict BC.

Radiomics is a rapidly developing computer-aided

technology that converts medical imaging information into a
Frontiers in Oncology 08
series of data through computer algorithms, and then analyzes

and models these data to provide potential non-invasive

biomarkers for clinical decision making. Previous studies have

shown that image microscopic characteristics are closely related

to the microstructure and biological behavior of tumors (18–21).

Due to the differences in time and space during tumor growth,

pathological biopsy sometimes cannot represent the complete
BA

FIGURE 6

(A, B) Calibration curve of the nomogram for the development cohort and validation cohort. The X-axis represents the probability that
nomogram predicted BC in BI-RADS US category 4 or 5 lesions, while Y-axis represents actual rate of it. The dotted line in the middle
represents the perfect prediction, and the solid line represents the predictive power of the nomogram. The closer the solid line is to the dotted
line, the better the predictive power of the model.
FIGURE 7

ROC curves of the radiomics score (green lines), BI-RADS category (yellow lines),patient age(blue lines),largest lesion diameter (red lines) and
nomogram (orange lines) in the development groups.
frontiersin.org
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characteristics of tumor tissue. However, as radiomics signatures

are composed of quantitative features extracted from images,

they can describe tumor heterogeneity more comprehensively

and noninvasively compared with subjective and qualitative

features of tumor lesions (7, 22, 23). However, the association

between biological behaviour and radiomics features is still

complex (24). When biomarkers are selected from thousands

of radiomics features, it is difficult to clearly clarify the

relationship between radiomics features and biological

behaviour. An effective method is to use radiomics techniques

to establish multi-feature parameters for the estimation of results

(25, 26). For the development of the radiomics signatures, 112

candidate radiomics features were reduced to 31 potential

predictors by examining the predictor-outcome association by

shrinking the regression coefficients with the LASSO method.

This method not only surpasses the method of choosing

predictors on the basis of the strength of their univariable

association with outcome (27), but also enables the panel of

selected features to be combined into a radiomics signature (28).

Multimarker analyses that incorporate individual markers into

marker panels have been embraced in recent studies (29–32),

such as in the 21-gene assay that was identified and validated to
Frontiers in Oncology 09
spare the use of chemotherapy in certain groups of patients who

have BC (31, 32). Similarly, in this study, we developed a

radiomics signature that combine multiple individual imaging

features extracted from the image of US, and the capability of the

radiomics signature for estimating malignancy in breast lesions

classified as BI-RADS US category 4 or 5 is impressing. The

AUC, sensitivity, specificity, and accuracy were 0.868,

0.821,0.798, and 80% in the validation cohort.Thus, the

noninvasive radiomics signature, which makes use of the

images we already have for free, could serve as a more

convenient biomarker for the prediction of BC.

Radiomics features are usually difficult to be interpreted and

analyzed intuitively, but they can reflect the complexity and

heterogeneity of tumor microenvironment. Take the features

screened from the results as examples, sphericity is a measure of

the roundness of the tumor area. The larger the value is, the

closer it is to a perfect sphere; run entropy measures the

randomness of run length and gray scale, and the higher

the value, the more heterogeneous the mass; uniformity is the

embodiment of the uniformity of image array, with a larger value

meaning a greater uniformity (33). Although these features are

beyond visual interpretation, they can be fully utilized by
FIGURE 8

Decision curve analysis (DCA) of the radiomic signature(blue lines) and clinical risk factors(red lines). The y-axis represents the net benefit. The
net benefit is determined by calculating the difference between the expected benefit and the expected harm related to each proposed model.
The grey line represents the hypothesis that all lesions were malignant (the treat-all scheme). The black line represents the assumption that all
lesions were benign (the treat-none scheme).As demonstrated in the curve, if the threshold probability was within a range from 0 to 0.9, the net
benefit of using radiomics scores to predict malignancy added more benefit than either the treat-all scheme or the treatnone scheme. The net
benefit of radiomics features were higher than that of clinical risk factors if the threshold probability was between 0 and 0.5. Radiomics
signature: Radiomics score.
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radiomics and provide considerable information for the

diagnosis and prediction of diseases.

In our study, we found that many clinical characteristics

were correlated with malignancy in breast lesions, including

patient age, BI-RADS category and largest lesion diameter. As

expected, the variables associated with BC in our study were

quite similar to other studies (34–36). Taking into account the

impact that clinical factors can have on BC, we developed a

nomogram that incorporated radiomics signature and other

clinical characteristics. We were encouraged that the

nomogram showed excellent ability to evaluate BC with an

AUC of 0.937 in the validation cohort. The nomogram is

expected to reduce the difficulties faced by radiologists in the

differential diagnosis of BC classified as BI-RADS US category 4

or 5, by greatly reducing the subjective guess of radiologist, and

the negative influence of the uneven diagnosis levels of

radiologists of varying seniority. With the nomogram, the

diagnosis level tends to be uniform and improves as a whole.

There are some limitations to our study. First, this was a

retrospective study, so inherent biases and variations were

inevitable, and a prospective study should and would be

conducted in the future for further verification. Second, the

present study was a single-centre research study. In our study,

although the performance of the nomogram has been evaluated

by a validation cohort, additional validation at other centres will

be necessary to assess the reliability of this prediction model.

Third, breast lesions were ultimately assigned a category after

analysing their sonographic features according to the second

edition of the ACR BI-RADS US atlas. After verification, it has

high diagnostic accuracy and was easy to use. Pure empirical

diagnosis should be avoided in every case possible. We selected

lesions classified as BI-RADS category 4 and 5, whose malignant

risks were gradually increasing, and whose local malignant

features were more prominent than benign features. In

principle, it was better to include lesions classified as BI-RADS

category 3, but it was not easy to obtain pathological results for

them. Forth, US image features of lesions could be affected by

pathological characteristics of that, the information about

pathological characteristics of patients’ lesions was missing,

and patients with indefinite pathology were excluded, selection

bias might have occurred.
Conclusions

We developed a radiomic signature and a nomogram based

on a radiomic score, patient age, BI-RADS category and largest

lesion diameter that can be used to identify BC in BI-RADS US

category 4 or 5 lesions non-invasively, and the predictive

performance is good. Both nomogram and radiomics score

can be used as methods to assist radiologists and clinicians in

predicting breast malignancy in BI-RADS US category 4 or

5 lesions.
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and challenges for the implementation of computational medical imaging
(radiomics) in oncology. Ann Oncol (2017) 28(6):1191–206. doi: 10.1093/
annonc/mdx034

6. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures,
they are data. Radiology (2016) 278(2):563–77. doi: 10.1148/radiol.2015151169

7. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPN,
Granton P, et al. Radiomics: extracting more information from medical images
using advanced feature analysis. Eur J Cancer (2012) 48(4):441–6. doi: 10.1016/
j.ejca.2011.11.036

8. Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, et al.
Radiomics: the process and the challenges. Magn Reson Imaging (2012) 30
(9):1234–48. doi: 10.1016/j.mri.2012.06.010

9. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al.
Dermatologist-level classification of skin cancer with deep neural networks.
Nature (2017) 542(7639):115–8. doi: 10.1038/nature21056

10. Braman NM, Etesami M, Prasanna P, Dubchuk C, Gilmore H, Tiwari
P, et al. Intratumoral and peritumoral radiomics for the pretreatment
p r ed i c t i on o f pa tho log i c a l comp l e t e r e spons e to neoad juvan t
chemotherapy based on breast DCE-MRI. Breast Cancer Res (2017) 19
(1):57. doi: 10.1186/s13058-017-0846-1

11. Huang Y, Liu Z, He L, Chen X, Pan D, Ma Z, et al. Radiomics signature: A
potential biomarker for the prediction of disease-free survival in early-stage (I or II)
non-small cell lung cancer. Radiology (2016) 281(3):947–57. doi: 10.1148/
radiol.2016152234

12. Li Y, Liu X, Xu K, Qian ZH, Wang K, Fan X, et al. MRI Features can predict
EGFR expression in lower grade gliomas: A voxel-based radiomic analysis. Eur
Radiol (2018) 28(1):356–62. doi: 10.1007/s00330-017-4964-z

13. Yip SS, Aerts HJ. Applications and limitations of radiomics. Phys Med Biol
(2016) 61(13):R150–66. doi: 10.1088/0031-9155/61/13/R150

14. Hu Y, Yang Y, Gu R, Jin L, Shen SY, Liu FT, et al. Does patient age afect the
PPV3 of ACR BI-RADS ultrasound categories 4 and 5 in the diagnostic setting? Eur
Radiol (2018) 28(6):2492–8. doi: 10.1007/s00330-017-5203-3

15. Van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan
V, et al. Computational radiomics system to decode the radiographic phenotype.
Cancer Res (2017) 77(21):e104–7. doi: 10.1158/0008-5472

16. Gao YJ, Luo YW, Zhao CY, Xiao MS, Ma L, Li WB, et al. Nomogram based
on radiomics analysis of primary breast cancer ultrasound images: prediction of
axillary lymph node tumor burden in patients. Eur Radiol (2021) 31(2):928–37.
doi: 10.1007/s00330-020-07181-1

17. Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating
prediction models. Med Decis Making (2006) 26(6):565–74. doi: 10.1177/
0272989X06295361

18. Guo Y, Hu YZ, Qiao MY, Wang YY, Yu JH, Li JW, et al. Radiomics analysis
on ultrasound for prediction of biologic behavior in breast invasive ductal
carcinoma. Clin Breast Cancer (2018) 18(3):e335–44. doi: 10.1016/
j.clbc.2017.08.002
Frontiers in Oncology 11
19. Grossmann P, Stringfield O, El-HachemN, Bui MM,Velazquez ER, Parmar C,
et al. Defning the biological basis of radiomic phenotypes in lung cancer. Elife (2017)
6:e23421. doi: 10.7554/eLife.23421

20. Ganeshan B, Goh V, Mandeville HC, Ng QS, Hoskin PJ, Miles KA, et al.
Non-small cell lung cancer: histopathologic correlates for texture parameters at CT.
Radiology (2013) 266(1):326–36. doi: 10.1148/radiol.12112428

21. Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, et al. Decoding global
gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol
(2007) 25(6):675–80. doi: 10.1038/nbt1306

22. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S,
et al. Decoding tumour phenotype by noninvasive imaging using a quantitative
radiomics approach. Nat Commun (2014) 5:4006. doi: 10.1038/ncomms5006

23. Liang C, Huang Y, He L, Chen X, Ma ZL, Dong D, et al. The development
and validation of a CT-based radiomics signature for the preoperative
discrimination of stage I-II and stage III-IV colorectal cancer. Oncotarget (2016)
7(21):31401–12. doi: 10.18632/oncotarget.8919

24. Tran B, Dancey JE, Kamel-Reid S, McPherson JD, Bedard PL, Brown AMK,
et al. Cancer genomics: technology, discovery, and translation. J Clin Oncol (2012)
30(6):647–60. doi: 10.1200/JCO.2011.39.2316

25. Kuo MD, Gollub J, Sirlin CB, Ooi C, Chen X. Radiogenomic analysis to
identify imaging phenotypes associated with drug response gene expression
programs in hepatocellular carcinoma. J Vasc Interv Radiol (2007) 18(7):821–31.
doi: 10.1016/j.jvir.2007.04.031

26. Rutman AM, Kuo MD. Radiogenomics: creating a link between molecular
diagnostics and diagnostic imaging. Eur J Radiol (2009) 70(2):232–41. doi: 10.1016/
j.ejrad.2009.01.050

27. Harrell FEJr. Regression modeling strategies : With applications to linear
models, logistic regression, and survival analysis. NY,Springer: New York (2015).

28. Huang YQ, Liang CH, He L, Tian J, Liang CS, Chen X, et al. Development
and validation of a radiomics nomogram for preoperative prediction of lymph
node metastasis in colorectal cancer. J Clin Oncol (2016) 34(18):2157–64.
doi: 10.1200/JCO.2015.65.9128

29. Birkhahn M, Mitra AP, Cote RJ. Molecular markers for bladder cancer: The
road to a multimarker approach. Expert Rev Anticancer Ther (2007) 7(12):1717–27.
doi: 10.1586/14737140.7.12.1717

30. Gorelik E, Landsittel DP, Marrangoni AM, Modugno F, Velikokhatnaya L,
Winans MT, et al. Multiplexed immunobead-based cytokine profiling for early
detection of ovarian cancer. Cancer Epidemiol Biomarkers Prev (2005) 14(4):981–7.
doi: 10.1158/1055-9965.EPI-04-0404

31. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to
predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med
(2004) 351(27):2817–26. doi: 10.1056/NEJMoa041588

32. Sparano JA, Gray RJ, Makower DF, Pritchard KI, lbain KS, Hayes DF, et al.
Prospective validation of a 21-gene expressionassay in breast cancer. N Engl J Med
(2015) 373(21):2005–14. doi: 10.1056/NEJMoa1510764

33. Zhou J, Lu J, Gao C, Zeng J, Zhou C, Lai X, et al. Predicting the response to
neoadjuvant chemotherapy for breast cancer: wavelet transforming radiomics in
MRI. BMC Cancer (2020) 20(1):100. doi: 10.1186/s12885-020-6523-2

34. Wen J, Feng Y, Huang X, Li S, Yang L, Xiao XS, et al. The tumor-to-breast
volume ratio (TBR) predicts cancer-specific survival in breast cancer patients who
underwent modified radical mastectomy. Tumour Biol (2016) 37(6):7493–500.
doi: 10.1007/s13277-015-4382-2

35. Lu H, Zhu Y, Liu Z, Yu T, He CJ, Jiang WY, et al. Radiomic nomogram for
prediction of axillary lymph node metastasis in breast cancer. Eur Radiol (2019) 29
(7):3820–9. doi: 10.1007/s00330-018-5981-2

36. Luo W, Huang Q, Huang X, Hu H, Zeng FQ, Wang W, et al. Predicting
breast cancer in breast imaging reporting and data system (BI-RADS) ultrasound
category 4 or 5 lesions: A nomogram combining radiomics and BI-RADS. Sci Rep
(2019) 9(1):11921. doi: 10.1038/s41598-019-48488-4
frontiersin.org

https://www.scienceopen.com
https://doi.org/10.1002/ijc.29210
https://doi.org/10.1002/ijc.29210
https://doi.org/10.1148/radiol.12110619
https://doi.org/10.1093/annonc/mdx034
https://doi.org/10.1093/annonc/mdx034
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1016/j.mri.2012.06.010
https://doi.org/10.1038/nature21056
https://doi.org/10.1186/s13058-017-0846-1
https://doi.org/10.1148/radiol.2016152234
https://doi.org/10.1148/radiol.2016152234
https://doi.org/10.1007/s00330-017-4964-z
https://doi.org/10.1088/0031-9155/61/13/R150
https://doi.org/10.1007/s00330-017-5203-3
https://doi.org/10.1158/0008-5472
https://doi.org/10.1007/s00330-020-07181-1
https://doi.org/10.1177/0272989X06295361
https://doi.org/10.1177/0272989X06295361
https://doi.org/10.1016/j.clbc.2017.08.002
https://doi.org/10.1016/j.clbc.2017.08.002
https://doi.org/10.7554/eLife.23421
https://doi.org/10.1148/radiol.12112428
https://doi.org/10.1038/nbt1306
https://doi.org/10.1038/ncomms5006
https://doi.org/10.18632/oncotarget.8919
https://doi.org/10.1200/JCO.2011.39.2316
https://doi.org/10.1016/j.jvir.2007.04.031
https://doi.org/10.1016/j.ejrad.2009.01.050
https://doi.org/10.1016/j.ejrad.2009.01.050
https://doi.org/10.1200/JCO.2015.65.9128
https://doi.org/10.1586/14737140.7.12.1717
https://doi.org/10.1158/1055-9965.EPI-04-0404
https://doi.org/10.1056/NEJMoa041588
https://doi.org/10.1056/NEJMoa1510764
https://doi.org/10.1186/s12885-020-6523-2
https://doi.org/10.1007/s13277-015-4382-2
https://doi.org/10.1007/s00330-018-5981-2
https://doi.org/10.1038/s41598-019-48488-4
https://doi.org/10.3389/fonc.2022.894476
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Nomograms for prediction of breast cancer in breast imaging reporting and data system (BI-RADS) ultrasound category 4 or 5 lesions: A single-center retrospective study based on radiomics features
	Highlights
	Introduction
	Materials and methods
	Study population
	US and pathological examinations
	Definition of the ROI
	Radiomics feature extraction and radiomics score
	Model construction and validation
	Statistical analysis

	Results
	Baseline characteristics of the populations
	Radiomics score
	Development and validation of the prediction model
	Clinical use

	Discussion
	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


